祝 文 袁亞迎 焦峰軍
(咸陽市第一人民醫(yī)院重癥醫(yī)學(xué)科,咸陽712001)
胚胎干細(xì)胞來源神經(jīng)干細(xì)胞調(diào)控巨噬細(xì)胞的實(shí)驗(yàn)研究①
祝 文 袁亞迎 焦峰軍
(咸陽市第一人民醫(yī)院重癥醫(yī)學(xué)科,咸陽712001)
目的:觀察胚胎干細(xì)胞(Embryonic stem cell,ESC)來源的神經(jīng)干細(xì)胞(Neural stem cells,NSCs)對骨髓巨噬細(xì)胞的增殖、吞噬及分泌細(xì)胞因子的影響,為探討NSCs免疫調(diào)節(jié)及在重大疾病中的應(yīng)用做鋪墊。方法:培養(yǎng)骨髓巨噬細(xì)胞,收集胚胎干細(xì)胞來源NSCs(ESC-NSCs)的上清液處理巨噬細(xì)胞,然后利用磺酰羅丹明B(Sulforhodamine B,SRB)法檢測增殖情況;利用紅熒光beads檢測吞噬能力;ELISA法檢各組TNF-α和IL-1β表達(dá)情況。結(jié)果:成功從ESC獲得具有NSCs特征的細(xì)胞。對照組、NSC組巨噬細(xì)胞增殖率分別為100%、(126.29±5.41)%,beads吞噬率分別為(70.23±2.57)%、(90.32±8.49)%。相比對照組,NSC組巨噬細(xì)胞TNF-α和IL-1β含量下降(P<0.05)。結(jié)論:ESC來源的NSCs具有促進(jìn)骨髓巨噬細(xì)胞增殖及增強(qiáng)其吞噬能力,并抑制其炎性因子分泌,為NSCs免疫調(diào)節(jié)作用提供新的依據(jù)。
神經(jīng)干細(xì)胞;胚胎干細(xì)胞;巨噬細(xì)胞;吞噬;細(xì)胞因子
神經(jīng)干細(xì)胞(Neural stem cells,NSCs)是一類具有自我復(fù)制及多潛能分化的細(xì)胞,其可從胚胎及成年腦組織、臍帶血分離,也可定向誘導(dǎo)胚胎干細(xì)胞(Embryonic stem cell,ESC)而獲得[1-3]。近年來,干細(xì)胞的免疫調(diào)節(jié)越來越受到重視[4]。巨噬細(xì)胞是機(jī)體重要的免疫細(xì)胞之一,在特異性免疫反應(yīng)的誘發(fā)和免疫調(diào)節(jié)中起關(guān)鍵作用[5]。但目前NSCs對巨噬細(xì)胞的調(diào)控作用還不清楚。本實(shí)驗(yàn)主要觀察ESC-NSCs對骨髓來源巨噬細(xì)胞增殖、吞噬能力的影響,從而為下一步探索NSCs免疫調(diào)控及炎癥調(diào)節(jié)作用、機(jī)制及其在重大疾病中的應(yīng)用奠定基礎(chǔ)。
1.1 實(shí)驗(yàn)材料、試劑 清潔級6~8周C57BL/6小鼠,由西安交通大學(xué)醫(yī)學(xué)院動物實(shí)驗(yàn)中心提供;小鼠胚胎干細(xì)胞F12由美國新澤西州立大學(xué)干細(xì)胞研究中心Melitta Schachner教授贈送,于實(shí)驗(yàn)室保存;紅色熒光beads(Sigma公司),胎牛血清(Cellgro公司),DMEM、DMEM/F12培養(yǎng)基、B27添加劑、N2添加劑、bFGF、EGF、Accutase(Gibco公司),Mitomycin、Gelatin、油紅、Polybrene(Sigma公司),LIF(Millipore公司),TNF-α和IL-1β ELISA盒(Biolegend公司),大鼠抗小鼠F4/80抗體、兔抗小鼠nestin抗體、兔抗小鼠β-tubulin抗體和大鼠抗小鼠GFAP抗體均購自Abcam公司,相應(yīng)的山羊抗大鼠、山羊抗兔Alexa Fluor 555、488染料標(biāo)記的熒光二抗購自Life technologies公司,Hoechst33342熒光染料購自Sigma公司。
1.2 實(shí)驗(yàn)方法
1.2.1 胚胎干細(xì)胞來源的NSCs培養(yǎng) 首先制備小鼠胚胎成纖維細(xì)胞滋養(yǎng)層。將小鼠胚胎成纖維細(xì)胞滋養(yǎng)層接種于0.1%明膠(Gelatin)包被的培養(yǎng)皿,待其生長至80%~90%用絲裂霉素處理;然后將ESC接種于絲裂霉素處理過的滋養(yǎng)層上,每天按1 000 U/ml添加白細(xì)胞抑制因子(Leukemia inhibitory factor,LIF),3~4 d傳代一次,逐漸轉(zhuǎn)化成無需飼養(yǎng)層的懸浮培養(yǎng)。最后,將ESC制成單細(xì)胞,在NSCs誘導(dǎo)培養(yǎng)液中培養(yǎng)、鑒定并收集誘導(dǎo)完成后的細(xì)胞上液清。
1.2.2 骨髓來源的巨噬細(xì)胞分離、培養(yǎng) 在無菌操作下取出小鼠完整的股骨及脛骨,在干骺端兩頭切開并用27G針頭沖出全部骨髓細(xì)胞,制成單細(xì)胞懸液、調(diào)整細(xì)胞(不包括紅細(xì)胞)濃度至2×106ml,培養(yǎng)7 d后,鑒定并進(jìn)行下一步相關(guān)實(shí)驗(yàn)。
1.2.3 實(shí)驗(yàn)分組 根據(jù)處理巨噬細(xì)胞的不同培養(yǎng)基分為對照組(即NSCs的培養(yǎng)液)和NSC組(即ESC來源NSCs的上清液)。
1.2.4 增殖、吞噬實(shí)驗(yàn) 按4 000 個(gè)細(xì)胞/孔接種于96孔,處理3~4 d后利用SRB比色法檢測細(xì)胞增殖情況。為了觀察 ESC-NSCs對巨噬細(xì)胞吞噬功能的影響,加入Beads 1 h后洗滌、固定、拍照并分析結(jié)果。
1.2.5 巨噬細(xì)胞上清液中TNF-α和IL-1β的檢測 先用相應(yīng)的上清液處理細(xì)胞24 h,然后添加10 ng/ml干擾素γ(Interferon-γ,IFN-γ),繼續(xù)孵育24 h后,收集上清液利用ELISA試劑盒檢測上清液TNF-α和IL-1β含量。具體步驟如下:Capture抗體稀釋液,4℃過夜,1%BSA室溫封閉1 h;洗滌4次,加入相應(yīng)的標(biāo)準(zhǔn)品和樣品,每一樣本設(shè)兩個(gè)重復(fù)孔,室溫中搖晃2 h;洗滌后,加入抗體稀釋液(1∶200),室溫孵育1 h;洗滌4次,加入100 μl Avidin-HRP稀釋液(1∶1 000),室溫1 h;洗滌5次后,加入100 μl TMB溶液,避光孵育15~30 min;加入100 μl終止液(2N硫酸),然后在酶標(biāo)儀570 nm讀值;制作標(biāo)準(zhǔn)曲線,計(jì)算結(jié)果。
2.1 ESC-NSCs及巨噬細(xì)胞的形態(tài)觀察及鑒定 ESC 細(xì)胞株F12在飼養(yǎng)層存在的條件下,貼壁生長(圖1A)。ESC定向誘導(dǎo)后,可形成神經(jīng)球,經(jīng)免疫熒光染色結(jié)果顯示整個(gè)神經(jīng)球均勻表達(dá)Nestin(紅色,圖1B)。去生長因子誘導(dǎo)分化5 d后檢測到β-tubulin陽性(圖1C)和GFAP陽性細(xì)胞(圖1D),可見成功獲得ESC-NSCs。
骨髓細(xì)胞經(jīng)體外培養(yǎng)7后,細(xì)胞呈棱形、橢圓形,巨噬細(xì)胞標(biāo)記物F4/80染色結(jié)果呈現(xiàn)大部分為陽性細(xì)胞,可用于下一步實(shí)驗(yàn),圖2。
2.2 增殖實(shí)驗(yàn) 相比于對照組(100%),ESC-NSCs組增殖率(126.29±5.41%)增高 ,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖3。
2.3 巨噬細(xì)胞的吞噬功能 NSC組(90.32±8.49)%較對照組巨噬細(xì)胞吞噬率(70.23±2.57)%增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖4。
圖1 ESC-NSCs形態(tài)觀察及鑒定Fig.1 Morphological observation and identification of ESC-NSCs
圖2 巨噬細(xì)胞的形態(tài)觀察及鑒定Fig.2 Morphological observation and identification of macrophage
圖3 巨噬細(xì)胞的增殖情況Fig.3 Proliferation of macrophagesNote:*.P<0.05.
圖4 巨噬細(xì)胞吞噬實(shí)驗(yàn)Fig.4 Phagocytosis assay of macrophages
圖5 巨噬細(xì)胞細(xì)胞因子TNF-α和IL-1β的含量Fig.5 Level of TNF-α and IL-1β by macrophagesNote:*.P<0.05.
2.4 巨噬細(xì)胞TNF-α和IL-1β表達(dá)情況 CON上清液處理后添加IFN-γ組較CON上清液處理后未添加IFN-γ組TNF-α和IL-1β均明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。對照組和NSC組TNF-α濃度分別為(131.18±18.57) pg/ml、(58.36±5.43) pg/ml;IL-1β濃度分別為(100.25±413.03) pg/ml、(20.41±2.20) pg/ml。相比于對照組,NSC組巨噬細(xì)胞促炎性細(xì)胞因子TNF-α和IL-1β含量降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖5。
NSCs治療中樞神經(jīng)系統(tǒng)疾病的機(jī)理主要包括替代缺損的神經(jīng)細(xì)胞,分泌多種神經(jīng)營養(yǎng)因子起營養(yǎng)和促進(jìn)損傷脊髓再髓鞘化等作用[6-8]。目前,干細(xì)胞的免疫調(diào)節(jié)越來越受重視,是干細(xì)胞研究領(lǐng)域的熱點(diǎn)[9]。NSCs通過T細(xì)胞和B細(xì)胞等免疫細(xì)胞發(fā)揮免疫調(diào)控作用已經(jīng)得到廣泛認(rèn)可[10-12]。巨噬細(xì)胞是機(jī)體重要的免疫細(xì)胞之一,在特異性免疫反應(yīng)的誘發(fā)和免疫調(diào)節(jié)中起關(guān)鍵作用。目前,NSCs對巨噬細(xì)胞的調(diào)控作用及機(jī)制還未明確。在本研究中,我們發(fā)現(xiàn)胚胎干細(xì)胞來源的NSCs可促進(jìn)骨髓巨噬細(xì)胞增殖和提高其吞噬能力,同時(shí)降低對促炎性因子TNF-α和IL-1β的分泌。
NSCs在免疫調(diào)控和炎癥反應(yīng)中的作用逐漸受到重視。Jia等[13]報(bào)道小鼠和大鼠的神經(jīng)干/前體細(xì)胞能促進(jìn)小膠質(zhì)細(xì)胞(中樞神經(jīng)系統(tǒng)的巨噬細(xì)胞)激活、增殖。巨噬細(xì)胞在不同微環(huán)境及不同的因子作用下可極化成不同的表型,根據(jù)極化后細(xì)胞表面標(biāo)示性分子及功能的不同,巨噬細(xì)胞大體可分為兩種類型,即M1和M2型[14]。LPS等因子作用下巨噬細(xì)胞可極化為M1型,高表達(dá)TNF-α、IL-6等促炎因子;而IL-4等可促進(jìn)巨噬細(xì)胞通常向M2型極化。M2巨噬細(xì)胞特征為低表達(dá)TNF-α、IL-6、高表達(dá)IL-10,具有抑制Th1免疫反應(yīng),促進(jìn)損傷組織修復(fù)、重構(gòu)和血管生長功能[15,16]。我們實(shí)驗(yàn)發(fā)現(xiàn),與對照組相比神經(jīng)干細(xì)胞上清液處理組的巨噬細(xì)胞低表達(dá)促炎性因子TNF-α和IL-1β。結(jié)合Jaehyup等[17]研究結(jié)果,我們推測NSCs調(diào)控的巨噬細(xì)胞可能是M2型巨噬細(xì)胞,下一步將檢測M1/M2特異標(biāo)志物。
同時(shí),干細(xì)胞調(diào)控巨噬細(xì)胞主要是通過細(xì)胞之間直接接觸和分泌可溶性因子起作用。本實(shí)驗(yàn)證實(shí)NSCs上清液具有調(diào)控巨噬細(xì)胞的作用,說明胚胎干細(xì)胞來源的NSCs可能主要通過分泌某種或某些可溶性因子(或微小結(jié)構(gòu))發(fā)揮免疫調(diào)節(jié)作用。有研究表明血管內(nèi)皮生長因子(Vascular endothelia growth factor,VEGF)可促進(jìn)小膠質(zhì)細(xì)胞增殖、遷移和增強(qiáng)其吞噬能力[18]。利用免疫親和磁珠或shRNA技術(shù)從神經(jīng)前體細(xì)胞上清液去除VEGF,神經(jīng)前體細(xì)胞對小膠質(zhì)細(xì)胞作用消失[19]。轉(zhuǎn)化生長因子-β(Transforming growth factor-β,TGF-β),基質(zhì)金屬蛋白酶組織抑制劑-1(Tissue inhibitors of metalloproteinase-1,TIMP-1)等因子在NSCs免疫調(diào)節(jié)中也具有重要作用[20]。但是NSCs調(diào)控骨髓來源巨噬細(xì)胞的因子還需要進(jìn)一步證實(shí)。同時(shí),外泌體(Exosome)直徑30~150 nm,攜帶一些重要信號分子,具有廣泛的生物學(xué)活性。外泌體是干細(xì)胞發(fā)揮生物學(xué)作用過程中的關(guān)鍵因素。我們已經(jīng)初步從NSCs上清液中分離獲得外泌體并發(fā)現(xiàn)其具有與上清液類似的抗炎作用(數(shù)據(jù)待發(fā)表)。因此,NSCs也可能通過外泌體而實(shí)現(xiàn)免疫調(diào)節(jié)作用。有研究表明NSCs移植具有一定的致瘤性[21,22]。我們的研究給NSCs治療提供一種新的方式,即采用細(xì)胞上清液進(jìn)行疾病的治療,這樣將有效避免干細(xì)胞移植后發(fā)生腫瘤的可能。然而,體內(nèi)條件下,機(jī)體的免疫調(diào)節(jié)功能是極其復(fù)雜的。我們相信,隨著對NSCs免疫調(diào)節(jié)作用研究的深入,必將為其臨床應(yīng)用提供更堅(jiān)實(shí)的實(shí)驗(yàn)基礎(chǔ)。
[1] Hwang I,Hahm SC,Choi KA,etal.Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model[J].Cell Transplantation,2016,25(3):593-607.
[2] Salewski RP,Mitchell RA,Shen C,etal.Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury[J].Stem Cells Dev,2014,24(1):36-50.
[3] Gage FH.Mammalian neural stem cells[J].Science,2000,287(5457):1433-1438.
[4] Liu A,Fang L,Wu F,etal.Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease[J].Immunity,2011,35(2):273-284.
[5] Gordon S.The macrophage:Past,present and future[J].Eur J Immunol,2007,37(Supplement 1):S9-S17.
[6] Salewski RP,Mitchell RA,Li L,etal.Transplantation of induced pluripotent stem cell-derived neural stem cells mediate functional recovery following thoracic spinal cord injury through remyelination of axons[J].Stem Cells Transl Med,2015,4(7):743-754.
[7] Cheng I,Githens M,Smith RL,etal.Local versus distal transplantation of human neural stem cells following chronic spinal cord injury[J].Spine J,2016,16(6):764-769.
[8] Nemati SN,Jabbari R,Hajinasrollah M,etal.Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys[J].J Med,2013,16(2):117-130.
[9] English D,Sharma NK,Sharma K,etal.Neural stem cells-trends and advances[J].J Cell Biochem,2013,114(4):764-772.
[10] Ofira E,Nina F,Ilan V,etal.Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression[J].Annals Neurol,2007,61(3):209-218.
[11] Einstein O,Karussis D,Grigoriadis N,etal.Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis[J].Mol Cell Neurosci,2003,24(4):1074-1082.
[12] Liu SJ,Zou Y,Belegu V,etal.Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism[J].J Neuroinflammation,2014,11(1):1-9.
[13] Jia L,Erik H,Mingqin Z,etal.Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model[J].J Cell Mol Med,2013,17(11):1434-1443.
[14] Stout RD,Chuancang J,Bharati M,etal.Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences[J].J Immunol,2005,175(1):342-349.
[15] Martinez FO,Helming L,Gordon S.Alternative activation of macrophages:an immunologic functional perspective[J].Annual Rev Immunol,2009,27(1):451-483.
[16] Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J] Nat Rev Immunol,2008,8(12):958-969.
[17] Jaehyup K,Peiman H.Mesenchymal stem cell-educated macroph-ages:a novel type of alternatively activated macrophages[J].Exper Hematol,2009,37(12):1445-1453.
[18] Forstreuter F,Lucius R,Mentlein R.Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells[J].J Neuroimmunol,2002,132(1-2):93-98.
[19] Mosher KI,Andres RH,Fukuhara T,etal.Neural progenitor cells regulate microglia functions and activity states[J].Nat Neurosci,2012,15(11):1485-1487.
[20] Ryu KY,Cho GS,Piao HZ,etal.Role of TGF-beta in survival of phagocytizing microglia:autocrine suppression of TNF-alpha production and oxidative stress[J].Exp Neurobiol,2012,21(4):151-157.
[21] Rowland JW,Lee JJ,Salewski RP,etal.Generation of neural stem cells from embryonic stem cells using the default mecha-nism:in vitro and in vivo characterization[J].Stem Cells,2011,20(11):1829-1845.
[22] Sadowski D,Kiel ME,Apicella M,etal.Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells[J].Stem Cells,2010,19(9):1343-1353.
[收稿2016-04-06 修回2016-05-11]
(編輯 張曉舟)
Effect of embryonic stem cells-derived neural stem cells on macrophage in vitro
ZHU Wen,YUAN Ya-Ying,JIAO Feng-Jun.
Department of Critical Care Medicine,the First People′s Hospital of Xianyang City,Xianyang 712001,China
Objective:To explore the influence of embryonic stem cells-derived neural stem cells on the proliferation and secretion cytokines of bone marrow-derived macrophages.Methods:Mouse bone marrow derived macrophages were isolated and cultured in L929 medium.After macrophages were treated with NSCs supernatant for 3 days,SRB method was used to detect the proliferation of macrophages.The phagocytosis of macrophages were detected by incubating with RFP-Beads for 1 h.Meanwhile,the expression of TNF-α and IL-1β were detected by ELISA.Results:NSCs were successfully induced from ESC.In control group and NSC group,the proliferation rate of macrophages were 100 % and (126.29 ± 5.41)%,the phagocytosis rate were (70.23 ± 2.57)% and (90.32 ± 8.49)%.Compared to the control group,the levels of IL-6,IL-1β in macrophage treated with NSCs decreased (P<0.05).Conclusion:ESC-derived NSCs can promote the proliferation and phagocytosis of bone marrow-derived macrophage,and suppress the secretion of pro-inflammatory cytokines.
Neural stem cells;Embryonic stem cells;Macrophage;Phagocytosis;Cytokines
10.3969/j.issn.1000-484X.2016.12.003
①本文為國家自然科學(xué)基金(81571209)資助項(xiàng)目。
祝 文(1984年-),女,碩士,主治醫(yī)師,主要從事中樞神經(jīng)系統(tǒng)疾病及免疫的研究,E-mail:396242390@qq.com。
及指導(dǎo)教師:焦峰軍(1969年-),男,副主任醫(yī)師,主要從事脊髓損基礎(chǔ)及臨床研究,E-mail:Jiaofengjun@aliyun.com。
R392.4
A
1000-484X(2016)12-1741-04