亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類Caputo分數(shù)階微分方程正解的存在性

        2016-12-19 02:36:59李云紅呂文靜
        河北科技大學學報 2016年6期
        關(guān)鍵詞:邊值問題石家莊算子

        李云紅,呂文靜

        (1.河北科技大學理學院,河北石家莊 050018;2.河北科技大學總務處,河北石家莊 050018)

        ?

        一類Caputo分數(shù)階微分方程正解的存在性

        李云紅1,呂文靜2

        (1.河北科技大學理學院,河北石家莊 050018;2.河北科技大學總務處,河北石家莊 050018)

        為了研究一類帶p-Laplacian 算子的Caputo分數(shù)階微分方程邊值問題正解的存在性,通過計算得到該問題的格林函數(shù),并討論其性質(zhì)。運用單調(diào)迭代方法,得到該邊值問題至少存在2個正解,最后通過實例驗證了此類方程邊值問題正解的存在性。

        常微分方程其他學科;Caputo分數(shù)階微分;正解;單調(diào)迭代方法;邊值問題

        微分方程是現(xiàn)代數(shù)學的一個重要分支,它在幾何、力學、航天、經(jīng)濟等領(lǐng)域都有著廣泛的應用。近年來,分數(shù)階微分方程邊值問題成為許多數(shù)學工作者的研究熱點[1-14]。

        本文討論帶p-Laplacian算子的邊值問題的正解情況,

        在本文中,總假設(shè)下面條件成立:

        H1)μ1>0,μ2>0,0<η<1,ρ=η+μ1-μ2,ρ>0,(α-1)μ2≥1;

        H2)f:[0,1]×[0,+∞)→[0,+∞)是連續(xù)的;

        1 預備知識

        為證明結(jié)論,需要利用下面的預備知識[15-16]。

        定義1 函數(shù)y:(0,+∞)→R的α>0階Riemann-Liouville積分定義如下:

        其中右邊是在(0,+∞)上逐點定義的。

        定義2 函數(shù)y:(0,+∞)→R的α>0階Caputo微分定義如下:

        其中n=[α]+1,右邊是在(0,+∞)上逐點定義的。

        其中N是大于或等于α的最小整數(shù)。

        2 主要結(jié)果

        引理2 邊值問題(1)等價于

        (2)

        其中:

        (3)

        (4)

        (5)

        兩邊從0到t積分,利用引理1得

        因此,

        對上式兩邊從0到t積分,利用引理1得

        利用式(1)中的u″(0)=0,得d2=0,所以

        (6)

        由式(6),可得

        (7)

        由式(6)、式(7)和式(1)中的u(0)=μ1μ′(0),可得

        d0=μ1d1。

        (8)

        由式(6)—式(8)和式(1)中的u(η)=μ2u′(1),可得

        證明完畢。

        引理3 引理2中的?(s)≥0,對于0≤s≤t≤1。d1≥0。G(t,s)≥0且k1p(s)≤G(t,s)≤k2p(s),

        證明 由條件H2)可得f(t,u(t))≥0,因此對任意的0≤s≤t≤1,有:

        由條件H1)可得μ2>0,0<η<1,ρ=η+μ1-μ2>0,(α-1)μ2≥1,因此

        當0≤s≤min{t,η}≤1時,

        所以k1p(s)≤G(t,s)≤k2p(s)。又因為(α-1)μ2≥1,所以k1≥0,因此G(t,s)≥0。其他區(qū)間的證明類似,省略。

        K={u|u∈E,u是[0,1]上的非負,不減的函數(shù)}。

        算子T:K→E為

        (9)

        定理1 設(shè)條件H1)—H3)成立,且存在常數(shù)r>1,使得

        S1) 當0≤t≤1,0≤u≤v≤r時,有f(t,u)≤f(t,v);

        則邊值問題(1)至少存在2個正解u*和v*,使得0≤‖u*‖≤r,0≤‖v*‖≤r,其中:

        證明 首先證明T:K→K是全連續(xù)的。

        因此,

        所以T(M)是一致有界的。

        下面來證明T(M)是等度連續(xù)的。任取u∈M,0≤t1≤t2≤1,可得

        |(Tu)(t2)-(Tu)(t1)|≤

        這樣T(M)是等度連續(xù)的,應用Arzel-Ascoli定理,可得T是全連續(xù)的。

        因為

        u1(t)=(Tu0)(t)=

        注:定理1中的u*,v*有可能重合,在這種情況下問題(1)至少有1個正解。

        3 舉 例

        討論下面邊值問題的正解情況,

        利用定理1可知,上述邊值問題至少有2個正解。

        [1] AHMAD B, MATAR M, AGARWAL R. Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions[J]. Boundary Value Problem,2015,220:1-13.

        [2] ZHANG Lihong, AHMAD B, WANG Guotao,et al. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space[J]. Journal of Computational and Applied Mathematics,2013,240:51-56.

        [3] ALBERTO C, HAMDI Z. Nonlinear fractional differential equations with integral boundary value conditions[J]. Applied Mathematics and Computation,2014,228:251-257.

        [4] VONG S. Positive solutions of singlular fractional differential equations with integral boundary conditions[J]. Mathematical and Computer Modelling,2013,57: 1053-1059.

        [5] SOTIRIS K N, SINA E. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266: 235-243.

        [6] KOU Chunhai, ZHOU Huacheng, YAN Ye. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis[J]. Nonlinear Analysis,2011,74: 5975-5986.

        [7] CUI Yujun. Uniqueness of solution for boundary value problems for fractional differential equations[J]. Applied Mathematics Letters,2016,51:48-54.

        [8] ZHANG Lihong,AHMAD B, WANG Guotao. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative[J]. Applied Mathematics Letters,2014,31:1-6.

        [9] LI Yunhong, LI Guogang. Positive solutions ofp-Laplacian fractional differential equations with integral boundary value conditions[J]. Journal of Nonlinear Science and Applications,2016,9(3):717-726.

        [10]ZHAI Chengbo, XU Li. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J]. Communications in Nonlinear Science Numerical Simulation,2014,19:2820-2827.

        [11] XU Xiaojie,F(xiàn)EI Xiangli. The positive properties of Green’s function for three point boundary value problems of nonlinear fractional differential equations and its applications[J]. Communications in Nonlinear Science Numerical Simulation,2012,17(4):1555-1565.

        [12] NTOUYAS S, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266:235-243.

        [13] 李云紅,李艷. 帶p-Laplacian算子的分數(shù)階微分方程的正解[J].河北科技大學學報,2015,36(6):593-597. LI Yunhong,LI Yan. A positive solution for the fractional differential equation with ap-Laplacian operator[J]. Journal of Hebei University of Science and Technology, 2015,36(6):593-597.

        [14] ZHANG Xinguang, LIU Lisan, WIWATANAPATAPHEE B, et al. The eigenvalue for a class of singularp-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition[J]. Applied Mathematics and Computation,2014,235:412-422.

        [15]AMKO S G,KILBAS A A,MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Switzerland: Gordon and Breach,1993.

        [16]PODLUNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York: Academic Press,1999.

        Existence of positive solutions to a class of Caputo fractional differential equations

        LI Yunhong1, LYU Wenjing2

        (1.School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China;2. Office of General Services, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

        In order to investigate the existence of positive solutions to a class of Caputo fractional differential equation boundary value problems withp-Laplacian operator, the Green’s function is obtained by calculus, and its properties are discussed. By using monotone iterative technique, at least two positive solutions are obtained for the boundary value problems. An example is given to illustrate the existence of positive solutions to this kind of equation boundary value problems.

        ordinary differential equation; Caputo fractional derivative;positive solution;monotone iteratiation;boundary value problems

        1008-1542(2016)06-0575-06

        10.7535/hbkd.2016yx06008

        2016-05-23;

        2016-10-19;責任編輯:張 軍

        國家自然科學基金(11401159);河北省自然科學基金(A2014208158)

        李云紅(1978—),女,河北鹿泉人,講師,碩士,主要從事微分方程方面的研究。

        E-mail:mathhong@126.com

        O175.1 MSC(2010)主題分類:34B15

        A

        李云紅,呂文靜.一類Caputo分數(shù)階微分方程正解的存在性[J].河北科技大學學報,2016,37(6):575-580. LI Yunhong,LYU Wenjing. Existence of positive solutions to a class of Caputo fractional differential equations[J].Journal of Hebei University of Science and Technology,2016,37(6):575-580.

        猜你喜歡
        邊值問題石家莊算子
        非線性n 階m 點邊值問題正解的存在性
        石家莊曉進機械制造科技有限公司
        肉類研究(2022年7期)2022-08-05 04:47:20
        擬微分算子在Hp(ω)上的有界性
        帶有積分邊界條件的奇異攝動邊值問題的漸近解
        各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應用
        一類Markov模算子半群與相應的算子值Dirichlet型刻畫
        Roper-Suffridge延拓算子與Loewner鏈
        人民幣緣何誕生在石家莊
        非線性m點邊值問題的多重正解
        一類非線性向量微分方程無窮邊值問題的奇攝動
        无遮挡又爽又刺激的视频| 丁香婷婷六月综合缴清| 国产精品蝌蚪九色av综合网| 凹凸在线无码免费视频| 国产在线丝袜精品一区免费| 国产伪娘人妖在线观看| 按摩师玩弄少妇到高潮av| 日本大肚子孕妇交xxx| 久久天天躁狠狠躁夜夜96流白浆| 国产精品va在线观看一| 午夜影院免费观看小视频| 性刺激的大陆三级视频| 国产精品乱码在线观看| 国产香蕉尹人在线视频你懂的| 日韩女同在线免费观看| 人妻体内射精一区二区三四| 激情另类小说区图片区视频区| 国产精品麻豆成人av| 国产精品亚洲二区在线看| 亚洲熟妇av日韩熟妇在线| 国产剧情福利AV一区二区| 激情网色图区蜜桃av| 欧美午夜理伦三级在线观看| 白又丰满大屁股bbbbb| 亚洲成人av一区二区三区| 国产韩国一区二区三区| 亚洲av无码av在线播放| 色吧综合网| 日韩精品中文字幕免费人妻| 亚洲国产精品久久久av| 久久精品人人爽人人爽| 国产精品久久久久免费看| 久久亚洲中文字幕精品二区| 狠狠躁天天躁中文字幕| 免费的一级毛片| 国产精品久久国产精麻豆| 加勒比一本heyzo高清视频| 亚洲a∨无码一区二区| 国产精品麻豆成人av| 精品天堂色吊丝一区二区| 中文字幕人妻丝袜乱一区三区|