袁堂濤, 賈 猛, 譚立振
(長安大學公路學院, 西安 710064)
偏載作用下塔梁固結(jié)中央索面斜拉橋傾覆扭轉(zhuǎn)分析
袁堂濤, 賈 猛, 譚立振
(長安大學公路學院, 西安 710064)
現(xiàn)代城市橋梁建設(shè)中,對橋梁美學的追求越來越重要,中央索面斜拉橋憑借其獨特的空間造型而被廣泛采用。由于塔梁固結(jié)、塔墩分離結(jié)構(gòu)體系的中央索面斜拉橋結(jié)構(gòu)空間單索面不能顯著提高結(jié)構(gòu)的整體抗扭剛度,所以在設(shè)計過程中需著重分析這種體系的抗扭、抗傾覆性能。以實際工程為背景,利用通用軟件Midas/civil建立有限元模型,分析塔梁固結(jié)、塔墩分離中央索面斜拉橋在最不利偏載效應(yīng)下的結(jié)構(gòu)受力行為,提取關(guān)鍵截面處的應(yīng)力和位移數(shù)據(jù)對結(jié)構(gòu)的主梁抗扭、抗傾覆性能進行比較分析,并且對影響此種結(jié)構(gòu)體系斜拉橋抗扭因素的敏感參數(shù)進行了著重分析。
中央索面斜拉橋;塔梁固結(jié);偏載作用;傾覆扭轉(zhuǎn);Midas/Civil;敏感參數(shù)分析
塔梁固結(jié)體系的單索面斜拉橋[1-3]由于其獨特的審美效果在城市橋梁建設(shè)中被廣泛采用,單索面斜拉橋的斜拉索一般錨固于主梁中心橫隔板與中腹板相交處,其單索面的斜拉索無法提供較強的空間抗扭剛度[4],所以在較大的偏載作用下主梁的抗扭效應(yīng)[5-7]需認真分析,確保結(jié)構(gòu)安全性。對于此種結(jié)構(gòu)體系,首先,采用的是箱梁截面,箱型截面可以提供較大抗扭剛度,受力性能好,并且橋型簡潔美觀,因此在橋梁設(shè)計時常被采用;其次,對于塔梁固結(jié)體系的單索面斜拉橋的支座設(shè)計也是增加其抗扭、抗傾覆性能[8-10]的重要方法。作用在結(jié)構(gòu)上的荷載分為恒荷載和活荷載,恒荷載一般是對稱荷載,而活荷載則存在對稱和非對稱兩種情況,特別是現(xiàn)在的交通量有日益增加的趨勢,對于活載的偏載[11]需要著重注意。
1.1 工程背景
工程是主橋為雙塔中央索面的塔梁固結(jié)、塔墩分離的預應(yīng)力混凝土斜拉橋,主橋全長340 m,橋梁跨徑布置為80 m+180 m+80 m,橋面寬度為26.5 m,橫橋向坡度為2%,主梁截面采用的是閉口預應(yīng)力等截面連續(xù)箱梁,采用C50混凝土,截面形式是單箱三室,主梁的高度為2.65 m。主塔采用C50混凝土,采用變截面形式,中央單柱式結(jié)構(gòu)形式。橋梁的斜拉索是中央雙索面形式,每個塔柱左右共12對,斜拉索采用扇面形式布置,斜拉橋錨固點橫橋向間距為80 cm,跨中縱橋向間距為7.1 m,邊跨8~11#斜拉索索縱向間距為4.7 m,其他斜拉索縱向間距為7.1 m。橋梁的約束體系為:橋塔主墩處橫橋向設(shè)置4個支座,中間兩個支座是7000 t的球型鋼支座,兩側(cè)支座為2500 t的球型鋼支座,共用墩設(shè)置500 t球型鋼支座。公路等級為一級。斜拉橋立面圖布置如圖1所示,主梁標準斷面如圖2所示。
圖1 立面圖布置
圖2 主梁標準斷面圖(單位:cm)
1.2 有限元模型的建立
隨著計算機水平的發(fā)展,在滿足工程實際的要求下運用計算機有限元程序分析計算橋梁結(jié)構(gòu)的受力越來越普遍,能獲得全面而精確的分析結(jié)果,也能避免理論計算冗長的過程。本文運用Midas/civil橋梁結(jié)構(gòu)有限元分析軟件建立全橋模型,對于結(jié)構(gòu)模型建立過程中的要點在于對主梁混凝土箱梁的模擬,對于箱梁的模擬,主要采用單梁模型、梁格法、板殼單元以及實體單元,分析主梁在偏載作用下的扭轉(zhuǎn)效應(yīng)[12-13]是箱梁結(jié)構(gòu)的空間行為,對于橋梁結(jié)構(gòu)的整體抗傾覆、抗扭轉(zhuǎn)分析采用板殼單元[14-15]模擬閉口截面箱梁可滿足精度要求,主塔采用梁單元模擬,采用等效彈性模量的桁架單元模擬斜拉索,需要對局部細節(jié)進行優(yōu)化處理。桁架單元96個,梁單元40個,板單元21 170個。有限元整體模型如圖3所示,主梁殼單元劃分如圖4所示。
圖3 有限元整體模型
圖4 主梁殼單元劃分
1.3 荷載布置
成橋狀態(tài)下的偏載效應(yīng)主要來自于汽車荷載。對于荷載的分布,分別取以下三種工況進行模擬。
工況一:采用不對稱布置,單側(cè)雙車道布載,偏載最不利布載(圖5)。
工況二:采用對稱布置,雙向雙車道布載,中載布載(圖6)。
工況三:采用對稱布置,雙向四車道,中載最不利布載(圖7)。
圖5 偏載最不利布載
圖6 中載雙車道布載
圖7 中載最不利布載
圖7 中載最不利布載由于有限元分析結(jié)果數(shù)據(jù)龐大,所以只提取關(guān)鍵位置截面處的相關(guān)數(shù)據(jù)進行對比分析,在不同工況情況下,選擇中跨跨中主梁截面和邊跨跨中主梁截面的位移和應(yīng)力結(jié)果進行分析,主要比較結(jié)構(gòu)在不同活載工況效應(yīng)的抗傾覆、抗扭轉(zhuǎn)性能。
2.1 主梁頂面的豎向位移
對于梁的位移主要是分析在荷載作用下梁的扭轉(zhuǎn)程度,即主梁的頂面不同測點的撓度值,然后對比整個主梁的傾斜角。在主梁頂面選擇28個位移提取點。中跨主梁頂面豎向位移如圖8所示,邊跨主梁頂面豎向位移如圖9所示。
圖8 中跨截面豎向位移
圖9 邊跨截面豎向位移
由圖8、圖9可知:對稱布置的活載對于結(jié)構(gòu)邊跨和中跨的主梁位移效應(yīng)趨勢是一致的。在非對稱活載作用下,結(jié)構(gòu)邊跨和中跨的主梁頂面的豎向位移橫橋向有了顯著的變化,可以算出兩跨跨中截面的扭轉(zhuǎn)角,中跨為7×10-4rad,邊跨為2×10-4rad。
通過模型提取主梁頂面的豎向變化位移,計算主梁關(guān)鍵截面在荷載作用下的最大扭轉(zhuǎn)角,現(xiàn)有的橋梁標準規(guī)范對橋梁的橫向扭轉(zhuǎn)剛度并沒有明確說明,借鑒以前諸多工程單索面斜拉橋設(shè)計的不成文經(jīng)驗,通過模型提取主梁頂面的豎向變化位移,計算主梁關(guān)鍵截面在荷載作用下的最大扭轉(zhuǎn)角,若扭轉(zhuǎn)角小于橋梁橫橋向的坡度而不反坡,則認為結(jié)構(gòu)滿足抗扭剛度的要求[16-17]。由于最大扭轉(zhuǎn)角為7×10-4rad,遠小于橋梁橫坡2%,因此該橋扭轉(zhuǎn)角滿足使用要求,抗扭剛度滿足要求。
2.2 主梁頂面的應(yīng)力
提取關(guān)鍵截面主梁頂面的應(yīng)力值,中跨主梁頂面豎向位移如圖10所示。
圖10 中跨跨中截面
由圖10數(shù)據(jù)分析可知:偏載非對稱作用下主梁頂板的應(yīng)力值比中載對稱作用下的應(yīng)力值最高處大約53%,邊跨跨中的主梁截面在不同工況作用下的受力特點和中跨大致相同,應(yīng)力最大變化值出現(xiàn)在偏載作用下,所以在偏載布置作用下,主梁的畸變應(yīng)力比較明顯。
在設(shè)計中需要采取相關(guān)措施增加結(jié)構(gòu)的抗扭剛度,跨徑的大小是影響主梁抗扭剛度的因素之一。隨著跨徑的增加,預應(yīng)力混凝土材料的箱梁恒載所占的結(jié)構(gòu)重量的比例會增加,活載的作用效應(yīng)相較于恒荷載的作用就會相應(yīng)變小,由此可知,在大跨斜拉橋設(shè)計中活載偏載的作用并不是影響箱梁截面設(shè)計的主要因素。
2.3 主梁底面的應(yīng)力
提取底面數(shù)據(jù)分析(圖11)。
圖11 中跨跨中截面
中跨主梁底板的應(yīng)力在中載作用下除個別應(yīng)力集中外,其他都比較平均。由數(shù)據(jù)分析可知作用兩車道的荷載效應(yīng)都明顯小于最不利中載四車道荷載的效應(yīng)。邊跨主梁底板在兩車道的荷載效應(yīng)也同樣明顯小于四車道荷載的效應(yīng)。
上述分析結(jié)果中最不利偏載作用效應(yīng)都小于最不利中載作用效應(yīng),說明偏載效應(yīng)并不是截面設(shè)計的控制因素,在實際設(shè)計過程中,還是以最大活載對稱布置為主要因素。
以成橋狀態(tài)為分析對象,在活載作用下,對橋梁結(jié)構(gòu)的偏載敏感參數(shù)[16]進行分析,以確保結(jié)構(gòu)合理的受力狀態(tài),分別對橋梁結(jié)構(gòu)的一些設(shè)計參數(shù)進行了分析對比,由于邊跨和中跨的變化趨勢一致,限于篇幅,僅取中跨的關(guān)鍵截面予以研究。
3.1 支座的橫向間距
保持其他參數(shù)不變,將支座的橫向距離進行改變,具體如下:分別將外支座向外擴大1 m和向內(nèi)縮減1 m,對比在活載偏載作用下結(jié)構(gòu)的受力情況,由于是塔墩分離、塔梁固結(jié)結(jié)構(gòu),支座豎向受力行為相同,故只選取一個墩的四個支座反力分析,數(shù)據(jù)見表1和圖12、圖13。
表1 不同支座距離下的支座反力
圖12 支座反力數(shù)據(jù)對比
圖13 主梁截面豎向位移
由數(shù)據(jù)分析可知:對于塔梁固結(jié)、塔墩分離結(jié)構(gòu)體系的斜拉橋,可以看成有大量體外預應(yīng)力加強的連續(xù)梁,所以在偏載作用下,支座的間距對其有明顯的影響,支座橫向間距的增大,使得支座反力有趨于均勻分布的趨勢,支座受力更加合理,提高耐久性;并且使得主梁關(guān)鍵截面的扭轉(zhuǎn)角相對減小,在結(jié)構(gòu)受到偏載作用時,結(jié)構(gòu)的抗傾覆力臂增大,能明顯增加結(jié)構(gòu)的抗扭轉(zhuǎn)能力。
3.2 中央雙索面的間距
保持其他參數(shù)不變,將索面間距增加50 cm和100 cm,針對雙索面之間的間距進行分析對比,比較主梁關(guān)鍵截面在偏載作用下的豎向位移以及應(yīng)力大小。由于數(shù)據(jù)較多,只選擇中跨跨中截面進行分析。如圖14、圖15所示。
圖14 中跨跨中截面位移比較
圖15 中跨跨中截面應(yīng)力比較
由數(shù)據(jù)分析知:中央雙索面索面距離的變化并不能顯著改變斜拉橋的空間抗扭效應(yīng),在設(shè)計中不是主控因素,所以可以根據(jù)實際情況進行改變調(diào)整,但是為了橋面的行車舒適度和環(huán)境美觀性應(yīng)合理布置索的間距。
3.3 結(jié)構(gòu)邊界的約束
保持其他參數(shù)不變,將橋梁結(jié)構(gòu)的邊界約束予以如下改變:原結(jié)構(gòu)是塔梁固結(jié),塔墩分離,現(xiàn)改變一個橋塔為塔墩梁固結(jié),而另一個塔保持原狀態(tài),對比在活載偏載作用下結(jié)構(gòu)的受力情況,分析結(jié)果如圖16所示。
圖16 主梁截面豎向位移
由圖16分析可知:橋梁結(jié)構(gòu)的邊界約束改變后,在偏心荷載作用下,中跨跨中截面的主梁橫橋向的豎向位移在兩種狀態(tài)下有稍微的變化,但是變化量很小,即關(guān)鍵截面主梁的扭轉(zhuǎn)角變化并不明顯,說明在偏載活載作用時,邊界約束的改變并不是控制結(jié)構(gòu)設(shè)計的關(guān)鍵因素。考慮溫度效應(yīng)的影響,以及整體剛度的影響,若為兩塔結(jié)構(gòu),一個塔墩梁固結(jié),另一個設(shè)置活動支座,更為有利。
(1)對中央索面的預應(yīng)力閉口箱梁斜拉橋的抗傾覆、抗扭轉(zhuǎn)分析,提出主梁用殼單元模擬是一種合理的計算方法,滿足工程精度要求。并且結(jié)合實際工程分析了橋梁結(jié)構(gòu)在偏載作用下的抗傾覆、抗扭轉(zhuǎn)性能。
(2)對于在不同偏載工況作用下,選取邊跨和中跨的關(guān)鍵截面進行分析可知:在偏載作用下結(jié)構(gòu)出現(xiàn)了偏轉(zhuǎn),但是由于主梁截面是閉口截面,可以顯著提高箱梁的抗扭能力。偏載效應(yīng)并不是截面設(shè)計的控制因素,在實際設(shè)計過程中,還是以最不利活載對稱布置為主要因素。
(3)提出通過分析主梁在最不利偏載作用下的扭轉(zhuǎn)角大小來判斷結(jié)構(gòu)的抗傾覆性能,分析可知:成橋狀態(tài)結(jié)構(gòu)在最不利工況下的扭轉(zhuǎn)角的大小滿足不大于橋面設(shè)置的橫坡坡度,即可滿足結(jié)構(gòu)的抗傾覆性能。
(4)著重分析了偏載作用下抗傾覆、抗扭轉(zhuǎn)的敏感參數(shù):改變中央雙索面斜拉橋索間距并不能顯著改變結(jié)構(gòu)的空間扭轉(zhuǎn)效應(yīng);對于塔梁固結(jié)、塔墩分離體系的斜拉橋,支座在抗傾覆方面起著關(guān)鍵作用,支座的橫向間距的變化對橋梁結(jié)構(gòu)有著顯著的影響,增加了結(jié)構(gòu)的抗傾覆能力,以及使得支座受力更加均勻,對于結(jié)構(gòu)的耐久性有著很大的提高;對于雙塔單索面橋梁結(jié)構(gòu)邊界約束的改變并不是結(jié)構(gòu)提高抗扭性能的關(guān)鍵,但合理布置塔墩梁的約束形式會使得結(jié)構(gòu)受力更加合理。還應(yīng)考慮溫度對結(jié)構(gòu)的應(yīng)力效應(yīng),使結(jié)構(gòu)受力更加合理。
(5)由于塔梁固結(jié)、塔墩分離中央雙索面斜拉橋獨特的結(jié)構(gòu)體系特點,結(jié)構(gòu)的抗傾覆、抗扭轉(zhuǎn)是整體穩(wěn)定的關(guān)鍵因素,所以在設(shè)計和施工過程中需要著重注意。
[1] 林元培.斜拉橋[M].北京:人民交通出版社,1994.
[2] 范立礎(chǔ).橋梁工程[M].北京:人民交通出版社,1996.
[3] 項海帆.高等橋梁結(jié)構(gòu)理論[M].北京:人民交通出版社,2001.
[4] 徐勛.大跨度混凝土箱梁結(jié)構(gòu)空間效應(yīng)研究[D].成都:西南交通大學,2009.
[5] 周錚,孫振海,張黎明,等.雙箱單室波形鋼腹板預應(yīng)力組合梁橋偏載效應(yīng)分析[J].中外公路,2015,35(3):117-119.
[6] 狄謹,周緒紅,游金蘭,等.波紋鋼腹板預應(yīng)力混凝土組合箱梁抗扭性能[J].長安大學學報,2009,27(3):58-63.
[7] 劉琪.獨塔單索面混合梁斜拉橋偏載扭轉(zhuǎn)效應(yīng)分析[J].橋梁建設(shè),2011(3):42-45.
[8] 彭衛(wèi)兵,徐文濤,陳光軍,等.獨柱墩梁橋抗傾覆承載力計算方法[J].中國公路學報,2015,27(3):66-72.
[9] 萬世成,黃僑.獨柱墩連續(xù)梁橋偏載下的抗傾覆穩(wěn)定性研究綜述[J].中外公路,2015,35(4):166-171.
[10] 王文龍.混凝土箱梁橋抗傾覆性能與增強措施研究[D].重慶:重慶交通大學,2015.
[11] 盧波,戴廷利,彭玫.橋梁偏荷載的箱形梁效應(yīng)分析[J].重慶交通大學學報:自然科學版,2008,27(增刊):852-854.
[12] 陳智俊.獨塔單索面斜拉橋主梁扭轉(zhuǎn)性能研究[D].武漢:華中科技大學,2006.
[13] 牛祥恒.單索面鋼箱梁斜拉橋的抗扭性能研究[D].西安:長安大學,2014.
[14] 莊慶泰.連續(xù)鋼箱梁橋整體穩(wěn)定及抗傾覆性能研究[D].西安:長安大學,2013.
[15] 方志,張國剛,唐盛華,等.混凝土斜拉橋動力有限元建模與模型修正[J].中國公路學報,2013,26(3):81-89.
[16] 劉冠華.單索面寬體斜拉橋抗傾覆性能研究[D].西安:長安大學,2015.
[17] 許偉龍.預應(yīng)力混凝土寬箱梁單索面斜拉橋抗扭性能研究[D].杭州:浙江工業(yè)大學,2013.
Analysis of Overturning and Torsion of Cable Stayed Bridge with Central Cable Plane Under Partial Load
YUANTangtao,JIAMeng,TANLizhen
(School of Highway,Key Laboratory of Shaanxi Province,Chang'an University,Xi'an 710064, China)
In the modern urban bridge construction, the pursuit of bridge aesthetics is more and more important. The central cable plane cable stayed bridge has been widely used by virtue of its unique spatial form. Because the single cable plane of the cable plane cable stayed bridge with tower-beam consolidation can not significantly improve the overall torsional rigidity of the structure, it is necessary to analyze the anti-torsion performance of the system in the design process. The finite element model is established by using the general software Midas/civil. The structural stress analysis of the cable stayed bridge under the most disadvantageous load is analyzed. The stress and displacement data of the key section are extracted, and the structure of the main beam is compared and analyzed. It is found that the partial load effect is not the key factor in the design of the control section. And a brief analysis is made on the sensitive parameters affecting the torsion resistance of the cable stayed bridge of this kind of structure system.
central cable plane cable-stayed bridge; tower-beam consolidation; eccentric loadings; torsion effect; Midas/civil; sensitive parameter analysis
2016-6-07
袁堂濤(1989-),男,山東臨沂人,碩士生,主要從事橋梁結(jié)構(gòu)理論方面的研究,(E-mail)yuantangtao@126.com
1673-1549(2016)06-0080-05
10.11863/j.suse.2016.06.16
U448.27
A