陳曉霞, 司玉冰, 陳 超
(1.四川理工學(xué)院化學(xué)與環(huán)境工程學(xué)院, 四川 自貢 643000;2.黃河科技學(xué)院納米功能材料研究所, 鄭州 450006;3.四川理工學(xué)院高性能科學(xué)與工程計(jì)算中心, 四川 自貢 643000)
氣相中二氧化鐵活化H-H鍵的理論研究
陳曉霞1, 司玉冰2, 陳 超3
(1.四川理工學(xué)院化學(xué)與環(huán)境工程學(xué)院, 四川 自貢 643000;2.黃河科技學(xué)院納米功能材料研究所, 鄭州 450006;3.四川理工學(xué)院高性能科學(xué)與工程計(jì)算中心, 四川 自貢 643000)
密度泛函;H-H σ鍵活化;勢能面交叉現(xiàn)象;兩態(tài)反應(yīng)
過渡金屬之所以參與了自然界和大規(guī)模工業(yè)生產(chǎn)中的許多催化過程,是因?yàn)樗鼈兛梢圆捎貌煌难趸瘧B(tài)、可形成不同的化學(xué)鍵[1-4]。近十幾年來,涉及過渡金屬氧化物的化學(xué)反應(yīng)越來越顯示了其重要地位,由于它們具有較高選擇性和較高的活性,所以被廣泛用于異相催化過程。因此,涉及過渡金屬氧化物的化學(xué)反應(yīng)引起了廣泛的關(guān)注[5-8],尤其是過渡金屬氧化物和烴類化合物的反應(yīng)引起了氣相化學(xué)動(dòng)力學(xué)家的濃厚興趣[9-13]。通常認(rèn)為,如果要解釋過渡金屬作為催化劑在催化過程中的具體作用,就必須深刻理解它斷裂牢固單鍵的機(jī)理。因此,H2被選為最理想的模型體系。因?yàn)榭梢詫?duì)這一簡單體系進(jìn)行高精度的理論計(jì)算從而得到斷裂H-H鍵過渡態(tài)的準(zhǔn)確信息,所以這一體系的研究也為其他鍵的活化提供了基準(zhǔn)[14-15]。
利用B3LYP方法[17-19]在6-311G(2d,p)水平上,采用全參數(shù)優(yōu)化的方法,計(jì)算所有反應(yīng)物、過渡態(tài)、中間體和產(chǎn)物的結(jié)構(gòu),并對(duì)每個(gè)反應(yīng)駐點(diǎn)進(jìn)行了頻率分析,證實(shí)了各反應(yīng)物、中間體和產(chǎn)物的能量是局部極小,各過渡態(tài)構(gòu)型有唯一虛頻(NIMG=1)。用內(nèi)稟坐標(biāo)(IRC)確認(rèn)了中間體、過渡態(tài)和產(chǎn)物在反應(yīng)過程中的前后連接關(guān)系。同時(shí)運(yùn)用CCSD(T)/6-311G(2d,p)方法對(duì)每一駐點(diǎn)進(jìn)行了單點(diǎn)能量校正。兩個(gè)勢能面上的反應(yīng)物、中間體、過渡態(tài)及產(chǎn)物的主要結(jié)構(gòu)參數(shù)如圖1所示。全部工作采用Gaussion 09[20]程序完成。
2.1 反應(yīng)物優(yōu)化結(jié)果
圖1 B3LYP/6-311G(2d,p)水平上
2.2 反應(yīng)機(jī)理
圖2 FeO2和H2在兩個(gè)勢能面上的
在六重態(tài)勢能面上,隨著反應(yīng)繼續(xù)進(jìn)行,經(jīng)歷了過渡態(tài)6TS1,H-H鍵斷裂的兩個(gè)H原子分別向兩個(gè)氧原子遷移而生成6IM2,然后其中一個(gè)H原子向另外一個(gè)O原子上遷移而形成穩(wěn)定的產(chǎn)物復(fù)合物6IM3,最后分解為產(chǎn)物FeO+(6Σg)和H2O。
2.3 勢能面交叉現(xiàn)象
[1] ARMENTROUT P B.Chemistry of Excited Electronic States[J].Science,1991,251(1):175-179.
[2] FIEDLER A,KRETZSCHMAR I,SCHR?DER D,et al.Chromium Dioxide Cation OCrO+in the Gas Phase:Structure,Electronic States,and the Reactivity with Hydrogen and Hydrocarbons[J].J.Am.Chem.Soc.,1996,118(10):9941-9952.
[3] SCHR?DER D,SHAIK S,SCHWARZ H.Two-State Reactivity as a New Concept in Organometallic Chemistry[J].Acc.Chem.Res.,2000,33(3):139-145.
[4] ENGESER M,SCHR?DER D,SCHWARA H.Gas-phase dehydrogenation of methanol with mononuclear vanadium oxide cations[J].Chem.Eur.J.2005,11(4):5975-5983.
[5] HENRICH V E,COX P A.The Surface Science of Metal Oxides[M].New York:Cambriage University Press,1994.
[6] RAO C N.Transition Metal Oxides[M].New York:VCH.,1995.
[7] TAO H B,FANG L W,CHEN J Z,et al.Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction[J].J.Am.Chem.Soc.,2016,138(2):9978-9985.
[8] MICHAELA S B,ZOU S H,LISA J E,et al.Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal、(Oxy)hydroxides in Alkaline Media[J].J.Phys.Chem.Lett.,2015,6(6):3737-3742.
[9] OYAMA S T,HIGHROWER J W.Catalytic Selective Oxidation[M].Washington:American Chemical Society,1993.[10] WARREN D K,OYAMA S.Heterogeneous Hydrocarbon Oxidation[M].Washington:American Chemical Society,1996.
[11] ARGYLE M D,CHEN K D,BELL A T,et al.Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts[J].J.Phys.Chem.B.,2002,106(21):5421-5427.[12] PRASHANT D,ENRIQUE I.Reactivity and Selectivity Descriptors for the Activation of C-H Bonds in Hydrocarbons and Oxygenates on Metal Oxides[J].J.Phys.Chem.C.,2016,120(30):16741-16760.
[13] TOMOHIRO I,MASAYA S.Transition-Metal-Catalyzed Site-Selective C-H Functionalization of Quinolines beyond C2Selectivity[J].ACS Catal.,2015,5(9):5031-5040.
[14] MASERAS F,CLOT A L,EISENSTEIN O.Transition Metal Polyhydrides:From Qualitative Ideas to Reliable Computational Studies[J].Chem.Rev.,2000,100(2):601-636.
[16] SCHWARZ H.On the spin-forbiddeness of gas-phase ion-molecule reactions:a fruitful intersection of esperimental and computational studies[J].Int.J.Mass.Spectrom.,2004,237(3):75-105.
[20] FRISCH M J.Gaussian 09 (Revision D.01)[M].Wallingford CT:Gaussian,Inc.,2013.
[21] SCHR?DER D,FIEDLER A,SCHWARZ J,et al.Generation and Characterization of the Anionic,Neutral,and Cationic Iron-Dioxygen Adducts[FeO2] in the Gas Phase[J].Inorg.Chem.,1994,33(9):5094-5100.
[22] DANOVICH D,SHAIK S.Spin-Orbit Couplinig in the Oxidative Activation of H-H by FeO+.Selection Rules and Reactivity Effects[J].J.Am.Chem.Soc.,1997,119(7):1773-1786.
[23] SHIOTA Y,YOSHIZAWA K.Methane-to-Methanol Conversion by First-Row Transition-Metal Oxide Ions:ScO+,TiO+,CrO+,MnO+,FeO+,CoO+,NiO+,and CuO+[J].J.Am.Chem.Soc.,2000,122(49):12317-12326.
CHENXiaoxia1,SIYubing2,CHENChao3
(1.School of Chemistry and Pharmaceutical Engineering,Sichuan University of Science & Engineering,Zigong 643000, China;2.Institute of Nanostructured Functional Materials, Huanghe Science and Technology College,Zhengzhou 450006, China;3.High Performance Computing Center of Science & Engineering, Sichuan University of Science & Engineering, Zigong 643000, China)
DFT; the H-H bond activation; potential energy surfaces crossing; TSR
2016-08-30
四川理工學(xué)院科研基金項(xiàng)目(2015KY01)
陳曉霞(1981-),女,講師,碩士,主要從事化學(xué)動(dòng)力學(xué)和量化計(jì)算方面的研究,(E-mail)cxx8051@163.com
1673-1549(2016)06-0012-04
10.11863/j.suse.2016.06.03
O641.12
A