
圖1 邏輯樹(shù)結(jié)構(gòu)
1.3 鄰居表
在ZigBee無(wú)線(xiàn)傳感器網(wǎng)絡(luò)中,單跳范圍內(nèi)可以直接相互通信的節(jié)點(diǎn)稱(chēng)為鄰居節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)都維護(hù)其鄰居表. 鄰居表主要由鄰居節(jié)點(diǎn)PAN標(biāo)識(shí)符、鄰居節(jié)點(diǎn)IEEE擴(kuò)展地址、鄰居節(jié)點(diǎn)網(wǎng)絡(luò)地址、鄰居節(jié)點(diǎn)的類(lèi)型(RFD或FFD)、鄰居節(jié)點(diǎn)與當(dāng)前節(jié)點(diǎn)之間的關(guān)系以及鄰居節(jié)點(diǎn)的剩余能量等組成[17],其結(jié)構(gòu)如圖2所示. 由ZigBee路由分配機(jī)制可知,ZigBee樹(shù)型路由算法只能向上或向下傳輸,雖然網(wǎng)絡(luò)中存在節(jié)點(diǎn)鄰居表,但是數(shù)據(jù)實(shí)際傳輸時(shí)并未充分利用其優(yōu)勢(shì). 因此,本文借助鄰居表進(jìn)行路徑選擇,以降低平均網(wǎng)絡(luò)延時(shí),進(jìn)一步提高ZigBee網(wǎng)絡(luò)的性能.

圖2 鄰居表的結(jié)構(gòu)
2 ZigBee網(wǎng)絡(luò)樹(shù)型路由優(yōu)化算法
2.1 EZTR算法描述
由ZigBee路由分配機(jī)制可知,節(jié)點(diǎn)加入網(wǎng)絡(luò)時(shí)會(huì)自動(dòng)建立鄰居表. 本文提出的算法在IEEE802.15.4標(biāo)準(zhǔn)框架下,利用節(jié)點(diǎn)感知地址信息和鄰居表選擇最佳路由策略,通過(guò)對(duì)ZigBee網(wǎng)絡(luò)節(jié)點(diǎn)能量的認(rèn)知,及時(shí)啟用備用節(jié)點(diǎn). EZTR算法的優(yōu)化,不但降低節(jié)點(diǎn)的轉(zhuǎn)發(fā)跳數(shù),而且還保證了IEEE802.15.4標(biāo)準(zhǔn)的體系化. EZTR算法流程如圖3所示.
當(dāng)節(jié)點(diǎn)接收到數(shù)據(jù)包時(shí),首先判斷自己是否為目的節(jié)點(diǎn),若是則直接接收數(shù)據(jù),否則,根據(jù)節(jié)點(diǎn)維護(hù)的鄰居表(含有節(jié)點(diǎn)地址信息、單跳范圍內(nèi)節(jié)點(diǎn)的關(guān)系、鄰居節(jié)點(diǎn)的剩余能量等信息)判斷目的節(jié)點(diǎn)是否為當(dāng)前節(jié)點(diǎn)的子節(jié)點(diǎn)、父節(jié)點(diǎn)或鄰居節(jié)點(diǎn),若目的節(jié)點(diǎn)與當(dāng)前節(jié)點(diǎn)是父子關(guān)系,直接按照樹(shù)型結(jié)構(gòu)向上或向下傳遞數(shù)據(jù)包,否則向下一跳節(jié)點(diǎn)發(fā)送帶有目的地址的路由請(qǐng)求,采用輪詢(xún)方式計(jì)算所有鄰居節(jié)點(diǎn)到達(dá)目的節(jié)點(diǎn)的跳數(shù),利用每個(gè)節(jié)點(diǎn)感知的地址信息選擇最短路徑. 若網(wǎng)絡(luò)中存在多條最短路徑,選取剩余能量最多的節(jié)點(diǎn)作為下一跳鄰居節(jié)點(diǎn). 判斷在最少跳數(shù)的路徑中節(jié)點(diǎn)是否為空閑狀態(tài),若路徑中所有節(jié)點(diǎn)均處于空閑狀態(tài),選擇此路徑為最優(yōu)路徑;若在最優(yōu)路徑中存在能量過(guò)低的節(jié)點(diǎn),使用備用節(jié)點(diǎn)代替,通過(guò)設(shè)置標(biāo)志位(Flag)實(shí)現(xiàn)節(jié)點(diǎn)與備用節(jié)點(diǎn)間的替換. Flag=0表示能量過(guò)低的節(jié)點(diǎn),F(xiàn)lag=1表示忙碌節(jié)點(diǎn),F(xiàn)lag=2表示備用節(jié)點(diǎn). 此后的中繼節(jié)點(diǎn)轉(zhuǎn)發(fā)也依據(jù)此方式進(jìn)行,不斷更新節(jié)點(diǎn)維護(hù)的單跳范圍內(nèi)的鄰居表,直到數(shù)據(jù)發(fā)送到目的節(jié)點(diǎn).
為了盡可能減小因備用節(jié)點(diǎn)影響ZigBee網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),備用節(jié)點(diǎn)選取與原節(jié)點(diǎn)直接相鄰的節(jié)點(diǎn),即選擇單跳范圍內(nèi)節(jié)點(diǎn)作為備用節(jié)點(diǎn),同時(shí)為了避免備用節(jié)點(diǎn)再次成為失效節(jié)點(diǎn),選取單跳范圍內(nèi)剩余能量最多的節(jié)點(diǎn)作為備用節(jié)點(diǎn),采用輪詢(xún)的方式將原節(jié)點(diǎn)的信息全部復(fù)制給備用節(jié)點(diǎn). 如果在一段時(shí)間內(nèi)沒(méi)有收到“低能量節(jié)點(diǎn)” 請(qǐng)求消息或“節(jié)點(diǎn)忙碌”請(qǐng)求消息,則備用節(jié)點(diǎn)進(jìn)入睡眠狀態(tài),降低因備用節(jié)點(diǎn)的存在而使網(wǎng)絡(luò)付出更多的能量代價(jià).

圖3 EZTR算法流程圖
圖4以EZTR算法路由選擇為例分析說(shuō)明ZTR算法和EZTR算法的傳輸機(jī)制,其中實(shí)線(xiàn)代表ZTR算法的路由實(shí)現(xiàn)過(guò)程,虛線(xiàn)代表EZTR算法的路由實(shí)現(xiàn)過(guò)程. 從圖中可以看出,與ZTR算法相比,圖4(a)節(jié)省4跳,圖4(b)節(jié)省5跳,圖4(c)節(jié)省4跳. 由于傳統(tǒng)的ZigBee路由算法完全按照父子之間的關(guān)系選擇最短路徑,所以轉(zhuǎn)發(fā)數(shù)據(jù)需要公共父節(jié)點(diǎn)的參與,而EZTR算法利用鄰居表和節(jié)點(diǎn)地址進(jìn)行路徑選擇,不需要公共父節(jié)點(diǎn)的參與,因此降低了轉(zhuǎn)發(fā)跳數(shù). 另外,從圖中也可以看出,越靠近最大公共父節(jié)點(diǎn)的節(jié)點(diǎn)轉(zhuǎn)發(fā)數(shù)據(jù)越頻繁,能量很快耗盡,從而很快就變?yōu)槭Ч?jié)點(diǎn),可能造成網(wǎng)絡(luò)的中斷.
2.2 最佳路徑的判斷
利用每個(gè)節(jié)點(diǎn)感知的地址信息選擇最短路徑. 為了避免ZigBee網(wǎng)絡(luò)的環(huán)路響應(yīng),該算法通過(guò)樹(shù)型結(jié)構(gòu)來(lái)計(jì)算下一跳節(jié)點(diǎn)到目的節(jié)點(diǎn)之間的路由開(kāi)銷(xiāo).
節(jié)點(diǎn)跳數(shù)的計(jì)算方法為:找到最大的公共父節(jié)點(diǎn)的地址,然后借助最大公共父節(jié)點(diǎn)的深度計(jì)算EZTRN節(jié)點(diǎn)到目的節(jié)點(diǎn)之間的跳數(shù),如圖5所示. 跳數(shù)計(jì)算公式和最少跳數(shù)選取公式分別為
Count=(Nd-Do)+(Dd-D0)=Nd+Dd-2D0,
min_count=min{counti}, i∈{1,2,3,…,n}.
式中:count為跳數(shù),Nd為鄰居節(jié)點(diǎn)的深度,Dd為目的節(jié)點(diǎn)的深度,D0為最大公共父節(jié)點(diǎn)的深度,最少跳數(shù)為min_count,counti為第i條鄰居節(jié)點(diǎn)到目的節(jié)點(diǎn)轉(zhuǎn)發(fā)跳數(shù). 其中尋找最大公共父節(jié)點(diǎn)的方法為:根據(jù)ZigBee路由分配機(jī)制,當(dāng)節(jié)點(diǎn)的深度小于網(wǎng)絡(luò)最大深度(Lm)時(shí),依據(jù)式(1)采用輪詢(xún)的方式來(lái)實(shí)現(xiàn).

(a)鄰居節(jié)點(diǎn)的父節(jié)點(diǎn)

(b)鄰居節(jié)點(diǎn)的子節(jié)點(diǎn)

(c)在鄰居節(jié)點(diǎn)的鄰居表中
2.3 低能量節(jié)點(diǎn)判斷
在WSN實(shí)際應(yīng)用中,某些節(jié)點(diǎn)(如圖4中最大公共父節(jié)點(diǎn)附近的節(jié)點(diǎn))頻繁使用,導(dǎo)致能量過(guò)度消耗,而其他節(jié)點(diǎn)被閑置,會(huì)造成節(jié)點(diǎn)能量不均衡,因此部分節(jié)點(diǎn)因過(guò)早失效而引起在最優(yōu)路徑下的“能量空洞”現(xiàn)象,可能會(huì)導(dǎo)致網(wǎng)絡(luò)數(shù)據(jù)傳輸中斷或出現(xiàn)網(wǎng)絡(luò)擁塞現(xiàn)象.

圖5 源節(jié)點(diǎn)和目的節(jié)點(diǎn)之間的路由消耗
Fig.5 Routing consumption between the source node and the destination node

式中:E0為節(jié)點(diǎn)的初始能量,di為網(wǎng)絡(luò)中第i個(gè)節(jié)點(diǎn)的深度.
3 仿真及分析
3.1 搭建ZigBee能量模型
ZigBee網(wǎng)絡(luò)數(shù)據(jù)傳輸?shù)目偰芎腅包括ET(k,d)為節(jié)點(diǎn)A發(fā)送k bit數(shù)據(jù)包到節(jié)點(diǎn)B所需能耗和ER(k)為節(jié)點(diǎn)B接收k bit數(shù)據(jù)包所需能耗,d為兩個(gè)節(jié)點(diǎn)之間的通信距離. ZigBee能量模型如圖6所示.
節(jié)點(diǎn)發(fā)送k bit 數(shù)據(jù)包消耗的能量為
式中:Eelec為發(fā)射電路發(fā)送1 bit數(shù)據(jù)包的能耗,εamp為發(fā)射放大器處理1 bit數(shù)據(jù)包傳輸單位距離所需要的能耗. 假設(shè)接收電路與發(fā)射電路有相同的能量消耗,則接收k bit數(shù)據(jù)包的能量消耗為
采用此模型,則一個(gè)路由節(jié)點(diǎn)的總能耗為
式中M和dm分別是路由節(jié)點(diǎn)的跳數(shù)和第m跳的發(fā)送距離.

圖6 能量模型
3.2 評(píng)價(jià)指標(biāo)定義

式中: Ri表示第i個(gè)節(jié)點(diǎn)成功接收的數(shù)據(jù)分組的個(gè)數(shù),Sk表示第k個(gè)節(jié)點(diǎn)發(fā)送數(shù)據(jù)分組的個(gè)數(shù).

式中: NMAC為MAC層轉(zhuǎn)發(fā)N個(gè)數(shù)據(jù)包,因?yàn)镸AC層的作用是確認(rèn)數(shù)據(jù)傳送和接收; Msour為源節(jié)點(diǎn)發(fā)送M個(gè)數(shù)據(jù)包.

式中:Tr(i)為接收第i個(gè)數(shù)據(jù)包的時(shí)刻,Ts(i)為發(fā)送第i個(gè)數(shù)據(jù)包的時(shí)刻,Mdes為目的節(jié)點(diǎn)成功接收M個(gè)數(shù)據(jù)包.

式中: Ei為第i個(gè)節(jié)點(diǎn)剩余能量,E0為ZigBee網(wǎng)絡(luò)中M個(gè)節(jié)點(diǎn)的初始能量.
3.3 NS2.35仿真參數(shù)設(shè)置
為了驗(yàn)證EZTR算法的性能,利用IEEE 802.15.4 PHY/MAC協(xié)議進(jìn)行ZTR(經(jīng)典的ZigBee樹(shù)型路由)、EZTR(本文提出的優(yōu)化樹(shù)型路由)以及參考文獻(xiàn)[9]提出的ESTR(能量高效的樹(shù)型路由)進(jìn)行網(wǎng)絡(luò)層協(xié)議仿真. 將節(jié)點(diǎn)隨機(jī)分布在100 m×100 m區(qū)域中,使用cbrgen產(chǎn)生CBR數(shù)據(jù)流,實(shí)驗(yàn)發(fā)送數(shù)據(jù)包的大小為70 bytes,CBR數(shù)據(jù)流的帶寬為1 Mbit/s.
實(shí)驗(yàn)采用表1所列的節(jié)點(diǎn)仿真參數(shù),利用awk測(cè)試腳本提取Trace文件中的節(jié)點(diǎn)數(shù)據(jù). 仿真動(dòng)畫(huà)效果如圖7所示. NAM動(dòng)畫(huà)仿真之后,自動(dòng)生成一個(gè)以.tr為格式的trace跟蹤文件,該文件可以記錄ZigBee節(jié)點(diǎn)整個(gè)通信過(guò)程,使用AWK語(yǔ)言獲取需要的數(shù)據(jù)信息.

表1 節(jié)點(diǎn)仿真參數(shù)

圖7 仿真動(dòng)畫(huà)
3.4 仿真結(jié)果及分析
分組遞交率隨節(jié)點(diǎn)數(shù)目的變化曲線(xiàn)如圖8所示. EZTR在分組遞交率方面優(yōu)于ZTR和ESTR,EZTR、ZTR及ESTR的整體分組遞交率分別為85.64%、71.81%及80.30%,相應(yīng)提高了13.83%和5.34%,主要是由于本文提出的EZTR算法考慮了鏈路的忙碌狀態(tài)和節(jié)點(diǎn)的剩余能量,如果存在能量過(guò)低的節(jié)點(diǎn),有可能造成丟包現(xiàn)象;如果鏈路處于忙碌狀態(tài),EZTR算法引入備用節(jié)點(diǎn),避免因數(shù)據(jù)堵塞而造成丟包現(xiàn)象. 其次,該算法按照樹(shù)型結(jié)構(gòu)計(jì)算路由跳數(shù),避免了網(wǎng)絡(luò)的環(huán)路響應(yīng). 最后,EZTR算法選擇的路徑是最短的,減少了隊(duì)列的延時(shí),一定程度上也提高了網(wǎng)絡(luò)的分組遞交率.

圖8 節(jié)點(diǎn)的平均分組遞交率隨節(jié)點(diǎn)數(shù)目變化
節(jié)點(diǎn)的平均跳數(shù)隨網(wǎng)絡(luò)節(jié)點(diǎn)數(shù)目的變化曲線(xiàn)如圖9所示. 隨著傳感器節(jié)點(diǎn)的不斷加入,網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)越復(fù)雜. 3種算法的轉(zhuǎn)發(fā)跳數(shù)均增加,但是ZTR算法跳數(shù)遠(yuǎn)多于ESTR和EZTR算法,EZTR、ZTR及ESTR的整體跳數(shù)分別為4.99、6.92及5.39,相應(yīng)降低了27.78%和7.42%. 由于EZTR算法在確保鏈路為空閑狀態(tài)傳輸數(shù)據(jù)和采用備用節(jié)點(diǎn)的前提下,選擇EZTRN節(jié)點(diǎn)到目的節(jié)點(diǎn)最少跳數(shù),因此采用EZTR算法轉(zhuǎn)發(fā)跳數(shù)低于ZTR和ESTR的跳數(shù).

圖9 節(jié)點(diǎn)的平均跳數(shù)隨節(jié)點(diǎn)數(shù)目變化
隨著傳感器節(jié)點(diǎn)數(shù)目的增加,不但節(jié)點(diǎn)跳數(shù)增加,平均網(wǎng)絡(luò)延時(shí)也不斷增加. 3種算法的平均網(wǎng)絡(luò)延時(shí)隨網(wǎng)絡(luò)節(jié)點(diǎn)數(shù)目變化曲線(xiàn)如圖10所示. 從圖10可以看出,由于EZTR算法不但考慮轉(zhuǎn)發(fā)跳數(shù)和鏈路忙碌狀態(tài),還較大幅度地減少轉(zhuǎn)發(fā)跳數(shù),雖然在一定程度上因增加算法的復(fù)雜度導(dǎo)致程序運(yùn)行時(shí)間增加,但該算法優(yōu)化節(jié)點(diǎn)傳輸?shù)穆窂?,在?shí)時(shí)性方面仍然優(yōu)于ZTR和EZTR算法,EZTR、ZTR及ESTR的整體時(shí)延分別為0.017、0.031及0.022,相應(yīng)降低了45.01%和22.68%,提高無(wú)線(xiàn)傳感網(wǎng)絡(luò)在線(xiàn)監(jiān)測(cè)的實(shí)時(shí)性.

圖10 平均網(wǎng)絡(luò)延時(shí)隨節(jié)點(diǎn)數(shù)目變化
節(jié)點(diǎn)平均剩余能量百分比隨節(jié)點(diǎn)數(shù)目變化如圖11所示. EZTR、ZTR及ESTR的整體剩余能量百分比分別為0.79、0.67及0.74,相應(yīng)提高了19.85%和6.75%,主要是由于EZTR算法大幅度降低了節(jié)點(diǎn)的轉(zhuǎn)發(fā)跳數(shù),雖然一定程度上增加了因算法復(fù)雜度提高而消耗一部分能量,但是由于該算法優(yōu)化了節(jié)點(diǎn)轉(zhuǎn)發(fā)路徑,總體上仍然節(jié)約ZigBee網(wǎng)絡(luò)的能耗.

圖11 節(jié)點(diǎn)平均剩余能量百分比隨節(jié)點(diǎn)數(shù)目變化
Fig.11 The average percentage of residual energy with the number of nodes changes
為了客觀(guān)公正的評(píng)價(jià)EZTR算法的性能,對(duì)ZTR算法和EZTR算法在路由控制開(kāi)銷(xiāo)方面進(jìn)行了仿真實(shí)驗(yàn),路由控制開(kāi)銷(xiāo)仿真結(jié)果如圖12所示. 從圖中可以看出,ZTR算法沒(méi)有任何路由控制開(kāi)銷(xiāo),是因?yàn)閆TR算法在數(shù)據(jù)通信時(shí)只根據(jù)父子節(jié)點(diǎn)之間的關(guān)系進(jìn)行數(shù)據(jù)的傳遞. ESTR算法與EZTR算法相比,在尋找最優(yōu)路徑時(shí),由于需要額外考慮鏈路品質(zhì)因數(shù)和合理選取綜合加權(quán)因子等因素,路由控制開(kāi)銷(xiāo)多于EZTR算法.

圖12 路由控制開(kāi)銷(xiāo)隨節(jié)點(diǎn)數(shù)目的變化
4 結(jié) 論
本文利用單跳范圍內(nèi)的鄰居節(jié)點(diǎn)和父子節(jié)點(diǎn)之間的關(guān)系,在認(rèn)知視角下提出一種能量感知的ZigBee樹(shù)型路由(EZTR)算法. 該算法不但在IEEE802.15.4標(biāo)準(zhǔn)體系化框架下能夠選出最短路徑,還兼顧了節(jié)點(diǎn)的忙碌狀態(tài)和節(jié)點(diǎn)的剩余能量,通過(guò)對(duì)ZigBee網(wǎng)絡(luò)節(jié)點(diǎn)能量的認(rèn)知,當(dāng)網(wǎng)絡(luò)中所選路徑存在低能量節(jié)點(diǎn)時(shí),及時(shí)啟用備用節(jié)點(diǎn). NS2仿真結(jié)果表明,EZTR算法的性能優(yōu)于ESTR、ZTR算法. 由于經(jīng)典的樹(shù)型路由(ZTR)算法在數(shù)據(jù)傳輸時(shí)只在父子節(jié)點(diǎn)之間進(jìn)行數(shù)據(jù)傳輸,無(wú)任何路由控制開(kāi)銷(xiāo),而EZTR算法需感知最短路徑,與ZTR算法相比需要付出增加路由控制開(kāi)銷(xiāo)和占用傳輸帶寬等代價(jià),同時(shí)會(huì)增加節(jié)點(diǎn)的存儲(chǔ)和計(jì)算能力,該算法的性能還有待于進(jìn)一步優(yōu)化.
[1] 龐毅,王超,孫青林,等. Zigbee網(wǎng)絡(luò)環(huán)狀分層方法的仿真與實(shí)現(xiàn)[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2013,45(3):123-128.
PANG Yi,WANG Chao,SUN Qinglin,et al. Simulation and realization of zigbee network annular stratification[J]. Journal of Harbin Institute of Technology,2013,45(3):123-128.
[2]張?jiān)浦?蔣培,高亮,等.基于DSP和雙目視覺(jué)的多媒體傳感器網(wǎng)絡(luò)節(jié)點(diǎn)設(shè)計(jì)與實(shí)現(xiàn)[J].通信學(xué)報(bào),2014,35(12):210-216.
ZHANG Yunzhou,JIANG Pei,GAO Liang,et al. Design and implementation of wireless multimedia sensor network node based on DSP and binocular vision[J]. Journal on Communications,2014,35(12):210-216.
[3] SHARIFF F, RAHIMA N A, HEW W P. Zigbee based data acquisition system for online monitoring of grid connected photovoltaic system[J]. Expert Systems with Applications,2015,35(42):1730-1742.
[4] SANG Shengbo,FAN Xiao,TANG Xiaoliang,et al. Portable surface stress biosensor test system based on ZigBee technology for health care[J]. Biotechnology & Biotechnological Equipment,2015,45(29):798-804.
[5] NIU Jianwei,WANG Bowei,SHU Lei,et al. An energy-efficient indoor localization system using ZigBee radio to detect WiFi fingerprints[J]. Selected Areas in Communications,2015,33(7):1431-1442.
[6] ChEN S K,KAO T,CHAN C T,et al. A reliable transmission protocol for ZigBee-based wireless patient monitoring[J].IEEE Trans Information Technology in Biomedicine,2012,16(1):6-16.
[7] KIM T, KIM S H,YANG J,et al. Neighbor table based shortcut tree routing in ZigBee wireless networks[J]. IEEE Transcations on Parallel and Distributed Systems,2014,25(3):706-715.
[8] QIU Wanzhi,PENG Hao.Enhanced tree routing for wireless sensor networks[J]. Ad Hoc Networks,2009,39(7):638-650.
[9] KHATIRI A, MIRJALITY G. Energy Efficient Shortcut Tree Routing in ZigBee Networks[C]//Communication Systems and Networks,2012 Fourth International Conference on Computational Intelligence. Harbin: ACM, 2012:117-122.
[10]MOUGY A E,EI Z H,IBNKAHLA,M. Cognitive approaches to routing in wireless sensor networks[C]//IEEE Global Telecommunications Conference.2010.
[11]SULEIMAN Z,NORSHEILA F. Reliable geographical forwarding in cognitive radio sensor networks using virtual clusters[J]. Sensors,2014,14(5):8996-9026.
[12]錢(qián)志鴻,朱爽,王雪.基于分簇機(jī)制的ZigBee混合路由能量?jī)?yōu)化算法研究[J].計(jì)算機(jī)學(xué)報(bào),2013,36(3):485-493.
QIAN Zhihong,ZHU Shuang,WANG Xue. An cluster-based ZigBee routing algorithm for Network energy optimization[J]. Chinese Journal of Computers,2013,36(3):485-493.
[13]HUANG Y K,PANG A C,HSIV PC,et al. Distributed throughput optimization for ZigBee cluster-tree networks[J].IEEE Trans. Parallel and Distributed Systems,2012,23(3):513-520.
[14]KIM T, KIM D,PAK N,et al. Shortcut tree routing in ZigBee networks[C]//2007 2nd International Symposium on Wireless Pervasive Computing. 2007:42-47.
[15]YANG Guisong, WANG Zhongjie, WU Chunxue, et al. One-hop expansion ETR protocol for wireless sensor networks[J].Journal of Convergence Information Technology,2012,7(11):169-178.
[16]KWON K, HA M, KIM T, et al. The stateless point to point routing protocol based on shortcut tree routing algorithm for IP-WSN[C]//Proceedings of 2012 International Conference on the Internet of Things. 2012:167-174.
[17]WADHWA L K,RASHMI R S,PRIYE V.Extended shortcut tree routing for ZigBee based wireless sensor network[J]. Ad Hoc Networks,2016,37(2):295-300.
(編輯 王小唯 苗秀芝)
Energy-aware tree routing optimization algorithm for ZigBee networks: a cognitive perspective
TENG Zhijun,ZHANG Mingru, ZHANG Li,XU Jianjun
(School of Information Engineering, Northeast Dianli University, Jilin 132012, Jilin, China)
To improve the problem of failing to well select optimal path for ZigBee Cluster-Tree routing algorithm, ZigBee routing based on Energy-Aware (EZTR) algorithm was proposed. Firstly, using each node perceiving its own address, this algorithm calculated packet forwarding hop-counts that the next hop of node to destination node according to tree structure for avoiding the loop response, by introducing the concept of cognitive for ZigBee network, and selected the shortest routing in hop-counts set to reduce hop-counts. Besides, in order to avoid excessive energy consumption of nodes, which caused nodes to be ineffective, through energy cognitive processing, when there is a low energy nodes selected path, EZTR algorithm timely adopted alternate node. Through comparative analysis of NS2 simulation experiments, packet delivery ratio is improved, hop-counts and average delay are reduced, and network energy consumption is saved, which can provide theoretical support for improving network real-time and extend network lifetime.
wireless sensor network; cognitive; energy-aware; ZigBee tree routing algorithm
10.11918/j.issn.0367-6234.2016.11.017
2015-12-11
國(guó)家自然科學(xué)基金(51277023)
滕志軍(1973—),男,博士,教授
張明儒,894205629@qq.com
TP393.1
A
0367-6234(2016)11-0109-07