亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Twin Domination Number of Lexicographic Product of Digraphs

        2016-12-23 05:46:32MAHongxiaLIUJuan
        關(guān)鍵詞:新疆自治區(qū)新疆師范大學(xué)有向圖

        MA Hong-xia, LIU Juan

        (College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China)

        ?

        The Twin Domination Number of Lexicographic Product of Digraphs

        MA Hong-xia, LIU Juan*

        (College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China)

        Letγ*(D) denote the twin domination number of digraphDand letDm[Dn] denote the lexicographic product ofDmandDn, digraphs of orderm,n≥2. In this paper, we first give the upper and lower bound of the twin domination number ofDm[Dn], and then determine the exact values of the twin domination number of digraphs:Dm[Kn];Km[Dn];Km1,m2,…,mt[Dn];Cm[Dn];Pm[Cn] andPm[Pn].

        twin domination number; lexicographic product; digraphs

        LetDm=(V(Dm),A(Dm))andDn=(V(Dn),A(Dn))betwodigraphswhichhavedisjointvertexsetsV(Dm)={x0,x1,…,xm-1}andV(Dn)={y0,y1,…,yn-1}anddisjointarcsetsA(Dm)andA(Dn),respectively.ThelexicographicproductDm[Dn]ofDmandDnhasvertexsetV(Dm)×V(Dn)={(xi,yj)|xi∈V(Dm),yj∈ Vn}and(xi,yj)(xi′,yj′)∈A(Dm[Dn])ifoneofthefollowingholds:(a) xixi′∈A(Dm);(b) xi=xi′andyjyj′∈A(Dn).

        Inrecentyears,thedominationnumberofsomedigraphshasbeeninvestigatedin[7~16].However,todatefewresearchabouttwindominationnumberhasbeendoneforlexicographicproductofdigraphs.Inthispaper,westudythetwindominationnumberofDm[Dn].Firstly,wegivetheupperandlowerboundofthetwindominationnumberofDm[Dn],andthendeterminetheexactvaluesofthetwindominationnumberofdigraphs: Dm[Kn];Km[Dn];Km1,m2;…;mt[Dn]; Cm[Dn]; Pm[Cn]andPm[Pn].

        1 Main results

        Lemma 1 For anym,n≥2, thenγ*(Dm)≤γ*(Dm[Dn])≤γ*(Dm)γ*(Dn).

        Now we prove thatγ*(Dm)γ*(Dn)≥γ*(Dm[Dn]). LetS1={xi1,…,xit} be a minimum twin dominating set ofDm. LetS2={yj1,…,yjw} be a minimum twin dominating set ofDn. SetS′={(xik,yjl)|xik∈S1,yjl∈S2}. For any vertex (xi,yj)∈V(Dm[Dn]), ifxi∈S1andyj∈S2, then (xi,yj)∈S′. Ifxi∈S1andyj?S2, there must existyjl,yjl′∈S2, such thatyjlyj,yjyjl′∈A(Dn). Since (xi,yjl)(xi,yj),(xi,yj)(xi,yjl′)∈A(Dm[Dn]) and (xi,yjl),(xi,yjl′)∈S′, (xi,yj) is twin dominated byS′. Ifxi?S1, there must existxik,xik′∈S1such thatxikxi,xixik′∈A(Dm), and there must existyr∈S2such that (xik,yr)(xi,yj),(xi,yj)(xik′,yr)∈A(Dm[Dn]) and (xik,yr), (xik′,yr)∈S′, so (xi,yj) is twin dominated byS′.

        Therefore,S′ is a twin dominating set ofDm[Dn] and |S′|=|S1||S2|=γ*(Dm)γ*(Dn). Thus,γ*(Dm[Dn]) ≤γ*(Dm)γ*(Dn).

        Clearly, the following theorem is obtained from Lemma 1.

        Theorem 1 For anym,n≥2, thenγ*(Dm[Dn])=γ*(Dm) if and only ifγ*(Dn)=1.

        According to Theorem 1, the following theorem is obvious.

        Theorem 2 For anym,n≥2, thenγ*(Dm[Kn])=γ*(Dm).

        Theorem 3 For any complete digraphKmand digraphDn, then

        Proof By Lemma 1 and Theorem 1, it is clear thatγ*(Km[Dn])=1 ifγ*(Dn)=1. It is easy to see thatS={(x0,y0)} is a twin dominating set ofKm[Dn], where {y0} is a twin dominating set ofDn.

        LetKm1,m2,…,mtbe the completet-partite digraphs. The next Theorem is obtained by Lemma 1 and Theorem 3.

        Theorem 4 Letmi≥1, for anyi∈{1,2,…,t}. Then

        WeemphasizethatverticesofadirectedcycleCnarealwaysdenotedbytheintegers{0,1,…,n-1},consideringmodulon,throughoutthispaper.ThereisanarcxyfromxtoyinCnifandonlyify≡x+1(modn).Forthefollowingaddition,wealwaysconsidermodulon.

        Theorem 5 Form,n≥2, we have

        Nowweconsidertwocases.

        Case1γ+(Dn)=γ-(Dn)=1andγ*(Dn)≥2.

        Let{yj1}and{yj2}beout-dominatingsetandin-dominatingsetofDn,respectively.Set

        S3={(m-1,yj2)}.

        Case2γ*(Dn)≥2andγ+(Dn)≥2orγ-(Dn)≥2.

        Withoutlossofgenerality,weassumethatγ+(Dn)≥2.Itfollowsthatγ-(Dn)≥1,thatisγ+(Dn)≥γ-(Dn).Inthiscase,letJ={i|i∈{0,1,…,m-1}}suchthatbi=0andletJ′={i|i-1∈J}.ItiseasytoseethatJ∩J′=?.

        Forcovenience,letPmbeadirectedpathwithvertexset{0,1,…,m-1}inthesequel.

        Theorem6Letm,n≥2,then

        Next,weconsidern≥3.Forconvenience,wefirstcountthenumberofbifromi=1toi=m-2.Therearetwocasestobeconsidered:

        Case1bm-2≠0.

        Then

        Case2bm-2=0 (thatis|J|≥1).Weconsiderthefollowingtwosubcases:

        Itfollowsthattheremustexistsomeevenintegerjsuchthatbm-j≠0.Then

        S3={(i,0)|i∈{1,2,…,m-2}}.

        ThefollowingCorollaryisobtainedfromTheorem6.

        Corollary1Letm,n≥2,then

        ProofTheframeworkandmainideaforthisproofarethesameasthatofTheorem6.Thepointtobemodehereisthatforthecasem≠3,oneshouldconsiderfoursubcases.n=2,3,4andn≥5.Hence,theproofisleftforthereaders.

        [1] ARAKI T. Thek-tuple twin domination in de Bruijin and Kautz digraphs [J]. Disc Math, 2008,308(24):6406-6413.

        [2] ARAKI T. Connectedk-tuple twin domination in de Bruijin and Kautz digraphs [J].Disc Math, 2009,309(21):6229-6234.

        [3] ARUMUGAM S, EBADI K, SATHIKALA L. Twin domination and twin irredundance in digraphs [J]. Appl Anal Disc Math, 2013,7:275-284.

        [4] CHARTRAND G, DANKELMANN P, SCHULTZ M,etal. Twin domination in digraphs [J].Ars Comb, 2003,67:105-114.

        [5] SHAN E F, DONG Y.X, CHENG Y K. The twin domination number in generalized de Bruijn digraphs [J]. Inform Process Lett, 2009,109(15):856-860.

        [6] WANG Y L. Efficient twin domination in generalized De Bruijn digraphs [J]. Disc Math, 2015,338(3):36-40.

        [7] CAI H, LIU J, QIAN L. The domination number of strong product of directed cycles[J]. Disc Math Algor Appl, 2014,6(2):1-10.

        [8] LIU J, ZHANG X D, CHEN X,etal. The domination number of Cartesian products of directed cycles [J]. Inform Process Lett, 2010,110(5):171-173.

        [9] LIU J, ZHANG X D, MENG J. On domination number of Cartesian product of directed path [J]. J Comb Optim, 2011,22(4):651-662.

        [10] MOLLARD M. On the domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths [J]. Discuss Math Graph Theory, 2013,33(2):387-394.

        [11] MOLLARD M. The domination number of Cartesian product of two directed paths [J].J Comb Optim, 2014,27:144-151.

        [12] SUMENJAK T K, PAVLIC P, TEPEH A. On the Roman domination in the lexicographic product of graphs [J]. Disc Appl Math, 2012,160(13-14):2030-2036.

        [13] SUMENJAK T K, RALL D F, TEPEH A. Rainbow domination in the lexicographic product of graphs [J]. Disc Appl Math, 2013,161(13-14):2133-2141.

        [14] YUE W, HUANG Y, ZHAO T,etal. The crossing number of join products of a special 5-vertex graph withCn[J]. J Natur Sci Hunan Norm Univ, 2015,38(1):81-85.

        [15] SHAHEEN R S. Domination number of toroidal grid digraphs [J]. Utilitas Math, 2009,78:175-184.

        [16] ZHANG X D, LIU J, CHEN X,etal. On domination number of Cartesian product of directed cycles [J]. Inform Process Lett, 2010,111(1):36-39.

        (編輯 HWJ)

        2016-05-03

        國(guó)家自然科學(xué)基金資助項(xiàng)目(11301450,61363020,11226294);新疆自治區(qū)青年科技創(chuàng)新人才培養(yǎng)工程資助項(xiàng)目(2014731003)

        有向圖字典式積的雙控制數(shù)

        馬紅霞,劉 娟*

        (新疆師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,中國(guó) 烏魯木齊 830054)

        令γ*(D)表示有向圖D的雙控制數(shù),Dm[Dn]表示有向圖Dm和Dn的字典式積,其中Dm,Dn的階數(shù)m,n分別大于等于2.本文首先給出Dm[Dn]的雙控制數(shù)的上下界,然后確定如下有向圖的雙控制數(shù)的確切值:Dm[Kn];Km[Dn];Km1,m2,…,mt[Dn];Cm[Dn];Pm[Cn]及Pm[Pn].

        雙控制數(shù);字典式積;有向圖

        10.7612/j.issn.1000-2537.2016.06.014

        *通訊作者,E-mail:liujuan1999@126.com

        猜你喜歡
        新疆自治區(qū)新疆師范大學(xué)有向圖
        1-9月份新疆自治區(qū)規(guī)模以上原煤產(chǎn)量同比增長(zhǎng)31.1%
        1-7月份新疆自治區(qū)原煤產(chǎn)量為21835.64萬(wàn)t 同比增長(zhǎng)32.5%
        1-6月份新疆自治區(qū)規(guī)模以上企業(yè)原煤產(chǎn)量同比增長(zhǎng)28.8%
        有向圖的Roman k-控制
        超歐拉和雙有向跡的強(qiáng)積有向圖
        關(guān)于超歐拉的冪有向圖
        呂蓓佳作品
        屈慧作品
        新形勢(shì)下少數(shù)民族政治參與實(shí)證研究——基于第十一、十二屆新疆自治區(qū)人大代表的分析
        有向圖的同構(gòu)判定算法:出入度序列法
        日韩精品无码视频一区二区蜜桃 | 青青草视频免费观看| 91呻吟丰满娇喘国产区| 一区二区丝袜美腿视频| 久久99精品综合国产女同| 小妖精又紧又湿高潮h视频69| 国产真实伦在线观看| 免费中文熟妇在线影片| 亚洲一区二区女优视频| 亚洲女优中文字幕在线观看| 无码人妻精品一区二区| 国产3p视频| 中文字幕精品一区二区日本| 亚洲中文字幕乱码第一页| 国产精品成人va在线观看| 国产精品久久久久久久久KTV| 国产在线观看精品一区二区三区| 久久一区二区国产精品| 欧美人做人爱a全程免费| 日韩无码无播放器视频| 国产毛片三区二区一区| 开心五月婷婷激情综合网| 亚洲亚洲人成综合网络| 久久久久亚洲精品美女| 国产大片在线观看91| 精品无码久久久久久久久| 久久精品一区二区三区av| 亚洲色拍拍噜噜噜最新网站| 日韩av水蜜桃一区二区三区| 18禁黄网站禁片免费观看女女| 精品国产一区二区三区久久久狼| 亚洲av网一区天堂福利| 国产三级久久精品三级91| 性欧美牲交xxxxx视频欧美| 成人无码视频在线观看网站| 日本一区二区三区在线视频播放| 99麻豆久久久国产精品免费| 99久久夜色精品国产网站| 国产一区二区精品av| 久久精品人妻少妇一二三区| 中文字幕乱伦视频|