余 建,伍鵬程
(貴州師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,貴州 貴陽(yáng) 550001)
?
空間到加權(quán)型空間的復(fù)合微分前置算子
余 建,伍鵬程*
(貴州師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,貴州 貴陽(yáng) 550001)
從算子的性質(zhì)出發(fā),研究Bloch空間到加權(quán)型空間的復(fù)合微分前置算子的有界性和緊性,得到了算子有界性和緊性的充分必要條件。
Bloch空間;加權(quán)型空間;復(fù)合微分前置算子;有界性;緊性
記Δ為復(fù)平面上的單位開(kāi)圓盤(pán),H(Δ)為Δ上解析函數(shù)的全體,對(duì)u,φ∈H(Δ)) 且u(Δ)?Δ,文獻(xiàn)[1]給出了u,φ為符號(hào)的復(fù)合微分前置算子: uDCφf(shuō)=uφ′f′(φ),其中f∈H(Δ)。
對(duì)f∈H(Δ),文獻(xiàn)[2]給出了Δ上Bloch空間和小Bloch空間的定義分別為:
在這個(gè)部分,將給出主要結(jié)果和證明以及證明所要用到的引理(見(jiàn)文獻(xiàn)[7])。
引理1的證明相仿文獻(xiàn)[7]的定理3.11的證明,故省去。
定理1 設(shè)u,μ∈H(Δ),u(Δ)?Δ,φ是Δ上的解析自映射。則以下結(jié)論等價(jià):
證明 (a)?(b),顯然。
(d)?(e) 對(duì)于λ∈Δ,作如下限制:
(1)
對(duì)任意固定的r∈(0,1),由(1)有:
(2)
(3)
(e)?(a)對(duì)?f∈B,z∈Δ,有:
定理2 設(shè)u,μ∈H(Δ),u(Δ)?Δ,φ是Δ上的解析自映射。則以下結(jié)論等價(jià):
證明 (a)?(b),顯然。
(4)
(5)
(6)
由(5)(6)兩式得:
(7)
[1] 龍見(jiàn)仁.Q_k(p,q)空間到加權(quán)α-Bloch空間的復(fù)合微分后置和復(fù)合微分前置算子(英文)[J].貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,29(2):64-71.
[2] ZHU K.Bloch Type Spaces of Analytic-functions[J].Rocky Mountain Journal of Mathematics,1993,23(3):1143-1177.
[3] BIERSTEDT K D,SUMMERS W H.Biduals of weighted banach spaces of analytic functions[J].Journal of the Australian Mathematical Society,1993,54(1):70-79.
[4] LI S,STEVIC S.Composition followed by differentiation between H∞and α-Bloch spaces[J].Houston Journal of Mathematics,2009,35(1):327-340.
[5] ZHU X.Generalized weighted composition operators from Bloch spaces into Bers-type spaces[J].Filomat,2012,26(6):1163-1169.
[7] COWEN C C,MACCLUER B D.Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics[M].Boca Raton:CRC Press,1995.
Composition proceeded by differential operator from Bloch space to weighted-type space
YU Jian,WU Pengcheng*
(School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550001,China)
In this paper, the boundedness and compactness of the composite differential prior operator were studied, which was used to support the mapping, from Bloch space to the weighted space. And we obtained the necessary and sufficient conditions for the boundedness and compactness of this operator.
Bloch space; weighted space; composite differential prior operator; boundedness; compactness
1004—5570(2016)06-0056-03
2016-09-10
余 建(1990-),貴州師范大學(xué)碩士研究生,研究方向:函數(shù)論,E-mail:13765793029@139.com.
O175.2
A
*通訊作者:伍鵬程(1955-),教授,博士生導(dǎo)師,研究方向:函數(shù)論。