楊紅,張慶,侯建建,玉柱
(中國農(nóng)業(yè)大學(xué)動物科技學(xué)院,北京 100193)
?
生物添加劑對羊草青貯飼料超微結(jié)構(gòu)和纖維變化的影響
楊紅,張慶,侯建建,玉柱*
(中國農(nóng)業(yè)大學(xué)動物科技學(xué)院,北京 100193)
本試驗(yàn)旨在研究纖維素酶和乳酸菌的單獨(dú)和復(fù)合添加對羊草青貯飼料超微結(jié)構(gòu)和纖維組分的影響。將1060 U/g的纖維素酶(CEL)、1×105CFU/g的干酪乳桿菌(LC)、1060 U/g的纖維素酶和1×105CFU/g的干酪乳桿菌復(fù)合添加劑(LC+CEL)添加到羊草中經(jīng)過切短后裝入0.5 L青貯桶中制作青貯飼料,每個處理3個重復(fù)。在常溫狀態(tài)下貯存45 d,測定發(fā)酵品質(zhì)和營養(yǎng)品質(zhì)變化并用透射電鏡觀察其超微結(jié)構(gòu)。結(jié)果表明,混合組LC+CEL的pH為3.86顯著低于LC和CEL處理組(P<0.05),乳酸和乙酸含量顯著高于LC和CEL處理組(P<0.05)。與對照組相比,LC+CEL處理組顯著降低43.9 g/kg的中性洗滌纖維、22.3 g/kg的酸性洗滌纖維、28.5 g/kg的纖維素和21.6 g/kg的半纖維素,增加20.5 g/kg的可溶性碳水化合物,29.2 g/kg乳酸。3個添加劑處理組中性洗滌纖維和酸性洗滌纖維含量均顯著低于對照組(P<0.05),可溶性糖和有機(jī)酸含量顯著高于對照組(P<0.05)。總之,添加生物添加劑能破壞羊草的細(xì)胞結(jié)構(gòu),提供可溶性碳水化合物作為發(fā)酵底物,快速降低pH促進(jìn)厭氧發(fā)酵。復(fù)合添加干酪乳酸菌和纖維素酶降解細(xì)胞壁和細(xì)胞內(nèi)容物,將其轉(zhuǎn)化為可溶性糖和有機(jī)酸的效果最好,單獨(dú)添加干酪乳酸菌和單獨(dú)添加纖維素酶的效果次之。生物添加劑對羊草葉片不同部位和結(jié)構(gòu)的細(xì)胞降解程度不同,羊草薄壁組織容易降解,木質(zhì)化程度越高的厚壁細(xì)胞降解越困難。
羊草;細(xì)胞壁;生物添加劑;超微結(jié)構(gòu);纖維
羊草(Leymuschinensis)廣泛分布于中國松內(nèi)平原和內(nèi)蒙古高原的東部草原,是中國北方草原的優(yōu)勢種[1]。羊草因其產(chǎn)量高、適應(yīng)性強(qiáng)、適口性好,成為中國北方主要放牧和補(bǔ)飼牧草[2]。青貯與調(diào)制干草相比,技術(shù)路線簡單,對天氣依賴小,營養(yǎng)物質(zhì)損失少,是理想的貯存羊草的方法。和大部分天然牧草一樣,羊草也具有纖維含量高而可溶性糖類物質(zhì)含量低、緩沖能值高的特點(diǎn),常規(guī)青貯很難迅速進(jìn)入?yún)捬醢l(fā)酵階段,降低pH和達(dá)到理想的青貯效果較慢[3]。
生物添加劑有助于乳酸的快速產(chǎn)生,使青貯盡快到達(dá)厭氧發(fā)酵期[4],因而廣泛應(yīng)用于青貯飼料的調(diào)制過程中。纖維素酶能快速增加前20 h纖維素轉(zhuǎn)化成糖類的速度,增加發(fā)酵底物[5],起到盡快降低pH的作用。Wang等[6]研究發(fā)現(xiàn),添加外源纖維素酶能顯著改善大麥秸稈和苜蓿干草的體外消化率。乳酸菌在厭氧條件下發(fā)酵將可溶性碳水化合物轉(zhuǎn)化為以乳酸為主的有機(jī)酸,降低pH從而抑制有害微生物的活動,延長青貯飼料的保存時間[7]。劉丹[8]研究秸稈的化學(xué)添加劑預(yù)處理發(fā)現(xiàn),化學(xué)處理能夠破壞薄壁組織,使維管束組織扭曲,加快薄壁組織、厚壁組織和維管束組織的韌皮部降解。然而生物添加劑處理對細(xì)胞結(jié)構(gòu)的作用,尤其是羊草細(xì)胞壁未開展過研究。本試驗(yàn)旨在探討生物添加劑處理后羊草青貯飼料細(xì)胞壁結(jié)構(gòu)的變化,并尋找這種變化和營養(yǎng)成分變化之間的關(guān)系。
1.1 青貯原料和添加劑
青貯原料為中國農(nóng)業(yè)大學(xué)沽源-豐寧野外國家試驗(yàn)站天然草原野生生長的羊草,于2014年7月處于抽穗期刈割。添加劑:纖維素酶(cellulose enzyme, CEL)為固態(tài)的多組分酶系,由日本雪印公司生產(chǎn),添加量為1060 U/g;干酪乳桿菌(Lactobacilluscasei,LC)由中國農(nóng)業(yè)大學(xué)青貯研究室提供分離自新鮮羊草飼料的乳酸菌,添加量為1×105CFU/g鮮草。羊草青貯原料化學(xué)成分見表1。
表1 羊草青貯原料化學(xué)成分
Table 1 Chemical compositions ofL.chinensis
干物質(zhì)DM(g/kg)可溶性碳水化合物WSC(g/kgDM)粗蛋白CP(g/kgDM)中性洗滌纖維NDF(g/kgDM)酸性洗滌纖維ADF(g/kgDM)半纖維素HC(g/kgDM)纖維素C(g/kgDM)酸性洗滌木質(zhì)素ADL(g/kgDM)390.544.288.7574.7297.0277.8220.046.5
DM: Dry matter; WSC: Water soluble carbohydrate; CP: Crude protein; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; HC: Hemicelluloses; C: Cellulose; ADL: Acid detergent lignin.
1.2 試驗(yàn)設(shè)計與青貯制作
試驗(yàn)設(shè)4個處理,分別為:添加量為1060 U/g的纖維素酶(CEL);1×105CFU/g的干酪乳桿菌(LC);復(fù)合添加劑1060 U/g的纖維素酶+1×105CFU/g的干酪乳桿菌(LC+CEL);對照組為添加與處理組等量的蒸餾水??傆?個處理,每個處理重復(fù)3次。新鮮刈割的羊草原料切短至2 cm左右,稱取300 g裝入體積為0.5 L的青貯桶中,使青貯料的密度為600 kg/m3。于青貯第45天開封取樣進(jìn)行分析。
1.3 樣品分析
依據(jù)楊勝[9]的方法測定各處理青貯飼料樣品的干物質(zhì)(dry matter, DM)。按照Van Soest等[10]的洗滌纖維分析法測定中性洗滌纖維(neutral detergent fiber, NDF)、酸性洗滌纖維(acid detergent fiber, ADF)和酸性洗滌木質(zhì)素(acid detergent lignin, ADL)的含量,并計算纖維素(cellulose, C)和半纖維素(hemicelluloses, HC)的含量。用凱氏定氮法測定粗蛋白(crude protein, CP)的含量[9];采用蒽酮-硫酸比色法測定可溶性碳水化合物(water soluble carbohydrate, WSC)含量[11]。
pH測定:取20 g青貯飼料鮮樣,加入180 mL蒸餾水,攪拌均勻,用組織搗碎機(jī)攪碎1 min,先后用4層紗布和定性濾紙過濾,得到浸出液,再用pH儀測定青貯飼料浸出液的pH[12]。使用SHIMADZE-10A型高效液相色譜分析乳酸(lactic acid, LA)、乙酸(acetic acid, AA)、丙酸(propionic acid, PA)和丁酸(butyric acid, BA)含量;色譜柱:Shodex Rspak Kc-811s-DVB gel Column 30 mm×8 mm,檢測器:SPD-M10AVP,流動相:3 mmol/L高氯酸,流速:1.0 mL/min,柱溫50 ℃,檢測波長210 nm,進(jìn)樣量5 μL[13]。采用苯酚-次氯酸鈉比色法測定氨態(tài)氮(ammonia nitrogen, NH3-N)含量[14]。
從LC+CEL處理組、LC處理組、對照組中各隨機(jī)取羊草青貯材料用于透射電鏡的觀察。選取第2節(jié)上葉片,距葉鞘3 cm并與葉脈垂直截取1.5~2.0 cm的葉片。重復(fù)取4~5片葉立即放入裝有2.5%戊二醛溶液的注射器中,來回抽氣多次至葉片懸浮于溶液中,后轉(zhuǎn)入離心管中室溫保存2 d以后4 ℃冰箱中保存。倒掉戊二醛固定液,然后用磷酸鹽緩沖液沖洗3次,2%鋨酸溶液固定3 h,磷酸鹽緩沖液再洗3次,經(jīng)各級乙醇脫水,進(jìn)行常規(guī)樹脂包埋,在超薄切片機(jī)上用鉆石刀切片,再經(jīng)醋酸鈾和枸椽酸鉛雙重染色,置于透射電鏡(Phillips Tecnai-12 TEM,荷蘭)下觀察,照相。
1.4 數(shù)據(jù)分析
用SPSS 19.0進(jìn)行單因子方差分析,用Duncan法進(jìn)行多重比較。以P<0.05作為差異顯著性判斷標(biāo)準(zhǔn)。
2.1 羊草青貯飼料發(fā)酵品質(zhì)
各處理的發(fā)酵品質(zhì)分析結(jié)果見表2,LC+CEL處理組的pH最低,LC處理組次之,都顯著低于對照組和CEL處理組(P<0.05)。混合組LC+CEL的pH 為3.86,顯著低于其他各組(P<0.05),乳酸和乙酸含量分別為62.04和16.66 g/kg,顯著高于其他各組(P<0.05)。對照組、CEL處理組和LC處理組的乙酸含量沒有顯著差異。丁酸含量在各組之間不存在顯著差異。LC處理組的乳酸∶乙酸顯著高于對照組 (P<0.05)。LC和LC+CEL處理組的氨態(tài)氮含量顯著低于CEL處理組和對照組(P<0.05)。
表2 羊草青貯飼料的發(fā)酵品質(zhì)
Table 2 Fermentation quality ofL.chinensissilage
發(fā)酵品質(zhì)Fermentationquality對照CK纖維素酶CEL干酪乳桿菌LC干酪乳桿菌和纖維素酶LC+CELpH4.31±0.46a4.28±0.26a4.11±0.82b3.86±0.29c氨態(tài)氮NH3-N(g/kgTN)98.47±8.34a96.24±3.24a48.26±6.20b40.96±0.79b乳酸LA(g/kgDM)32.84±2.07c35.94±1.53c49.90±4.67b62.04±8.00a乙酸AA(g/kgDM)11.6±1.82b12.04±0.14b11.69±1.09b16.66±3.10a丙酸PA(g/kgDM)15.29±2.50a13.93±2.25a7.81±3.51b15.96±0.37a丁酸BA(g/kgDM)20.33±6.17a14.04±11.46a29.95±2.81a21.38±13.60a乳酸∶乙酸LA∶AA2.89±5.91b2.99±1.32ab4.28±4.52a3.86±10.98ab
注:同行不同字母表示差異顯著(P<0.05),下同。
Note:The different letters within the same row mean the significant differences atP<0.05. The same below.
2.2 羊草青貯飼料細(xì)胞內(nèi)碳水化合物組成
表3列出了羊草青貯飼料碳水化合物組成的變化。LC+CEL處理組中除ADL以外,NDF、ADF、纖維素、半纖維素和WSC含量均與對照組差異顯著(P<0.05)。NDF、ADF在LC+CEL處理組中含量最低,分別為545.1和285.3 g/kg;CEL組次之,3個處理組都顯著低于對照組 (P<0.05)。各處理組纖維素含量均顯著低于對照組 (P<0.05),3個試驗(yàn)組之間差異不顯著。LC+CEL處理組中半纖維素含量為259.8 g/kg,顯著低于其他各組(P<0.05),羊草青貯飼料中WSC含量在LC+CEL處理組中最高,并顯著高于其他3組(P<0.05);LC處理組的WSC含量顯著高于對照組(P<0.05)。
表3 羊草青貯飼料的營養(yǎng)成分組成
Table 3 Nutrient composition ofL.chinensissilage
營養(yǎng)成分Nutrientcomposition對照CK纖維素酶CEL干酪乳桿菌LC干酪乳桿菌和纖維素酶LC+CEL中性洗滌纖維NDF(g/kgDM)589.0±3.39a558.5±2.94c577.1±3.70b545.1±2.26d酸性洗滌纖維ADF(g/kgDM)307.6±6.14a288.1±2.15bc296.4±2.12b285.3±1.43c纖維素C(g/kgDM)261.7±1.89a226.5±0.57b234.2±0.29b233.2±0.35b半纖維素HC(g/kgDM)281.4±2.76a270.3±0.85b280.8±1.93a259.8±1.11c酸性洗滌木質(zhì)素ADL(g/kgDM)47.8±2.56a53.2±0.52a48.6±1.29a49.7±2.65a可溶性糖WSC(g/kgDM)14.5±0.87c21.8±1.59bc24.8±1.89b35.0±3.75a
2.3.1 生物添加劑對羊草葉片薄壁細(xì)胞的影響 在透射電鏡下,對照組、LC處理組和LC+CEL處理組羊草葉片的薄壁細(xì)胞發(fā)生了不同程度的變化(圖1)。在2500倍透射電鏡下觀察到,對照組的羊草青貯飼料的薄壁細(xì)胞中存在大量易染色物質(zhì),細(xì)胞嚴(yán)重變形皺縮(圖1A);LC處理組薄壁細(xì)胞內(nèi)易染色物質(zhì)較少,并且細(xì)胞腔變大,細(xì)胞膜與細(xì)胞壁之間空隙變小(圖1B)。LC+CEL處理組羊草青貯飼料的薄壁細(xì)胞中有極少的易染色物質(zhì),且觀察不到完整細(xì)胞結(jié)構(gòu)(圖1C1);在25000倍的透射電子顯微鏡下觀察到點(diǎn)狀或絮狀的薄壁細(xì)胞破壞后的細(xì)胞內(nèi)容物(圖1C2)。
圖1 透射電子顯微鏡下羊草青貯飼料薄壁細(xì)胞的變化Fig.1 Changes of parenchyma cell transmission electron microscopy L. chinensis silage A: 對照組TEM 2500倍 Untreated TEM 2500 times; B: LC處理組TEM 2500倍 LC TEM 2500 times; C1: LC+CEL處理組TEM 2500倍LC and cellulose TEM 2500 times; C2: TEM 25000倍 TEM 25000 times.
2.3.2 生物添加劑對羊草葉片厚壁細(xì)胞形態(tài)的影響 從7000和8000倍透射電鏡圖片可知,對照組、LC處理組和LC+CEL處理組靠近表皮的厚壁細(xì)胞仍保持其原有形態(tài),胞間層、初生壁和次生壁均保持其完整狀態(tài)。在25000倍透射電鏡觀察下,對照組的厚壁細(xì)胞細(xì)胞壁有明顯分層(圖2F1),LC處理組的厚壁細(xì)胞細(xì)胞壁在靠近細(xì)胞液側(cè)有分層而在兩厚壁細(xì)胞交界處無明顯變化(圖2F2)。LC+CEL處理組細(xì)胞壁在25000倍透射電鏡下無明顯變化(圖2F3)。
進(jìn)一步用透射電鏡將厚壁細(xì)胞放大至100000倍觀察,對照組、LC和LC+CEL處理組在靠近表皮側(cè)細(xì)胞壁有較厚的蠟質(zhì)層。細(xì)胞壁中絲狀纖維延伸到蠟質(zhì)層形成緊實(shí)的復(fù)合結(jié)構(gòu),角質(zhì)層高度硅化(圖3)。
圖2 對照都、LC處理組和CEL+LC處理組厚壁細(xì)胞和厚壁細(xì)胞壁的變化Fig.2 Changes of sclerenchyma cell after treatments by untreated, cellulose, LC and cellulose E1:對照組TEM 8000倍 Untreated TEM 8000 times; E2:LC處理組TEM 7000倍LC TEM 7000 times; E3:CEL+LC處理組TEM 7000倍LC and cellulose TEM 7000 times; F1~F3: 對照組,LC處理組和CEL+LC處理組TEM 25000倍Untreated, LC, LC and cellulose TEM 25000 times.
圖3 對照組(G)、LC(H)和CEL+LC(I)處理組厚壁細(xì)胞壁的變化Fig.3 Changes of sclerenchyma cell after treatments by untreated(G)、LC(H) and LC+CEL(I) G~I(xiàn): TEM 100000 倍 TEM 100000 times.
通過高倍的透射電子顯微鏡可以發(fā)現(xiàn),厚壁細(xì)胞在靠近薄壁細(xì)胞側(cè)與遠(yuǎn)離薄壁細(xì)胞側(cè)的細(xì)胞壁厚度不一致(圖4L~N),遠(yuǎn)離側(cè)厚于靠近側(cè)。厚壁組織與薄壁組織交界處的厚壁細(xì)胞內(nèi)無明顯易染色物質(zhì)積累。從100000倍透射電鏡圖片可知,LC處理組兩厚壁細(xì)胞細(xì)胞壁之間的胞間層有部分損壞(圖4P),對照組(圖4O)無明顯變化;而LC+CEL處理組兩厚壁細(xì)胞細(xì)胞壁之間接觸面損壞程度遠(yuǎn)大于LC處理組,胞間層結(jié)構(gòu)不完整 (圖4Q)。
圖4 厚壁組織與薄壁組織交界處的厚壁細(xì)胞和厚壁細(xì)胞壁的變化Fig.4 Changes of cells and cell wall between the parenchyma cells and sclerenchyma cells L: 對照組TEM 5000倍Untreated TEM 5000 times; M: LC處理組 TEM 3500倍LC TEM 3500 times; N: CEL+LC處理組TEM 3000 LC and cellulose TEM 3000 times;O: LC處理組 TEM 100000倍LC TEM 100000 times; PQ: LC+CEL處理組 TEM 100000倍LC and cellulose TEM 100000 times.
3.1 羊草青貯飼料發(fā)酵品質(zhì)
羊草由于附著的乳酸菌較少,WSC含量較低,很難快速厭氧發(fā)酵并產(chǎn)生有機(jī)酸,降低pH[15]。乳酸和乙酸是青貯飼料中引起pH降低的主要原因。與其他試驗(yàn)組相比,混合添加LC+CEL后羊草青貯飼料的pH和氨態(tài)氮含量最低,乳酸含量和乙酸含量最高。本試驗(yàn)中混合添加乳酸菌和纖維素酶以后,增加了發(fā)酵初期乳酸菌的數(shù)量和發(fā)酵底物,使得乳酸菌大量繁殖并快速產(chǎn)生乳酸降低pH,有效地抑制了有害微生物的活動從而減少氨態(tài)氮產(chǎn)生。說明復(fù)合添加乳酸菌和纖維素酶的 LC+CEL處理組發(fā)酵品質(zhì)明顯優(yōu)于單獨(dú)添加乳酸菌的處理組和單獨(dú)添加纖維素酶的處理組。纖維素酶與乳酸菌之間的疊加效應(yīng)可能是其效果好的原因[16]。
3.2 羊草青貯飼料細(xì)胞內(nèi)碳水化合物組成與超微結(jié)構(gòu)變化
在骨折后6 h內(nèi)實(shí)施急診干預(yù)手術(shù),患肢取仰臥位,經(jīng)臂叢麻醉后上肢呈外展位,常規(guī)消毒、鋪無菌洞巾,在橈骨掌側(cè)、橈側(cè)做長約4~6 cm的縱形切口,切開筋膜,分離橈側(cè)腕屈肌和掌長肌,再鈍性分離肌肉、軟組織等,顯露骨折端,清除血腫后游離骨折端解剖標(biāo)志線,整復(fù)骨折。再給予復(fù)位,放置鎖定T形板固定,注意保持骨折解剖力線和腕部的穩(wěn)定性。在C型臂透視下可見復(fù)位滿意后,沖洗、縫合切口。
植物細(xì)胞由細(xì)胞質(zhì)、細(xì)胞膜和細(xì)胞壁組成,細(xì)胞質(zhì)和細(xì)胞膜中含有全部的可溶性糖,蛋白質(zhì)、脂類和有機(jī)酸等,能夠完全被動物消化。植物細(xì)胞壁成分主要由纖維層和果膠組成[17],包括纖維素,半纖維素、木質(zhì)素和果膠等。成熟禾草的維管束包含初生木質(zhì)部、次生木質(zhì)部和非木質(zhì)化的韌皮部。維管束外面為木質(zhì)化的厚壁組織包圍[18]。牧草葉片組織結(jié)構(gòu)的多樣性,是其降解特性差異的主要原因。比如,非木質(zhì)化的薄壁細(xì)胞很容易降解,而木質(zhì)化程度較高的厚壁細(xì)胞即使經(jīng)過瘤胃微生物的作用也幾乎不被降解[19]。Moon等[20]研究發(fā)現(xiàn),未添加青貯添加劑青貯以后,葉片的維管束組織和表皮細(xì)胞結(jié)構(gòu)完整,氣孔和葉肉細(xì)胞內(nèi)被破壞。
從各營養(yǎng)物質(zhì)變化來看,不同處理組對羊草的處理效果有差異,干酪乳桿菌和纖維素酶復(fù)合添加更容易降解細(xì)胞中的營養(yǎng)物質(zhì),單獨(dú)添加干酪乳桿菌和單獨(dú)添加纖維素酶后降解效果減弱,單獨(dú)添加纖維素酶的效果低于單獨(dú)添加乳酸菌。復(fù)合添加干酪乳桿菌和纖維素酶,NDF,ADF,纖維素和半纖維素含量降低,可溶性糖含量增加。單獨(dú)添加干酪乳桿菌與纖維素酶,NDF, ADF, 纖維素和半纖維素含量降低更少,同時可溶性糖含量增加更少。進(jìn)一步分析發(fā)現(xiàn),添加干酪乳桿菌、纖維素酶、干酪乳桿菌和纖維素酶復(fù)合添加劑以后,不同程度的降解羊草組織細(xì)胞結(jié)構(gòu),導(dǎo)致各處理NDF、ADF、纖維素和半纖維素含量減少,而轉(zhuǎn)化為可溶性糖和乳酸等有機(jī)酸。處理后,更利于降解的WSC和有機(jī)酸含量增加,而結(jié)構(gòu)復(fù)雜的NDF,ADF和半纖維素含量減少,這表明青貯過程中纖維被微生物降解為更易消化的可溶性糖和發(fā)酵產(chǎn)物有機(jī)酸。
生物添加劑對羊草內(nèi)纖維不同部位和結(jié)構(gòu)降解的程度不同,對薄壁組織降解最強(qiáng)烈,木質(zhì)化程度越高的細(xì)胞降解越困難。最易被微生物降解的薄壁組織,在干酪乳桿菌和纖維素酶LC+CEL復(fù)合添加劑處理下已經(jīng)觀察不到完整的細(xì)胞結(jié)構(gòu);LC單獨(dú)處理較對照組細(xì)胞壁變薄細(xì)胞腔變大;而對照組細(xì)胞結(jié)構(gòu)完整,細(xì)胞壁皺縮細(xì)胞內(nèi)有大量易染色物質(zhì)存在。對照組在青貯以后薄壁細(xì)胞的變化與陳尚鈃等[21]發(fā)現(xiàn)酸類物質(zhì)處理可以不同程度破壞纖維表面和細(xì)胞壁的結(jié)論一致。本試驗(yàn)中,維管束組織附近的厚壁細(xì)胞木質(zhì)化且細(xì)胞壁外有硅化的蠟質(zhì)層,在各生物添加劑處理以后仍保持原有細(xì)胞結(jié)構(gòu)。Akin等[22]、Engels 等[23]總結(jié)瘤胃中牧草莖稈的降解規(guī)律與細(xì)胞壁的關(guān)系中發(fā)現(xiàn),厚壁細(xì)胞由于細(xì)胞壁分層,在瘤胃中也很難被微生物降解;次生細(xì)胞壁由于木質(zhì)化不同只能部分降解,中層細(xì)胞壁由于木質(zhì)素和纖維素結(jié)合成牢固的化學(xué)鍵不能被瘤胃微生物降解。LC單獨(dú)處理和復(fù)合添加LC+CEL,能使厚薄壁細(xì)胞鄰近的胞間層結(jié)構(gòu)不完整僅有絲狀結(jié)構(gòu)相連,并且復(fù)合添加處理的效果更好。生物添加劑對青貯過程中細(xì)胞壁的作用,對于提高牧草在瘤胃中的降解速度和改善消化具有促進(jìn)作用。
添加生物添加劑能破壞羊草的細(xì)胞結(jié)構(gòu),提供更充足的可溶性碳水化合物作為發(fā)酵底物,快速降低pH促進(jìn)厭氧發(fā)酵。復(fù)合添加干酪乳酸菌和纖維素酶降解細(xì)胞壁和細(xì)胞內(nèi)容物,將其轉(zhuǎn)化為可溶性糖和有機(jī)酸的效果最好,單獨(dú)添加干酪乳酸菌和單獨(dú)添加纖維素酶的效果次之。生物添加劑對羊草葉片不同部位和結(jié)構(gòu)的細(xì)胞降解的程度不同,羊草莖的薄壁組織容易降解,木質(zhì)化程度越高的厚壁細(xì)胞降解越困難。
[1] Renzhong W, Ripley E A. Effects of grazing on aLeymuschinensisgrassland on the Songnen plain of north-eastern China. Journal of Arid Environments, 1997, 36(2): 307-318.
[2] Xiao X, Wang Y, Jiang S,etal. Interannual variation in the climate and above-ground biomass ofLeymuschinensissteppe andStipagrandissteppe in the Xilin river basin, Inner Mongolia, China. Journal of Arid Environments, 1995, 31(3): 283-299.
[3] Sun J J, Yu Zhu, Xue Y L,etal. The effect of the additives on fermentation quality ofLeymuschinensissilage andinvitrodigestion. Grassland Science, 2007, 15(3): 238-242.
[4] Zhuang Y F, Ataku K, Zhang W C. Effects of biological additive and moisture content on fermentation quality of alfalfa and timothy silages. Acta Veterinaria Et Zootechnica Sinica, 2007, (12): 1394-1400.
[5] Dean D B, Adesogan A T, Krueger N,etal. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of bermudagrass silage. Journal of Dairy Science, 2005, 88(3): 994-1003.
[6] Wang Y, Ramirez-Bribiesca J E, Yanke L J,etal. Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley strawinvitro. Asian-Australasian Journal of Animal Sciences, 2012, 25(1): 66-74.
[7] Weinberg Z G, Muck R E. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 1996, 19(1): 53-68.
[8] Liu D. Effects of Chemical Treatments on Ultrastructure of Rice Straw and Rumen Microbial Activity[D]. Hangzhou: Zhejiang University, 2004.
[9] Yang S. Feed Analization and Feed Quality Detection Technology[M]. Beijing: Press of Beijing Agricultural University, 1999: 58-63.
[10] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597.
[11] McDonald P, Henderson A R. Determination of water-soluble carbohydrates in grass. Journal of the Science of Food and Agriculture, 1964, 15(6): 395-398.
[12] Han K J, Collins M, Vanzant E S,etal. Bale density and moisture effects on alfalfa round bale silage. Crop Science, 2004,44(3): 914-919.
[13] Xu Q F, Yu Z, Han J G,etal. Determing organic acid in alfalfa by HPLC. Grassland and Turf, 2007, (2): 63-65, 67.
[14] Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid andinvitromedia. Journal of Dairy Science, 1980, 63(1): 64-75.
[15] Saulnier L, Marot C, Chanliaud E,etal. Cell wall polysaccharide interactions in maize bran. Carbohydrate Polymers, 1995, 26(4): 279-287.
[16] Zhang Q, Li X J, Zhao M M,etal. Isolating and evaluating lactic acid bacteria strains for effectiveness ofLeymuschinensissilage fermentation. Letters in Applied Microbiology, 2014, 59(4): 391-397.
[17] Li M, Zi X, Zhou H,etal. Effects of sucrose, glucose, molasses and cellulase on fermentation quality andinvitrogas production of king grass silage. Animal Feed Science and Technology, 2014, 197: 206-212.
[18] Jung H J G. Maize stem tissues: ferulate deposition in developing internode cell walls. Phytochemistry, 2003, 63(5): 543-549.
[19] Dabo S M, Taliaferro C M, Coleman S W. Anatomical and histological factors affecting the ruminal degradation of stem tissues inBothriochloaspecies. Animal Feed Science and Technology, 1997, 67(4): 299-309.
[20] Moon N J, Henk W G. Progression of epiphytic microflora in wheat and alfalfa silages as observed by scanning electron microscopy. Applied and Environmental Microbiology, 1980, 40(6): 1122-1129.
[21] Chen S Y, Yong Q, Xu Y,etal. Effects of dilute acid pretreatment on fiber components and structure of corn stover. Journal of the Chinese Cereals And Oils Association, 2011, 26(6): 13-19.
[22] Akin D E, Hartley R D, Rigsby L L,etal. Phenolic acids released from bermudagrass (Cynodondactylon) by sequential sodium hydroxide treatment in relation to biodegradation of cell types. Journal of the Science of Food and Agriculture, 1992, 58(2): 207-214.
[23] Engels F M, Schulman J L L. Relationship between structural development of cell walls and degradation of tissues in maize stems. Journal of the Science of Food and Agriculture, 1992, 59(1): 45-51.
[3] 孫娟娟, 玉柱, 薛艷林, 等. 添加劑對羊草青貯發(fā)酵品質(zhì)和體外消化率的影響. 草地學(xué)報, 2007, 15(3): 238-242.
[4] 莊益芬, 安宅一夫, 張文昌. 生物添加劑和含水率對紫花苜蓿和貓尾草青貯發(fā)酵品質(zhì)的影響. 畜牧獸醫(yī)學(xué)報, 2007, (12): 1394-1400.
[8] 劉丹. 化學(xué)處理對稻草超微結(jié)構(gòu)和瘤胃微生物活力的影響[D]. 杭州: 浙江大學(xué), 2004.
[9] 楊勝. 飼料分析及飼料質(zhì)量檢測技術(shù)[M]. 北京: 北京農(nóng)業(yè)大學(xué)出版社, 1999: 58-63.
[13] 許慶方, 玉柱, 韓建國, 等. 高效液相色譜法測定紫花苜蓿青貯中的有機(jī)酸. 草原與草坪, 2007, (2): 63-65, 67.
[21] 陳尚鈃, 勇強(qiáng), 徐勇, 等. 稀酸預(yù)處理對玉米秸稈纖維組分及結(jié)構(gòu)的影響. 中國糧油學(xué)報, 2011, 26(6): 13-19.
Effect of biological additives on ultrastructure and fiber content ofLeymuschinensissilage
YANG Hong, ZHANG Qing, HOU Jian-Jian, YU Zhu*
CollegeofAnimalScienceandTechnology,ChinaAgricultureUniversity,Beijing100193,China
The aim of this study was to determine the effects of adding the cellulose (CEL) andLactobacilluscasei(LC) separately or together on the quality ofLeymuschinensissilage. ChoppedL.chinensiswas supplemented with 1060 U/g cellulose, 1×105CFU/g fresh matterL.casei, or both (LC+CEL). ChoppedL.chinensiswith no additives served as the control. Three replicates of each treatment were weighed and chopped into 0.5 L plastic buckets, and these mini silos were stored at ambient temperature for 45 days. The ultrastructure of stems, fermentation quality, and nutrient composition of theL.chinensissilage were analyzed. The pH in the LC+CEL mixture was 3.86, which was significantly lower than those in the LC and the CEL treatments (P<0.05), but the lactic acid and acetic acid contents in the LC+CEL mixture were significantly higher than those in the LC and the CEL treatments (P<0.05). The LC+CEL mixture showed significantly decreased neutral detergent fiber (43.9 g/kg), acid detergent fiber (22.3 g/kg), cellulose (28.5 g/kg), and hemicellulose (21.6 g/kg) contents, and increased water soluble carbohydrates (20.5 g/kg) and lactic acid (29.2 g/kg) contents after 45 days of fermentation. Compared with the control (no additives), all of the treatments showed significantly lower neutral detergent fiber and acid detergent fiber contents, and significantly higher water soluble carbohydrates and organic acids contents (P<0.05). Overall, the LC+CEL mixture performed better in terms of degrading fiber to water soluble carbohydrates and organic acids than did either LC or CEL, but all of the treatments performed better than the control. The biological additives degraded the different tissues to varying degrees, with greater degradation of parenchyma tissue and less degradation of lignified tissue.
Leymuschinensis; cell wall; biological additives; ultrastructure; fiber
10.11686/cyxb2016059
http://cyxb.lzu.edu.cn
2016-03-01;改回日期:2016-04-28
國家牧草產(chǎn)業(yè)技術(shù)體系(CARS-35),公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201303061),天津市農(nóng)業(yè)科技成果轉(zhuǎn)化與推廣項(xiàng)目(201404040)和內(nèi)蒙古自治區(qū)科技計劃項(xiàng)目(苜?;旌锨噘A調(diào)制技術(shù)研究與示范)資助。
楊紅(1989-),女,江蘇徐州人,在讀碩士。E-mail:yanghong1221@163.com*通信作者Corresponding author. E-mail: yuzhu3@sohu.com
楊紅, 張慶, 侯建建, 玉柱. 生物添加劑對羊草青貯飼料超微結(jié)構(gòu)和纖維變化的影響. 草業(yè)學(xué)報, 2016, 25(12): 94-101.
YANG Hong, ZHANG Qing, HOU Jian-Jian, YU Zhu. Effect of biological additives on ultrastructure and fiber content ofLeymuschinensissilage. Acta Prataculturae Sinica, 2016, 25(12): 94-101.