陶霞
(湖南理工學(xué)院 數(shù)學(xué)學(xué)院,湖南 岳陽(yáng) 414006)
譜Galerkin方法的超幾何收斂
陶霞
(湖南理工學(xué)院 數(shù)學(xué)學(xué)院,湖南 岳陽(yáng) 414006)
介紹了求解第一類Volterra積分方程的譜Legendre-Galerkin方法和譜Chebyshev-Galerkin方法.數(shù)值算例表明,譜Galerkin方法不僅收斂速度快,而且能達(dá)到超幾何收斂.
第一類Volterra積分方程;譜Legendre-Galerkin方法;譜Chebyshev-Galerkin方法;超幾何收斂
許多物理和工程實(shí)際問(wèn)題,如帶記憶性質(zhì)材料的熱傳導(dǎo)問(wèn)題,多孔結(jié)構(gòu)粘彈性的壓縮問(wèn)題和核反應(yīng)堆中的熱交換過(guò)程等,都可以歸結(jié)為Volterra積分方程或者Volterra積分微分方程[1-2].積分項(xiàng)的存在,表明這類方程具有物理過(guò)程的記憶或反饋性質(zhì),這使得它與傳統(tǒng)的微分方程有著本質(zhì)上的區(qū)別.為準(zhǔn)確地描述這類物理過(guò)程,必須考慮系統(tǒng)對(duì)過(guò)去經(jīng)歷的記憶效應(yīng).因此,數(shù)值計(jì)算積分方程不僅存儲(chǔ)量大,而且時(shí)間開(kāi)銷大.如何高效快速且高精度地求解積分方程是一大難點(diǎn),也是眾多學(xué)者迫切希望得以有效解決的難題.
本文主要考慮第一類Volterra積分方程
積分算子定義為
其中:核函數(shù)k( x, s)和函數(shù)f( x)充分光滑;u( x)為未知函數(shù).通過(guò)簡(jiǎn)單的線性變換,任意區(qū)間上的第一類Volterra積分方程都能轉(zhuǎn)化成為式(1)的形式.
從而得到矩陣形式
表1 譜Legendre-Galerkin方法的誤差和誤差
表1 譜Legendre-Galerkin方法的誤差和誤差
N 4 6 8 10 12 14 L 誤差 2.38e-1 4.87e-3 5.29e-5 3.55e-7 1.61e-9 1.82e-12 L2誤差 7.00e-2 1.07e-3 9.32e-6 5.20e-8 2.02e-10 2.16e-13
考察譜Chebyshev-Galerkin方法的收斂性質(zhì).對(duì)于式(3),取為Chebyshev多項(xiàng)式,運(yùn)用公式(5)計(jì)算得到相應(yīng)的數(shù)值解,并計(jì)算譜Chebyshev-Galerkin方法的誤差和誤差(見(jiàn)表2和圖2).
表2 譜Chebyshev-Galerkin方法的誤差和誤差
表2 譜Chebyshev-Galerkin方法的誤差和誤差
N 4 6 8 10 12 14 L 誤差 1.87e-1 3.43e-3 3.41e-5 2.12e-7 8.85e-10 2.06e-11 L2 誤差 1.23e-1 1.94e-3 1.71e-5 9.67e-8 3.72e-10 8.37e-12
圖2 譜Chebyshev-Galerkin方法誤差圖
圖1 譜Legendre-Galerkin方法誤差圖
由圖1和圖2可以看出,譜Legendre-Galerkin方法和譜Chebyshev-Galerkin方法同樣具有超幾何收斂性質(zhì).
[1] Canuto C,Hussaini M Y,Quarteroni A,et al.Spectral methods:Fundamentals in single domains[M].Newyork:Spring-Verlag,2006:75-90
[2] Shen J,Tang T.Spectral and high-order methods with applications[M].Beijing:Science Press,2006:105-131
[3] Xie Z Q,Li X J,Tang T.Convergence analysis of spectral Galerkin methods for Volterra type integral equations[J].J Sci Comput,2012,53:414-434
[4] Tao X,Xie Z Q,Zhou X J.Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations[J]. Numer Math Theor Meth Appl,2011,4(2):216-236
[5] Zhang Z.Superconvergence of spectral collocation and p-version methods in one dimensional problems[J].Math Comput,2005,74:1621-1636
[6] Zhang Z.Superconvergence of a Chebyshev spectral collocation method[J].J Sci Comput,2008,34:237-246
[7] 李氣發(fā),謝資清,陶霞.譜Legendre-Galerkin方法求解線性積分微分方程的超幾何收斂性分析[J].湖南師范大學(xué)自然科學(xué)學(xué)報(bào),2013,36(2):1-7
[8] Huang Can,Tang Tao,Zhang Zhimin.Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions[J].J Comput Math,2011,29(6):698-719
Supergeometric convergence of spectral Galerkin method
TAO Xia
(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)
Introduces spectral Legendre-Galerkin method and spectral Chebyshev Galerkin method for solving the first kind Volterra integral equations.Numerical results demonstrate that spectral Galerkin method not only convergent fast,but also has supergeometric convergence.
first kind Volterra integral equations;spectral Legendre-Galerkin method;spectral Chebyshev-Galerkin method;supergeometric convergence
O211.9
A
10.3969/j.issn.1007-9831.2016.06.002
1007-9831(2016)06-0006-03
2016-04-10
國(guó)家自然科學(xué)基金數(shù)學(xué)天元基金項(xiàng)目(11426103);湖南省重點(diǎn)學(xué)科建設(shè)項(xiàng)目;湖南省高??萍紕?chuàng)新團(tuán)隊(duì)支持計(jì)劃資助項(xiàng)目
陶霞(1982-),女,湖南湘陰人,講師,博士,從事偏微分方程數(shù)值解研究.E-mail:xtaohn@163.com