謝愷慶, 楊海波, 林洪升, 陳 麗, 霍冬梅, 史應(yīng)龍, 覃詩雁, 周紅衛(wèi)
(廣西醫(yī)科大學(xué) 1第一附屬醫(yī)院腎內(nèi)科暨血液凈化部,2微生物學(xué)教研室, 廣西 南寧 530021)
?
C-反應(yīng)蛋白誘導(dǎo)人腎小管上皮細(xì)胞凋亡*
謝愷慶1△, 楊海波2, 林洪升2, 陳 麗1, 霍冬梅1, 史應(yīng)龍1, 覃詩雁1, 周紅衛(wèi)1
(廣西醫(yī)科大學(xué)1第一附屬醫(yī)院腎內(nèi)科暨血液凈化部,2微生物學(xué)教研室, 廣西 南寧 530021)
目的: 探討與微炎癥狀態(tài)相應(yīng)的C-反應(yīng)蛋白(CRP)水平是否誘導(dǎo)腎小管上皮細(xì)胞凋亡。方法:以微炎癥狀態(tài)相應(yīng)的CRP濃度刺激HK-2細(xì)胞。采用AnnexinⅤ-FITC、PI染色和流式細(xì)胞術(shù)檢測凋亡細(xì)胞的百分率。采用Hoechst 33258染色觀察腎小管上皮細(xì)胞凋亡的形態(tài)學(xué)改變。比色法檢測細(xì)胞caspase-3活性。Real-time PCR檢測促凋亡基因bax、抗凋亡基因bcl-2 的mRNA表達(dá)。結(jié)果:CRP呈劑量和時間依賴性地誘導(dǎo)HK-2 細(xì)胞凋亡,細(xì)胞凋亡在CRP濃度為10 mg/L時達(dá)高峰,在20 mg/L時則以晚期凋亡和壞死為主。Hoechst 33258細(xì)胞核染色顯示CRP作用的HK-2細(xì)胞呈現(xiàn)染色質(zhì)濃縮、碎裂或染色質(zhì)邊集等細(xì)胞凋亡的特點。CRP增高細(xì)胞caspase-3的酶活性、上調(diào)促凋亡基因bax的表達(dá)和下調(diào)抗凋亡基因bcl-2的表達(dá)。結(jié)論:CRP輕度增高可誘導(dǎo)腎小管上皮細(xì)胞凋亡。
C-反應(yīng)蛋白; 腎小管上皮細(xì)胞; 細(xì)胞凋亡
腎小管間質(zhì)纖維化是各種慢性腎臟病(chronic kidney disease,CKD)發(fā)展至終末期腎衰竭的共同途徑,是決定腎臟疾病預(yù)后的主要因素[1]。腎小管間質(zhì)纖維化表現(xiàn)為腎小管萎縮缺失、細(xì)胞外基質(zhì)在腎間質(zhì)過度沉積以及炎癥細(xì)胞浸潤。在損傷因子作用下,腎小管上皮細(xì)胞呈隱匿而累積性的過度凋亡,是導(dǎo)致腎小管萎縮缺失和小管間質(zhì)纖維化的主要原因之一[2]。慢性炎癥在CKD腎功能喪失中扮演主要作用,炎癥引起腎小管間質(zhì)進行性纖維化以及腎小管萎縮,最終腎單位完整性被破壞,腎功能喪失。
慢性腎臟病患者中普遍存在全身慢性微炎癥狀態(tài)并且隨著腎功能的下降而加重,表現(xiàn)為C-反應(yīng)蛋白(C-reactive protein,CRP)等血清炎癥標(biāo)志物持續(xù)低水平增高[3]。對CKD腎活檢發(fā)現(xiàn)CRP普遍沉積于腎小管和腎間質(zhì)中[4-5]。CRP是人類主要的急性期反應(yīng)蛋白,其不但是敏感的炎癥標(biāo)志物,還是炎癥介質(zhì),可直接參與調(diào)控炎癥和纖維化過程[6-7]。CRP作為一種活性的炎癥蛋白,可誘導(dǎo)血管內(nèi)皮細(xì)胞和平滑肌細(xì)胞凋亡[8-9]。CRP是否可以誘發(fā)腎小管上皮細(xì)胞凋亡而影響腎小管間質(zhì)纖維化目前仍不清楚。我們以體外培養(yǎng)的人近端腎小管上皮細(xì)胞系HK-2細(xì)胞為靶細(xì)胞,觀察類似體內(nèi)CKD微炎癥狀態(tài)下的CRP濃度是否可誘導(dǎo)腎小管上皮細(xì)胞凋亡,從而闡述CRP在CKD進展中潛在的作用機制。
1 材料
人近端腎小管上皮細(xì)胞的永生系細(xì)胞株HK-2細(xì)胞購自ATCC。重組人CRP購自Calbiochem;DMEM/F12培養(yǎng)基和胎牛血清購自Gibco BRL; Annexin V/PI細(xì)胞凋亡檢測試劑盒購自Bender Med Systems;Hoechst 33258試劑盒和caspase-3活性檢測試劑盒購自中國南京凱基生物試劑公司;總RNA提取試劑盒購自QIAGEN;反轉(zhuǎn)錄及real-time PCR試劑盒購自TaKaRa;羊抗人CRP抗體購自Santa Cruz。
2 方法
2.1 細(xì)胞培養(yǎng) HK-2細(xì)胞在37 ℃水浴復(fù)蘇后,以每孔1×105細(xì)胞接種于6孔板,在37 ℃、5% CO2條件下用含10%胎牛血清的DMEM/F12培養(yǎng)基培養(yǎng)。 待細(xì)胞生長至70%~80%融合時改為無血清DMEM/F12培養(yǎng),使其生長同步化后進行實驗。
2.2 Annexin V-FITC和碘化丙啶(propidium iodide,PI)雙染色檢測細(xì)胞凋亡 以不同濃度(0、0.1、1、10、20 mg/L)CRP以及CRP 10 mg/L +抗CRP抗體10 mg/L作用 HK-2細(xì)胞48 h,無血清DMEM/F12培養(yǎng)基培養(yǎng)細(xì)胞為陰性對照。另外用CRP 10 mg/L 處理HK-2細(xì)胞不同時間(0 h、12 h、24 h、48 h)。用不含EDTA的胰酶消化收集細(xì)胞,Annexin V-FITC和 PI雙染色細(xì)胞后,流式細(xì)胞術(shù)檢測凋亡細(xì)胞。
2.3 Hoechst 33258染色檢測細(xì)胞凋亡 HK-2細(xì)胞接種于預(yù)先放在6孔培養(yǎng)板內(nèi)的蓋玻片上。以含1、10 mg/L CRP的無血清DMEM/F12培養(yǎng)基培養(yǎng)48 h,以不含CRP的無血清培養(yǎng)基為陰性對照。蓋玻片用4%多聚甲醛溶液4 ℃固定10 min,加入終濃度2 mg/L的Hoechst 33258染色液,37 ℃避光孵育5 min。熒光顯微鏡下觀察凋亡細(xì)胞。
2.4 Caspase-3活性的比色法檢測 用10 mg/L CRP處理HK-2細(xì)胞0、6、12、24 h,收集細(xì)胞檢測caspase-3活性。Caspase-3活性采用比色法測定。HK-2細(xì)胞用胰蛋白酶消化和收集,重懸在50 μL冰冷lysis buffer(50 mmol/L HEPES、1 mmol/L DTT、0.1 mmol/L EDTA、0.1% CHAPS,pH 7.4)中,4 ℃ 10 000×g離心1 min后,吸取細(xì)胞裂解上清液,根據(jù)試劑盒說明書進行caspase-3活性檢測。
3 統(tǒng)計學(xué)處理
實驗重復(fù)3次,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。經(jīng)正態(tài)性檢驗,所有定量變量符合正態(tài)分布。多組均數(shù)比較采用單因素方差分析(one-way ANOVA),均數(shù)間兩兩比較采用SNK-q檢驗。所有統(tǒng)計應(yīng)用SPSS 13.0統(tǒng)計軟件進行。以P<0.05 為差異有統(tǒng)計學(xué)意義。
1 流式細(xì)胞術(shù)檢測CRP誘導(dǎo)腎小管上皮細(xì)胞凋亡
CRP以劑量依賴方式誘導(dǎo)HK-2 細(xì)胞凋亡(P<0.01),早期凋亡在CRP濃度為10 mg/L達(dá)高峰,CRP濃度為20 mg/L時,細(xì)胞以晚期凋亡和壞死為主。加入抗CRP抗體中和CRP后,CRP誘導(dǎo)腎小管上皮細(xì)胞凋亡的作用顯著下降(P<0.01),見圖1。HK-2細(xì)胞用含10 mg/L CRP的無血清DMEM/F12培養(yǎng)基培養(yǎng)0 h、12 h、24 h、48 h顯示,CRP以時間依賴方式誘導(dǎo)HK-2 細(xì)胞凋亡(P<0.01), 細(xì)胞凋亡在24 h開始增高,48 h進一步增高。晚期凋亡和壞死在48 h亦顯著增加, 見圖2。
Figure 1. CRP induced apoptosis of HK-2 cells in a dose-dependent manner detected by Annexin V-FITC-PI staining. HK-2 cells were treated with 0 (A), 0.1 (B), 1 (C), 10 (D), 20 (E) mg/L CRP, and CRP (10 mg/L) in the presence of anti-human 10 mg/L CRP IgG (F) for 48 h. Mean±SD.n=3.*P<0.05vscontrol;##P<0.01vsCRP 10 mg/L.
圖1 流式細(xì)胞術(shù)檢測CRP誘導(dǎo)的腎小管上皮細(xì)胞凋亡的劑量效應(yīng)
Figure 2.CRP induced apoptosis of HK-2 cells in a time-dependent manner detected by Annexin V-FITC-PI staining. HK-2 cells were incubated with CRP (10 mg/L) at 0 h (A), 12 h (B), 24 h (C) and 48 h (D). Mean±SD.n=3.**P<0.01vs0 h.
圖2 流式細(xì)胞術(shù)檢測CRP誘導(dǎo)的腎小管上皮細(xì)胞凋亡的時間效應(yīng)
2 Hoechst 33258染色檢測CRP誘導(dǎo)腎小管上皮細(xì)胞凋亡
圖3顯示,隨著CRP刺激劑量增加,腎小管上皮細(xì)胞表現(xiàn)出凋亡的特點,光學(xué)顯微鏡下見細(xì)胞皺縮變圓,與鄰近細(xì)胞脫離,折光能力增加,核仁裂解;Hoechst 33258染色見細(xì)胞核染色質(zhì)濃縮或碎裂,部分呈核染色質(zhì)邊集。
Figure 3. CRP induced apoptosis of HK-2 cells determined by Hoechst 33258 staining (×200).
圖3 Hoechst 33258核染色檢測CRP誘導(dǎo)的腎小管上皮細(xì)胞凋亡
3 CRP誘導(dǎo)腎小管上皮細(xì)胞caspase-3酶活性增高
HK-2細(xì)胞用含10 mg/L CRP的無血清DMEM/F12培養(yǎng)基培養(yǎng)0 h、6 h、12 h、24 h,結(jié)果如圖4所示,caspase-3活性呈時間依賴性增高(P<0.01),12 h和24 h較對照組差異有統(tǒng)計學(xué)顯著性(P<0.05),12 h和24 h之間差異無統(tǒng)計學(xué)顯著性。
Figure 4.Caspase-3 activity induced by CRP. HK-2 cells were incubated with CRP (10 mg/L) at different time points. Caspase-3 activity were measured by colorimetric assay. Mean±SD.n=3.*P<0.05vs0 h.
圖4 CRP誘導(dǎo)的腎小管上皮細(xì)胞caspase-3酶活性變化
4 CRP影響腎小管上皮細(xì)胞凋亡基因bax和bcl-2的表達(dá)
HK-2細(xì)胞用含10 mg/L CRP的無血清DMEM/F12培養(yǎng)基培養(yǎng)0 h、12 h、24 h、48 h,CRP以時間依賴方式影響凋亡相關(guān)基因bax和bcl-2的mRNA表達(dá),Bax mRNA的表達(dá)隨時間延長而上調(diào),24 h 達(dá)高峰,但48 h 較24 h下降(P<0.05),見圖5。Bcl-2 mRNA的表達(dá)隨時間延長而下調(diào),12 h顯著性下降,48 h進一步下降(P<0.01),見圖6。
Figure 5.CRP induced the mRNA expression of Bax in the HK-2 cells. HK-2 cells were incubated with CRP (10 mg/L) at different time points. Mean±SD.n=3.*P<0.05vs0 h.
圖5 CRP誘導(dǎo)的腎小管上皮細(xì)胞Bax mRNA的表達(dá)
細(xì)胞凋亡最早被認(rèn)為是一種清除機體衰老或無用細(xì)胞的生理性機制,現(xiàn)在認(rèn)識到許多病理過程都出現(xiàn)細(xì)胞凋亡,如缺血性或腎毒性的腎損傷,梗阻性腎病和多囊腎等[10-15]。在多種進展性慢性腎臟病動物模型中,腎小管萎縮和腎間質(zhì)纖維化的程度與腎小管上皮細(xì)胞的凋亡率密切相關(guān),腎小管上皮細(xì)胞凋亡在進行性腎功能減退和進行性腎小管萎縮和腎間質(zhì)纖維化中起重要作用[16-18]。晚期慢性腎臟病病理表現(xiàn)為腎小管萎縮和腎間質(zhì)纖維化。腎小管細(xì)胞在各種損傷因子作用下發(fā)生凋亡,導(dǎo)致小管細(xì)胞形態(tài)改變和缺失,腎小管細(xì)胞缺失、進一步加重腎小管間質(zhì)纖維化[2]。
Figure 6.CRP induced the mRNA expression of Bcl-2 in the HK-2 cells. HK-2 cells were incubated with CRP (10 mg/L) at different time points. Mean±SD.n=3.**P<0.01vs0 h.
圖6 CRP誘導(dǎo)腎小管上皮細(xì)胞Bcl-2 mRNA的表達(dá)
CRP作為一種活性的炎癥蛋白,可誘導(dǎo)血管內(nèi)皮細(xì)胞和平滑肌細(xì)胞凋亡[8-9]。本實驗亦發(fā)現(xiàn),CRP可誘導(dǎo)腎小管上皮細(xì)胞凋亡,并且呈劑量和時間依賴性反應(yīng)。在10 mg/L CRP刺激下,細(xì)胞凋亡顯著增高,而生理濃度1 mg/L與對照比較無顯著差異。在慢性腎衰竭時,一般血清CRP濃度超過5~10 mg/L,而小于100 mg/L。在正常狀態(tài)下,CRP分子量為105 kD,無法透過腎小球濾過膜濾出,但出現(xiàn)腎小球病變時,腎小球濾過膜通透性增高,CRP可濾出進入腎小管,在原尿中如果CRP未被腎小管上皮細(xì)胞重吸收,其濃度接近血清水平。我們采用濃度為10 mg/L 的CRP可誘導(dǎo)腎小管上皮細(xì)胞凋亡,提示隨著慢性腎臟病患者腎功能的下降,血循環(huán)中升高的CRP可透過腎小球濾過膜刺激近端腎小管上皮細(xì)胞凋亡。
Caspase家族是一類在細(xì)胞凋亡過程中被激活的半胱氨酸蛋白酶家族,它的激活與超常表達(dá)均引起細(xì)胞凋亡。目前已確定的caspase家族成員有14種。其中caspase-3是多種凋亡刺激信號傳遞的匯聚點,它的活化是凋亡進入不可逆階段的標(biāo)志[19]。本研究結(jié)果顯示,在CRP誘導(dǎo)的HK-2細(xì)胞凋亡中,caspase-3蛋白酶活性增高,表明CRP誘導(dǎo)HK-2細(xì)胞凋亡是通過激活caspase-3,啟動caspase級聯(lián)反應(yīng)而實現(xiàn)的。
Bcl-2家族是凋亡相關(guān)基因家族,分為致凋亡基因(bax、bak、bad等)和抗凋亡基因(bcl-2、bcl-x等)[20]。在腎小管上皮細(xì)胞中,Bcl-2和Bax蛋白均存在線粒體膜上。而Bax與Bcl-2有很高同源性,兩者形成異源二聚體,Bax抑制Bcl-2活性,促進細(xì)胞凋亡,其主要機制與誘導(dǎo)線粒體損傷而觸發(fā)細(xì)胞凋亡有關(guān)[21-22]。 用濃度為10 mg/L 的CRP處理腎小管上皮HK-2細(xì)胞,可見Bcl-2 mRNA的表達(dá)受到抑制,隨刺激時間的延長mRNA的表達(dá)降低, 而Bax mRNA的表達(dá)增強, 隨刺激時間的延長升高,提示低水平CRP可通過線粒體途徑誘導(dǎo)腎小管上皮細(xì)胞凋亡。同時我們發(fā)現(xiàn)48 h Bax mRNA的表達(dá)顯著性降低,這可能與已走向凋亡的細(xì)胞中不表達(dá)或低表達(dá)Bax有關(guān)[23]。
綜上所述,體外實驗發(fā)現(xiàn)低水平CRP可誘導(dǎo)腎小管上皮細(xì)胞凋亡,提示微炎癥狀態(tài)下CRP具有引起腎小管細(xì)胞缺失而加重腎小管萎縮和間質(zhì)纖維化的作用。誘導(dǎo)凋亡的機制與caspase-3凋亡酶活化、促凋亡基因bax上調(diào)、抗凋亡基因bcl-2下調(diào)有關(guān)。
[1] Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2010, 21(11):1819-1834.
[2] Rodríguez-Iturbe B, García García G. The role of tubulointerstitial inflammation in the progression of chronic renal failure[J]. Nephron Clin Pract, 2010, 116(2):c81-c88.
[3] K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients[J]. Am J Kidney Dis, 2005, 45(4 Suppl 3):S1-S153.
[4] Nakahara C, Kanemoto K, Saito N, et al. C-reactive protein frequently localizes in the kidney in glomerular diseases[J]. Clin Nephrol, 2001, 55(5):365-370.
[5] Schwedler SB, Guderian F, Dammrich J, et al. Tubular staining of modified C-reactive protein in diabetic chronic kidney disease[J]. Nephrol Dial Transplant, 2003, 18(11):2300-2307.
[6] Lu J, Marnell LL, Marjon KD, et al. Structural recognition and functional activation of FcγR by innate pentraxins[J]. Nature, 2008, 456(7224):989-992.
[7] Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease[J]. Nature, 2006, 440(7088):1217-1221.
[8] Blaschke F, Bruemmer D, Yin F, et al. C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells[J]. Circulation, 2004, 110(5): 579-587.
[9] Nabata A, Kuroki M, Ueba H, et al. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque[J]. Atherosclerosis, 2008, 196(1):129-135.
[10]Wiegele G, Brandis M, Zimmerhackl LB. Apoptosis and necrosis during ischaemia in renal tubular cells (LLC-PK1 and MDCK) [J]. Nephrol Dial Transplant, 1998, 13(5):1158-1167.
[11]Healy E, Dempsey M, Lally C, et al. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line[J]. Kidney Int,1998, 54(6):1955-1966.
[12]Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways[J]. J Pharmacol Exp Ther, 2002, 302(1):8-17.
[13]Cummings BS, Mchowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca2+-independent phospholipase A(2) in oxidant-induced renal cell death[J]. Am J Physiol Renal Physiol, 2002, 283(3):F492-F498.
[14]Cummings BS, Mchowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in cisplatin-induced renal cell apoptosis[J]. J Pharmacol Exp Ther, 2004, 308(3):921-928.
[15]Tao Y, Kim J, Stanley M, et al. Pathways of caspase-mediated apoptosis in autosomal-dominant polycystic kidney disease (ADPKD)[J]. Kidney Int, 2005, 67(3):909-919.
[16]Thomas GL, Yang B, Wagner BE, et al. Cellular apoptosis and proliferation in experimental renal fibrosis[J]. Nephrol Dial Transplant, 1998, 13(9):2216-2226.
[17]Schelling J R, Nkemere N, Kopp JB, et al. Fas-dependent fratricidal apoptosis is a mechanism of tubular epithelial cell deletion in chronic renal failure[J]. Lab Invest, 1998, 78(7):813-824.
[18]Schelling JR, Cleveland RP. Involvement of Fas-dependent apoptosis in renal tubular epithelial cell deletion in chronic renal failure[J]. Kidney Int, 1999, 56 (4):1313-1316.
[19]Kaushal GP. Role of caspases in renal tubular epithelial cell injury[J]. Semin Nephrol, 2003, 23(5):425-431.
[20]Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399(6735):483-487.
[21]Bhatt K, Feng L, Pabla N, et al. Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis[J]. Am J Physiol Renal Physiol, 2008, 294(3):F499-F507.
[22]王 威, 張 丹, 陳 穎, 等.線粒體功能障礙在胰島β細(xì)胞脂性凋亡中的作用[J].中國病理生理雜志,2010,26(1):163-166.
[23]Hawkins CJ, Vaux DL. The role of the Bcl-2 family of apoptosis regulatory proteins in the immune system[J]. Semin Immunol, 1997, 9(1):25-33.
(責(zé)任編輯: 陳妙玲, 余小慧)
C-reactive protein induces apoptosis in human renal tubular epithelial cells
XIE Kai-qing1, YANG Hai-bo2, LIN Hong-sheng2, CHEN Li1, HUO Dong-mei1,SHI Ying-long1, QIN Shi-yan1, ZHOU Hong-wei1
(1RenalDivisionofTheFirstAffiliatedHospital,2DepartmentofMicrobiology,GuangxiMedicalUniversity,Nanning530021,China.E-mail: 1533459363@qq.com)
AIM: To explore whether the C-reactive protein (CRP) level in microinflammation state induces the apoptosis of renal tubular epithelial cells. METHODS: HK-2 cells were stimulated with recombinant human CRP. Annexin-FITC-PI staining and flow cytometry were used to detect the percentage of apoptotic cells. Morphology observation of apoptosis was assessed by Hoechst 33258 staining. Caspase-3 activity was measured by a colorimetric assay. The expression of apoptotic genebaxand anti-apoptotic genebcl-2 at mRNA levels was determined by real-time PCR. RESULTS: CRP induced apoptosis of HK-2 cells in a time- and dose-dependent manner. The maximal apoptotic effect of CRP concentration was 10 mg/L CRP at concentration of 20 mg/L. CRP treatment was associated with the characteristic morphological features of apoptosis such as condensation, fragmentation or margination of nuclear chromatin. CRP exposure increased caspase-3 activity, up-regulated the mRNA expression of Bax and down-regulated the mRNA expression of Bcl-2. CONCLUSION: Slightly increased CRP level has the potential to induce apoptosis of renal tubular cells.
C-reactive protein; Renal tubular epithelial cells; Apoptosis
1000- 4718(2016)11- 2020- 06
2016- 06- 01
2016- 07- 25
廣西自然科學(xué)基金資助項目(No. 2013GXNSFAA019149);廣西高??蒲辛㈨楉椖?No. 201204LX054)
R691.3; R363
A
10.3969/j.issn.1000- 4718.2016.11.017
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0771-5356710; E-mail: 1533459363@qq.com