盧圣鄂,王鎣燕,陳 勇,涂仕華,張小平,辜運富,*
1 四川農(nóng)業(yè)大學(xué)資源學(xué)院微生物系, 成都 611130 2 四川省農(nóng)業(yè)科學(xué)院土壤肥料研究所, 成都 610066
不同施肥制度對石灰性紫色水稻土中氨氧化古菌群落結(jié)構(gòu)的影響
盧圣鄂1,王鎣燕1,陳 勇1,涂仕華2,張小平1,辜運富1,*
1 四川農(nóng)業(yè)大學(xué)資源學(xué)院微生物系, 成都 611130 2 四川省農(nóng)業(yè)科學(xué)院土壤肥料研究所, 成都 610066
研究不同施肥制度對水稻土氨氧化古菌(AOA)群落結(jié)構(gòu)和垂直分布特征的影響,可以深入認識不同施肥制度下的石灰性紫色水稻土氮素循環(huán)特征及微生物驅(qū)動機制,為該地區(qū)科學(xué)施肥、培肥地力提供理論依據(jù)。利用化學(xué)分析和變性梯度凝膠電泳(DGGE)對不同施肥制度下石灰性紫色水稻土理化性質(zhì)和AOA群落結(jié)構(gòu)進行了分析。結(jié)果顯示:相對于無肥處理,施肥會降低石灰性紫色水稻土pH和硝氮含量,而增加土壤有機質(zhì)、全氮和氨氮含量。伴隨土壤深度增加,土壤pH增加,全氮和硝氮含量降低,氨氮含量變化趨勢不明顯。不同施肥制度在不同土壤深度對石灰性紫色水稻土AOA群落結(jié)構(gòu)產(chǎn)生不同的脅迫效應(yīng),不同施肥制度下的AOA群落結(jié)構(gòu)在0—20 cm處差異不明顯;土壤深度增加,不同施肥制度下的AOA群落結(jié)構(gòu)表現(xiàn)出明顯差異,CK和N肥處理下的AOA群落結(jié)構(gòu)較簡單。AOA群落結(jié)構(gòu)多樣性指數(shù)和豐富度隨土壤深度增加而減小。石灰性紫色水稻土AOA與來自不同土壤和水體環(huán)境的AOA具有明顯相似性。冗余梯度分析(RDA)顯示pH(P=0.012)是造成石灰性紫色水稻土AOA群落結(jié)構(gòu)差異的主要原因。研究揭示石灰性紫色水稻土中的AOA群落結(jié)構(gòu)受施肥制度明顯影響并表現(xiàn)出明顯的垂直分布特征。
長期定位施肥;石灰性紫色水稻土;DGGE;AOA群落結(jié)構(gòu)
AOA是農(nóng)田生態(tài)系統(tǒng)硝化過程的主要驅(qū)動者且受到農(nóng)業(yè)管理措施的明顯脅迫,施肥制度、土壤pH和土壤類型是影響AOA群落結(jié)構(gòu)的重要因子[5- 7]。長期定位施肥會對土壤中的硝化作用和氨氧化微生物的種群結(jié)構(gòu)及豐度等形成明顯影響[8- 9]。土壤pH因直接影響土壤中氨態(tài)氮的有效性而影響氨氧化微生物的種群結(jié)構(gòu)、數(shù)量和豐度等特征[6]。研究表明,在中性和堿性土壤上施用高量氮肥會顯著改變AOB的群落組成和豐度,而對AOA的影響有限[10- 12]。但在酸性土壤上的研究結(jié)論卻與之相反,長期施肥會顯著影響AOA群落結(jié)構(gòu)特征[13- 15]。綜上,土壤類型不一樣,不同施肥制度對土壤氨氧化微生物的影響也不盡一致,受施肥制度影響下的土壤AOA的垂直分布變化特征也尚不清楚。
石灰性紫色水稻土是四川乃至全國廣泛分布的一種重要農(nóng)業(yè)土壤,面積約4.00×106hm2[16]。該類土壤土質(zhì)較疏松,有機質(zhì)含量較低,氮、磷低,土體淺薄,保水抗旱能力差。為保護石灰性紫色水稻土質(zhì)量,規(guī)范施肥管理措施,四川省于20世紀80年代在該類土壤上建立了“NPK長期肥效試驗”。本文探索了石灰性紫色水稻土AOA群落結(jié)構(gòu)對不同施肥制度的響應(yīng)特征和垂直分布變化,以期為認識不同施肥制度下石灰性紫色水稻土的氮素循環(huán)特征及微生物驅(qū)動機制,保護石灰性紫色水稻土質(zhì)量提供基礎(chǔ)理論依據(jù)。
1.1 實驗設(shè)計
長期定位實驗點位于四川遂寧市船山區(qū)聯(lián)盟鄉(xiāng)二村五組(30°10′50′′N,105°03′26′′E),氣候為亞熱帶季風(fēng)氣候,全年氣候溫和,雨量充沛。土壤為原生鈣質(zhì)紫色土屬,遂寧組母質(zhì),二泥田土種。試驗始于1982年,完全隨機區(qū)組設(shè)計,共8個處理:(1)不施肥(CK);(2)氮肥(N);(3)氮磷肥(NP);(4)氮磷鉀肥(NPK);(5)農(nóng)家肥(M:主成分為豬廄肥,有機質(zhì)含量1.5 mg/kg);(6)氮肥+農(nóng)家肥(NM);(7)氮磷肥+農(nóng)家肥(NPM);(8)氮磷鉀肥+農(nóng)家肥(NPKM)。肥料施用量:氮肥(N)55.2 kg/hm2;鉀肥(KCl)31.5 kg/hm2;磷肥(P2O5)13.2 kg/hm2;農(nóng)家肥3×104kg/hm2,等氮量設(shè)計。實驗開始時土壤的養(yǎng)分情況為:pH 8.6,有機質(zhì)15.9 g/kg,全氮0.109%,堿解氮66.3 mg/kg,全鉀2.689%,有效鉀130.6 mg/kg,緩效鉀699.4 mg/kg,全磷0.135%,有效磷3.9 mg/kg。
1.2 土樣采集與預(yù)處理
于2013年7月1日水稻淹水種植期間,在小區(qū)內(nèi)按“梅花型”布點取樣,用土鉆分別鉆取0—20 cm(L1),20—40 cm(L2),40—60 cm(L3)和60—90 cm(L4)深的土樣,分層混勻,用無菌PET樹脂袋封裝放于冰盒中帶回實驗室。取混合均勻的新鮮土樣立即提取土壤總DNA,另取部分土樣于室溫下風(fēng)干后進行土壤理化性質(zhì)測定,剩余土樣于-20 ℃保存?zhèn)溆谩?/p>
1.3 土壤基本理化性質(zhì)測定
測定方法參照魯如坤土壤農(nóng)業(yè)化學(xué)分析方法[17]。
1.4 土壤AOA群落結(jié)構(gòu)的PCR-DGGE分析
1.4.1 土壤微生物總DNA提取
采用Fast DNA Spin Kit for Soil(Qbiogene, Carlsbad, CA, USA)的試劑盒方法,稱取0.5 g新鮮土壤樣品,重復(fù)3次,按試劑盒上的步驟進行土壤微生物總DNA的提取。
1.4.2 amoA基因的PCR擴增
PCR引物CrenamoA- 23f的序列:5′-ATGGTCTGGCTWAGACG- 3′,引物CrenamoA- 616r的序列:5′-GCCATCCATCTGTATGTCCA- 3′[18]。反應(yīng)體系:PCR Master Mix(TIANGEN BIOTECH. BEIJING)25 μL,每種引物0.5 μL(25 pmol/μL,10 ng土壤總DNA,加ddH2O至終體積50 μL。反應(yīng)程序:預(yù)變性95 ℃ 5 min,變性95 ℃ 30 s,退火溫度52 ℃ 30 s,延伸溫度72 ℃ 45 s,共進行32個循環(huán),72 ℃ 10 min,最后于4 ℃恒溫保存。取PCR產(chǎn)物各2 μL,1.0%瓊脂糖凝膠電泳檢測,凝膠成像系統(tǒng)(Gel Doc Documentation System, Bio-Rad, USA)下觀察。
1.4.3 DGGE分析
取PCR產(chǎn)物15 μL進行DGGE分析,變性劑梯度為30%—60%,聚丙烯酰胺凝膠濃度8%(100%的變性劑為尿素7 mol和40%的去離子甲酰胺)。在1×TAE緩沖液中,50 V 30 min進膠,再在150 V 60 ℃下電泳5 h,電泳后用硝酸銀[19]對凝膠進行染色,然后用數(shù)碼相機拍照。利用凝膠成像系統(tǒng)(Gel Doc Documentation System, Bio-Rad, USA)中自帶的Quantity One 4.4軟件對DGGE圖譜進行分析。
1.5 DGGE條帶的克隆及測序
PCR產(chǎn)物用Clean-UpTM試劑盒(MO BIO Labs, Solana Beach, CA, USA)進行純化,純化后的PCR產(chǎn)物與pGEM-T Vector進行連接,利用E.coliDH5α感受態(tài)細胞進行轉(zhuǎn)化,用氨芐青霉素(100 mg/L)抗性和PCR進行檢測,采用藍白斑篩選陽性克隆子,送上海生物工程技術(shù)有限公司進行測序。
1.6 數(shù)據(jù)處理
基礎(chǔ)數(shù)據(jù)的處理利用Excel 2007進行,Duncan單因素方差分析用SPSS 17.0完成。DGGE圖譜利用Bio-Rad公司的Quantity One 4.4分析。用MEGA 6.0構(gòu)建AOAamoA基因系統(tǒng)發(fā)育樹。用Shannon多樣性指數(shù)(H),豐富度(S)和均勻度(EH)等評價AOA群落結(jié)構(gòu)多樣性。采用CANOCO 4.5.1軟件(Microcomputer Power,Ithaca,USA)分析AOA群落結(jié)構(gòu)和土壤理化因子間的關(guān)系。多樣性指數(shù)計算公式為:H=-∑(ni/N)ln(ni/N),EH=H/lnS,式中ni為單一條帶的強度,N為所有條帶的總強度,S為每一泳道總的條帶數(shù)。
2.1 土壤理化性質(zhì)
不同施肥制度對石灰性紫色水稻土理化性質(zhì)產(chǎn)生明顯影響(表1)。相對于無肥處理(pH=7.53),農(nóng)家肥配施無機肥處理下的土壤pH介于7.24—7.41之間,顯示施肥會降低土壤pH。就不同土壤深度而言,0—20 cm土壤的pH低于其它深度。無機肥處理下的土壤有機質(zhì)含量介于1.44%—3.85%之間,農(nóng)家肥與無機肥配施下的土壤有機質(zhì)介于1.91%—3.28%之間,而CK處理下的有機質(zhì)含量為1.7%。而農(nóng)家肥與化肥配施會增加土壤總氮含量。就不同深度而言,0—20 cm土壤的總氮含量高于其它深度。農(nóng)家肥配施化肥會降低土壤硝氮含量,總體上,0—20 cm土壤的硝態(tài)氮含量高于其它層次。相對于無肥和化肥處理,配施農(nóng)家肥的4種施肥處理(M,NM,NPM,NPKM)下的氨態(tài)氮變化比較平穩(wěn)。施肥會增加表層土(0—20 cm)中的氨態(tài)氮含量,不同深度土壤的氨態(tài)氮含量變化趨勢不明顯。
表1 不同施肥制度下部分土壤理化性質(zhì)隨采樣深度的變化
SOM:土壤有機質(zhì) Soil organic matter;TN:全氮 Total nitrogen;CK:對照;N:氮肥 Nitrogen;NP:氮磷肥 Nitrogen and phosphorus;NPK:氮磷鉀肥 Nitrogen;phosphorus and potassium;M:農(nóng)家肥 Manure;NM:氮肥+農(nóng)家肥 Nitrogen+manure;NPM:氮磷肥+農(nóng)家肥 Nitrogen and phosphorus+ manure;NPKM:氮磷鉀肥+農(nóng)家肥 Nitrogen;phosphorus and potassium+ manure
2.2 不同施肥制度土壤AOA的群落結(jié)構(gòu)分析
2.2.1 AOA DGGE圖譜分析
不同施肥處理土壤AOA群落結(jié)構(gòu)的DGGE圖譜見圖1。不同施肥處理土壤AOA的DGGE圖譜在電泳條帶數(shù)量、強弱和位置均存在一定程度的差異,顯示不同施肥制度影響了石灰性紫色水稻土的AOA群落結(jié)構(gòu)。圖中共同的條帶(a、b、c和d箭頭所示),說明供試土壤在不同采樣深度存在共有的AOA類群,但其亮度不同,表明長期不同施肥處理AOA在DNA水平上有改變。不同深度土壤AOA種群結(jié)構(gòu)表現(xiàn)出明顯差異。在0—20 cm處,不同施肥制度下土壤AOA種群結(jié)構(gòu)變化不明顯。土壤深度增加,AOA豐富度減小,AOA群落結(jié)構(gòu)表現(xiàn)出差異。在20—40 cm處,N處理下AOA群落結(jié)構(gòu)最簡單,NPK和NPKM肥料處理下的AOA群落結(jié)構(gòu)最復(fù)雜;在40—60 cm深度,N處理的AOA群落結(jié)構(gòu)最簡單, CK其次,而氮肥配施農(nóng)家肥處理下的AOA最復(fù)雜;在60—90 cm深度,CK處理下的AOA群落結(jié)構(gòu)最簡單,NP處理下的AOA群落結(jié)構(gòu)最復(fù)雜。
2.2.2 AOA群落結(jié)構(gòu)多樣性分析
不同施肥制度下不同深度土壤AOA多樣性指數(shù)(H)、豐富度(S)、均勻度(EH)存在顯著差異(P<0.05)(表2)。在0—20 cm處,不同施肥制度下土壤AOA群落結(jié)構(gòu)多樣性和豐富度變化不明顯。伴隨著土壤深度的增加,AOA多樣性和豐富度減小。在20—40 cm處,N肥處理下AOA多樣性指數(shù)和豐富度最低,NPKM肥料處理下的AOA多樣性指數(shù)和豐富度最高;40—60 cm處也是N肥處理下土壤AOA多樣性指數(shù)和豐富度最低,CK其次,NM肥處理下的AOA最高;在60—90 cm深度, CK處理下的AOA多樣性指數(shù)和豐富度最低, NP處理下的AOA最高。
圖1 石灰性紫色水稻土AOA 的DGGE圖譜分析Fig.1 DGGE profile of AOA communities of the Calcareous Purple Paddy soilL1:0—20cm深度,L2:20—40 cm深度,L3:40—60 cm深度,L4:60—90 cm深度;施肥處理從左到右依次為無肥(CK);氮肥(N);氮磷肥(NP);氮磷鉀肥(NPK);農(nóng)家肥(M);氮肥加農(nóng)家肥(NM);氮磷肥加農(nóng)家肥(NPM);氮磷鉀肥加農(nóng)家肥(NPKM);字母a、b、c、d表示各處理間的共同條帶;其中L1- 1- 2等編號表示切膠回收條帶
施肥處理FertilizertreatmentsShannon多樣性指數(shù)Shannon′sdiversityindex(H)均勻度Evenness(EH)豐富度Richness(S)L1L2L3L4L1L2L3L4L1L2L3L4CK2.38c2.40c1.88e1.78e0.992a0.937d0.967cd0.916f12c11c7c6dN2.54ab2.23b1.68f2.25ab0.991ab0.870e0.949c0.939d13bc10d7c7cNP2.61a2.46c2.25c2.47a0.991ab0.988b0.984a0.978a15a13a10bc11aNPK2.46b2.58a2.16d2.17cd0.988b0.979bc0.956d0.942cd14b13a10bc9bM2.46b2.40c2.40b2.21a0.991ab1.004b0.955e0.921e14b12b11b10abNM2.46b2.40c2.43a2.06d0.986b0.866f0.975bc0.939d15a12b11b9bNPM2.36d2.49bc2.35c2.18c0.988b0.946c0.976b0.945c14b12b12a10abNPKM2.36d2.54b2.37bc2.24b0.985c1.024a0.973c0.966b13bc13a11b10ab
數(shù)字后具相同字母表示差異不顯著,數(shù)字后具不同字母表示差異顯著(Duncan 新復(fù)極差法測驗P=0.05)
2.2.3 AOA系統(tǒng)發(fā)育分析
對石灰性紫色水稻土中優(yōu)勢AOA序列和GenBank數(shù)據(jù)庫中的相關(guān)序列比對后利用MEGA 6.0進行系統(tǒng)發(fā)育分析(圖2),結(jié)果將16條序列主要分成2個群。第1個群與來源于底泥和土壤中的氨氧化古細菌amoA基因相似,分為3個簇;第2個群與底泥和水體樣品相關(guān),分為1個簇,并與已知氨氧化古菌CandidatusNitrososphaeragargensis(GI:EU281321)聚在一起。與該類土中AOA親緣關(guān)系較近的已知基因序列既有來自土壤的,又有來自沉積物和水體的。在16條DGGE圖譜切膠回收條帶中,KP400767,KP400765與長江河口沉積物古菌序列KC735504聚在一起;KP400756,KP400753和崇明東部潮灘沉積物古菌序列JQ345856聚在一起;KP400760,KP400766與淹水稻田土古菌序列KJ908047聚在一起;KP400768,KP400757與高原湖泊沉積物古菌序列KJ005035聚在一起;KP400764,KP400761與淹水稻田土古菌序列KJ907957聚在一起;KP400758,KP400763分別與高海拔濕地沉積物古菌序列KJ645381,水稻土古菌序列KJ542817聚在一起;KP400762,KP400755分別與大運河古菌序列KF537053、長江河口古菌序列KC735430聚在一起;系統(tǒng)發(fā)育結(jié)果顯示石灰性紫色水稻土AOA群落結(jié)構(gòu)較復(fù)雜。石灰性紫色水稻土中的氨氧化古細菌均屬于奇古菌門,與已知氨氧化古菌CandidatusNitrososphaeragargensis(GI:EU281321)相似。
圖2 石灰性紫色水稻土中AOA amoA基因的系統(tǒng)發(fā)育樹(加粗的編號為本實驗所得序列)Fig.2 Phylogentic tree of the archaea amoA gene sequences retrieved from the Calcareous Purple Paddy soil amended with different fertilization systems, the bold codes refers the sequences obtained in this study
2.3 AOA群落結(jié)構(gòu)與環(huán)境參數(shù)的相關(guān)性分析
圖3 氨氧化古菌群落與環(huán)境因子變化的RDA排序圖 Fig.3 RDA ordination diagram of ammonia oxidation archaea communities associated with environmental variable圖中數(shù)字為土樣編號;1—8采自L1深度,對應(yīng)施肥處理分別為:CK, N, NP, NPK, M, NM, NPM, NPKM;編號9—16采自L2深度,數(shù)字由小到大分別對應(yīng)L1中1—8對應(yīng)的施肥處理;17—24為L3深度,數(shù)字由小到大分別對應(yīng)L1中1—8對應(yīng)的施肥處理;25—32為L4深度樣品,數(shù)字由小到大分別對應(yīng)L1中1—8對應(yīng)的施肥處理
3.1 不同施肥處理對AOA群落結(jié)構(gòu)的影響
農(nóng)業(yè)管理措施是影響土壤中各種微生物活動、群落結(jié)構(gòu)等的重要因素,如翻耕、灌溉、施肥等因素都會影響到土壤中各種微生物的多樣性[22]。實驗結(jié)果表明,在0—20 cm處,不同施肥制度下土壤AOA群落結(jié)構(gòu)變化不明顯。土壤深度增加,AOA豐富度減小,群落結(jié)構(gòu)出現(xiàn)差異。在20—40 cm處,N肥處理下AOA多樣性指數(shù)和豐富度最低,NPKM肥料處理下的AOA多樣性指數(shù)和豐富度最高;40—60 cm深度,寡氮處理下AOA多樣性指數(shù)和豐富度最低,CK其次,而NM處理下的AOA最高;在60—90 cm深度,CK處理AOA多樣性指數(shù)和豐富度最低,NP處理下的最高。Shen等[11]研究表明,在中性和堿性土壤上施用高量氮肥會顯著改變AOB的群落組成和豐富度,而對AOA的影響有限。但在酸性土上的研究結(jié)論卻與之相反,Wu等[12]研究證實長期施肥會顯著影響AOA群落結(jié)構(gòu)特征,且AOA比AOB在硝化作用中起更重要的作用[23]。本文通過研究長期定位施肥對石灰性紫色水稻土AOA群落結(jié)構(gòu)的影響,顯示不同施肥制度下的土壤AOA種群結(jié)構(gòu)在0—20 cm變化不明顯,這與前人的研究結(jié)果一致[11,24]??傮w而言,石灰性紫色水稻土表層土壤AOA群落結(jié)構(gòu)對不同施肥制度響應(yīng)不明顯;土壤深度增加,不同施肥制度下AOA群落結(jié)構(gòu)和豐富度表現(xiàn)出差異。
3.2 不同土壤深度對AOA群落結(jié)構(gòu)的影響
土壤是一個復(fù)雜的異質(zhì)體系,土壤奇古菌分布不僅與土壤養(yǎng)分狀況緊密相關(guān),也與不同土壤深度理化性質(zhì)的相互作用有很大的關(guān)系[25- 26]。本試驗顯示石灰性紫色水稻土L1、L2深度中的AOA群落豐富度S高于L3、L4深度,其中L1深度AOA豐富度S最高??赡苁且驗樗狙退畷r土壤處于厭氧狀態(tài),而水稻根系能夠分泌O2,為水稻根層提供充足的氧,來支持非專一性的好氧反應(yīng)。另有研究表明,奇古菌門(Thaumarchaeota)硝化球菌屬的AOA更偏好根際的生長環(huán)境[27]。且土壤表層養(yǎng)分更充足,AOA可用來為自己提供能量的底物更多。向燕等[28]研究表明太湖沉積物中AOA群落結(jié)構(gòu)垂直分布變化不明顯。但梁龍等[29]等的研究卻發(fā)現(xiàn)AOA的數(shù)量在百花湖沉積物中存在比較明顯的分層現(xiàn)象,其中深層沉積物(22—30 cm)中的AOA數(shù)量是淺層沉積物(1—21 cm)的2倍左右。上述研究反映出,AOA群落結(jié)構(gòu)在環(huán)境樣品垂直方向上的變化會受到樣品特性的顯著影響。而石灰性紫色水稻土中的AOA群落結(jié)構(gòu)表現(xiàn)出明顯的垂直減少特征,分析原因可能是不同土壤深度的養(yǎng)分狀況、通氣性等理化性質(zhì)有較明顯差異,會選擇性脅迫氨氧化古菌群落的演化,從而導(dǎo)致氨氧化古菌對不同土壤深度產(chǎn)生特異的生態(tài)適應(yīng)[30-32]。
3.3 土壤環(huán)境參數(shù)對AOA群落的影響
本文顯示不同深度石灰性紫色水稻土中AOA受不同施肥制度影響各不相同,土壤深度增加,施肥對土壤AOA群落結(jié)構(gòu)的影響愈加明顯。石灰性紫色水稻土中的AOA均屬于奇古菌門(Thaumarchaeota),與已知氨氧化古菌CandidatusNitrososphaeragargensis(GI:EU281321)相似。pH是影響石灰性紫色水稻土AOA群落結(jié)構(gòu)的重要因子。
[1] Prosser J I. Autotrophic nitrification in bacteria. Advances in Microbial Physiology, 1990, 30: 125- 181.
[2] Purkhold U, Pommerening-R?ser A, Juretschko S, Schmid M C, Koop H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA andamoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66(3): 5368- 5382.
[3] Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G W, Prosser J I, Schuster S C, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442(7104): 806- 809.
[4] 鄭有坤, 王憲斌, 辜運富, 張小平. 若爾蓋高原濕地土壤氨氧化古菌的多樣性. 微生物學(xué)報, 2014, 54(9): 1090- 1096.
[5] Chen X, Zhang L M, Shen J P, Xu Z H, He J Z. Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. Journal of Soils and Sediments, 2010, 10(8): 1510- 1516.
[6] Li H, Weng B S, Huang F Y, Su J Q, Yang X R. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China. Applied Microbiology and Biotechnology, 2015, 99(14): 6113- 6123.
[7] 賈仲君, 翁佳華, 林先貴, Conrad R. 氨氧化古菌的生態(tài)學(xué)研究進展. 微生物學(xué)報, 2010, 50(4): 431- 437.
[8] Zhou Z F, Shi X J, Zheng Y, Qin Z X, Xie D T, Li Z L, Guo T. Abundance and community structure of ammonia-oxidizing bacteria and archaea in purple soil under long-term fertilization. European Journal of Soil Biology, 2014, 60: 24- 33.
[9] 武傳東, 閆倩, 辛亮, 王保莉, 曲東. 長期施用氮肥和磷肥對渭北旱塬土壤中氨氧化古菌多樣性的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2012, 31(4): 743- 749.
[10] Chu H Y, Fujii T, Morimoto S, Lin X G, Yagi K, Hu J L, Zhang J B. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology, 2007, 73(2): 485- 491.
[11] Shen J P, Zhang L M, Zhu Y G, Zhang J B, He J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 6(10): 1601- 1611.
[12] Wu Y C, Lu L, Wang B Z, Lin X G, Zhu J G, Cai Z C, Yan X Y, Jia Z J. Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Science Society of America Journal, 2011, 75(4): 1431- 1439.
[13] He J Z, Shen J P, Zhang L M, Zhu Y G, Zheng Y M, Xu M G, Di H J. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 2007, 9(9): 2364- 2374.
[14] Chen X, Zhang L M, Shen J P, Wei W X, He J Z. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biology and Fertility of Soils, 2011, 47(3): 323- 331.
[15] Alam M S, Ren G D, Lu L, Zheng Y, Peng X H, Jia Z J. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil. Biogeosciences, 2013, 10(8): 5739- 5753.
[16] Zhu B, Wang T, You X, Gao M R. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere, 2008, 18(2): 257- 264.
[17] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國農(nóng)業(yè)科技出版社, 2000.
[18] Tourna M, Freitag T E, Nicol G W, Prosser J I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 2008, 10(5): 1357- 1364.
[19] Riesner D D, Steger G, Zimmat R, Owens R A, Wagenh?fer M, Hillen W, Vollbach S, Henco K. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis, 1989, 10(5/6): 377- 389.
[20] 杜萍, 劉晶晶, 沈李東, 胡寶蘭, 曾江寧, 陳全震, 壽鹿, 廖一波. Biolog和PCR-DGGE技術(shù)解析椒江口沉積物微生物多樣性. 環(huán)境科學(xué)學(xué)報, 2012, 32(6): 1436- 1444.
[21] 秦華, 李國棟, 葉正錢, 徐秋芳, 曹志洪. 集約種植雷竹林土壤細菌群落結(jié)構(gòu)的演變及其影響因素. 應(yīng)用生態(tài)學(xué)報, 2010, 21(10): 2645- 2651.
[22] 李娟, 趙秉強, 李秀英, Hwat B S. 長期有機無機肥料配施對土壤微生物學(xué)特性及土壤肥力的影響. 中國農(nóng)業(yè)科學(xué), 2008, 41(1): 144- 152.
[23] Zhang L M, Hu H W, Shen J P, He J Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. International Society for Microbial Ecology, 2012, 6(5): 1032- 1045.
[24] 秦子嫻. 長期施肥中性紫色水稻土氮素礦化及氨氧化菌的分子生態(tài)學(xué)研究[D]. 重慶: 西南大學(xué), 2014.
[25] Fan H X, Fairley D J, Rensing C, Pepper I L, Wang G J. Identification of similar non-thermophilic Crenarchaeota in four Chinese and America pristine soils. Biodiversity Science, 2006, 14(3): 18l- 187.
[26] Ke X B, Angel R, Lu Y H, Conrad R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology, 2013, 15(8): 2275- 2292.
[27] Nicol G W, Glover L A, Prosser J I. The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environmental Microbiology, 2003, 5(3): 152- 162.
[28] 向燕, 吳宇澄, 劉國鋒, 劉正文, 吳慶龍. 太湖竺山灣沉積物中氨氧化原核生物的垂直分布與多樣性. 生態(tài)學(xué)報, 2010, 30(6): 1423- 1430.
[29] 梁龍, 梁小兵. 氨氧化細菌和氨氧化古菌在百花湖沉積物中的垂直分布. 礦物巖石地球化學(xué)通報, 2014, 33(2): 221- 225.
[30] Briones A M, Okabe S, Umemiya Y, Ramsing N B, Reichardt W, Okuyama H. Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Applied and Environmental Microbiology, 2002, 68(6): 3067- 3075.
[31] Nicolaisen M H, Risgaard-Petersen R, Revsbech N P, Reichardt W, Ramsing N B. Nitrification-denitrification dynamics and community structure of ammonia-oxidizing bacteria in high yield irrigated Philippine rice field. FEMS Microbiology Ecology, 2004, 49(3): 359- 369.
[32] Wang Y N, Ke X B, Wu L Q, Lu Y H. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Systematic and Applied Microbiology, 2009, 32(1): 27- 36.
[33] 尹鍇, 崔勝輝, 趙千鈞, 花利忠, 石龍宇, 吝濤. 基于冗余分析的城市森林林下層植物多樣性預(yù)測. 生態(tài)學(xué)報, 2009, 29(11): 6085- 6094.
Impact of different long-term fertilization systems on ammonia oxidation Archaea community structures in Calcareous Purple Paddy soil
LU Sheng′e1, WANG Yingyan1, CHEN Yong1, TU Shihua2, ZHANG Xiaoping1, GU Yunfu1,*
1DepartmentofMicrobiology,CollegeofResource,SichuanAgriculturalUniversity,Chengdu611130,China2SoilandFertilizerInstitute,SichuanAcademyofAgriculturalSciences,Chengdu610066,China
Increasing evidence revealed that ammonia oxidation Archaea (AOA) belonging toThaumarchaeotacould control nitrification in various agricultural ecosystems. Studying the impact of different long-term fertilization systems on the shift of the AOA community structure and vertical distribution would contribute to understanding the soil nutrient biogeochemical cycles and microbial drive mechanisms. In the present study, an “N, P, K long-term fertilization field experiment (1982—2014)” was established in a Calcareous Purple Paddy soil in Suining City, Sichuan Province of the PR China. Eight treatments including three chemical fertilizer (CF) treatments (N, NP, and NPK), three CF plus farmyard manure (M) treatments (NM, NPM, and NPKM), M only, and no fertilizer (CK) as control were used. Soil samples amended with different long-term fertilization systems at four different depths (0—20, 20—40, 40—60, 60—90 cm) were collected; the soil physico-chemical parameters and the shift of the AOA community structure and vertical distribution were analyzed by chemical analysis and denaturing gradient gel electrophoresis (DGGE). The results showed that compared to the no fertilizer treatment (CK), soil pH decreased under the CF treatments, and showed little variation under CFM treatments. The pH values in the 0—20 cm soil depth were lower than those in other soil depths. The combined use of farmyard manure and chemical fertilizer could also improve the soil total nitrogen concentration. The total nitrogen content in 0—20 cm soil depth was also higher than that of other depths. Fertilizer increased the soil ammonia content in the 0—20 cm soil depth, and in this soil depth, the CK treatment had the lowest ammonia concentration. Furthermore, soil ammonia concentrations under the four CFM fertilizer treatments (e.g. M, NM, NPM, and NPKM) were similar. Additionally, chemical fertilizer plus farmyard manure decreased the soil nitrate concentration, and the nitrate concentration in the 0—20 cm soil depth was higher than that of other depths. Based on the DGGE analysis, different fertilization systems affected the AOA community structure in different soil depths differently. The AOA community structure in the 0—20 cm depth with different fertilizer amendments showed minor variation. With increasing soil depth, the AOA community structure with different fertilization systems varied significantly. The AOA community structure in the CK and N fertilized soil were much simpler than those under CF and CFM fertilizer treatments. However, the AOA community structure showed significant vertical variation, both the richness and Shannon-Wiener diversity index in the 0—20 cm soil depth were the highest, while those in the 60—90 cm soil depth were the lowest. According to the sequence and phylogeny analysis, AOA in Calcareous Purple Paddy soil were all affiliated toThaumarchaeota, and they were highly similar to the AOA in different soil and water environments. According to the redundancy gradient analysis (RDA), four soil physico-chemical parameters such as pH, total nitrogen, ammonia, and nitrate concentration showed 11.3, 2.8, 1.8, and 1% contributions to the AOA community structure, respectively. Soil pH (P= 0.012) was the critical factor to shape the AOA community structure in Calcareous Purple Paddy soil. The study revealed that AOA in the Calcareous Purple Paddy soil responded to the fertilization systems variously, and showed an obvious vertical distribution.
long-term fertilization; calcareous purple paddy soil; DGGE; AOA community structure
國家自然科學(xué)基金項目(41201256);四川省自然科學(xué)基金項目(SC200902158);四川農(nóng)業(yè)大學(xué)“雙支計劃”項目(01470702)
2015- 04- 14;
日期:2016- 03- 03
10.5846/stxb201504140752
*通訊作者Corresponding author.E-mail: guyf@sicau.edu.cn
盧圣鄂,王鎣燕,陳勇,涂仕華,張小平,辜運富.不同施肥制度對石灰性紫色水稻土中氨氧化古菌群落結(jié)構(gòu)的影響.生態(tài)學(xué)報,2016,36(21):6919- 6927.
Lu S E, Wang Y Y, Chen Y, Tu S H, Zhang X P, Gu Y F.Impact of different long-term fertilization systems on ammonia oxidation Archaea community structures in Calcareous Purple Paddy soil.Acta Ecologica Sinica,2016,36(21):6919- 6927.