亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性

        2016-12-19 02:36:27江衛(wèi)華李慶敏周彩蓮
        關(guān)鍵詞:邊值問(wèn)題不動(dòng)點(diǎn)微積分

        江衛(wèi)華,李慶敏,周彩蓮

        (河北科技大學(xué)理學(xué)院,河北石家莊 050018)

        ?

        分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性

        江衛(wèi)華,李慶敏,周彩蓮

        (河北科技大學(xué)理學(xué)院,河北石家莊 050018)

        為了解決對(duì)半無(wú)窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)且?guī)в蟹e分邊界條件的分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題,具體研究此類(lèi)微分方程邊值問(wèn)題解的存在性。通過(guò)定義合適的Banach空間、范數(shù)以及算子,合理運(yùn)用分?jǐn)?shù)階微積分的性質(zhì),分別應(yīng)用壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理證明了分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性,最后通過(guò)實(shí)例驗(yàn)證了此類(lèi)方程邊值問(wèn)題解的存在性。

        常微分方程解析理論;脈沖;壓縮映像原理;Krasnoselskii不動(dòng)點(diǎn)定理;邊值問(wèn)題;半無(wú)窮區(qū)間

        1 問(wèn)題提出

        分?jǐn)?shù)階微積分是對(duì)整數(shù)階微積分理論的拓展,它可以更好地描述某些客觀事物或規(guī)律,應(yīng)用廣泛,比如在處理光學(xué)和熱學(xué)系統(tǒng)、流變學(xué)及材料和力學(xué)系統(tǒng)、信號(hào)處理和系統(tǒng)辨識(shí)、控制等問(wèn)題的過(guò)程中,經(jīng)常會(huì)用到分?jǐn)?shù)階微積分的理論。所以分?jǐn)?shù)階微積分理論受到了人們?cè)絹?lái)越多的關(guān)注[1-12]。此外,脈沖微分方程也有廣泛的應(yīng)用,許多學(xué)者對(duì)脈沖微分方程的理論及其應(yīng)用[13-24]進(jìn)行了深入的研究。

        文獻(xiàn)[2]中GUO應(yīng)用Banach空間中的錐拉伸與壓縮不動(dòng)點(diǎn)定理研究了半無(wú)窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)的二階奇異脈沖微分方程邊值問(wèn)題:

        解的存在性。

        文獻(xiàn)[4]中AHMAD等根據(jù)壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理研究了有限區(qū)間上具有有限個(gè)脈沖點(diǎn)的非線性分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題:

        解的存在性。

        受上述文獻(xiàn)的啟發(fā),本文將應(yīng)用壓縮映像原理和Krasnoselskii不動(dòng)點(diǎn)定理研究半無(wú)窮區(qū)間上具有可數(shù)個(gè)脈沖點(diǎn)的分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題:

        2 預(yù)備知識(shí)

        定義1u:J→R是連續(xù)函數(shù),u的α階Riemann-Liuville積分的定義式為

        定義2u:J→R是連續(xù)函數(shù),u的α階Riemann-Liuville導(dǎo)數(shù)的定義式為

        定理1 (壓縮映像原理)

        設(shè)X是完備的度量空間,T是X上的壓縮映像,那么T有且僅有1個(gè)不動(dòng)點(diǎn)。

        定理2 (Krasnoselskii不動(dòng)點(diǎn)定理)

        設(shè)M是Banach空間X中的一個(gè)非空凸閉子集。假設(shè)A,B是2個(gè)算子,滿足:

        a) 對(duì)任意的x,y∈M,有Ax+By∈M;

        b)A是全連續(xù)映射;

        c)B是一個(gè)壓縮映射,

        則至少存在一個(gè)z∈M,使得z=Az+Bz。

        引理4 對(duì)于給定的函數(shù)y∈C(Jk),k=1,2,…,u(t)是分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題:

        的解當(dāng)且僅當(dāng)u(t)滿足

        證明 設(shè)u(t)是分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題(2)的解,由引理2可得當(dāng)t∈[0,t1]時(shí),

        同理由u(t)的連續(xù)性可知b=0,所以t∈Jk=(tk-1,tk]時(shí),

        因此,對(duì)?t∈J有

        (4)

        3 主要結(jié)果

        H2)存在常數(shù)γk∈J,使得對(duì)?t∈J,u,v∈R,有

        |Ik(u)-Ik(v)|≤γk‖u-v‖,

        H4)存在函數(shù)F∈C[R,J],常數(shù)ηk∈J,使得對(duì)?t∈J,u∈R,有

        |Ik(u)|≤ηkF(u),

        證明 定義算子T:PC1[J,R]→PC1[J,R]如下:

        所以

        對(duì)?u,v∈PC1[J,R],?t∈J有

        所以‖Tu-Tv‖S≤ρ‖u-v‖。

        證明 定義算子如下:

        所以

        由條件H3)—條件H4)可知:對(duì)?r>0,

        |Ik(u)|≤ηkF(u)≤Nηk,k=1,2,…,

        對(duì)?u,v∈Br,?t∈J,

        所以‖Au+Bv‖S≤r。

        下證Bu為壓縮算子。對(duì)?u,v∈Br,?t∈J有

        對(duì)?t∈J,

        下證算子A的緊性。取un∈Br={u∈PC1[J,R]:‖u‖≤r}。對(duì)?t∈J,

        定義函數(shù)

        對(duì)?t1,t2∈Jk,當(dāng)t2>t1時(shí),有

        由積分的絕對(duì)連續(xù)性可知:存在δ3,使得|t2-t1|<δ3時(shí),

        由一元連續(xù)函數(shù)的一致連續(xù)性可知:存在δ4,使得|t2-t1|<δ4時(shí),

        對(duì)?ξ

        對(duì)?ξi0時(shí),

        4 舉 例

        例1 考慮半無(wú)窮區(qū)間上分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題

        例2 考慮半無(wú)窮區(qū)間上分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題

        因此,根據(jù)定理4可得該分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題至少有1個(gè)解。

        [1] GUO Dajun. Multiple positive solutions for first order impulsive singular integro-differential equations on the half line[J]. Acta Mathematica Scientia, 2012, 32B(6): 2176-2190.

        [2] GUO Dajun. Existence of two positive solutions for a class of second order impulsive singular integro-differential equations on the half line in banach spaces[J]. Boundary Value Problems, 2016(1):1-31.

        [3] AHMAD B, SIVASUNDARAM S. Existence of solutions for impulsive integral boundary value problems of fractional order[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(1):134-141.

        [4] AHMAD B, SIVASUNDARAM S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(3): 251-258.

        [5] 江衛(wèi)華, 李海明. 分?jǐn)?shù)階脈沖微分方程組邊值問(wèn)題解的存在性[J]. 河北科技大學(xué)學(xué)報(bào), 2015, 36(2): 134-143. JIANG Weihua, LI Haiming. Existence of solutions for boundary value problem of fractional order impulsive differential equations systems[J]. Journal of Hebei University of Science and Technology, 2015, 36(2): 134-143.

        [6] REHMAN M, ELOE P. Existence and uniqueness of solutions for impulsive fractional differential equactions[J]. Applied Mathematics & Computation, 2013, 224(1): 422-431.

        [7] 許曉婕, 孫新國(guó), 呂煒. 非線性分?jǐn)?shù)階微分方程邊值問(wèn)題正解的存在性[J]. 數(shù)學(xué)物理學(xué)報(bào), 2011, 31A(2): 401-409. XU Xiaojie, SUN Xinguo, LYU Wei. Existence of positive solutions for boundary value problems with nonlinear fractional differential equations[J]. Acta Mathematica Scientia, 2011, 31A(2): 401-409.

        [8] LIU Zhenhai, LI Xiuwen. Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equactions[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(6): 1362-1373.

        [9] WANG Jinrong, ZHOU Yong, FECKAN M. On recent developments in the theory of boundary value problems for impulsive fractional differential equactions[J]. Computers & Mathematics with Applications, 2012, 64(10): 3008-3020.

        [10] CAO Jianxin, CHEN Haibo. Impulsive fractional differential equactions with nonlinear boundary conditions[J]. Mathematical and Computer Moelling, 2012, 55(3/4): 303-311.

        [11] GUO Tianliang,WEI Jiang. Impulsive problems for fractional differential equactions with boundary value conditions[J]. Computers & Mathematics with Applications, 2012, 64(10): 3281-3291.

        [12] BAI Zhanbing, LYU Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505.

        [13]張愛(ài)華, 胡衛(wèi)敏. 非線性分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題的解[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2014, 44(6): 233-240. ZHANG Aihua, HU Weimin. Solutions for a boundary value problem of nonlinear impulsive fractional differential equations[J]. Mathematics in Practice and Theory, 2014, 44(6): 233-240.

        [14]董雪. 非線性分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性[J]. 山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 29(4): 70-74. DONG Xue. Existence of solutions for impulsive nonlinear fractional differential equations boundary value problems[J]. Journal of Shandong University of Technology(Natural Science Edition), 2015, 29(4): 70-74.

        [15]GUO Dajun. Existence of solutions of boundary value problem for nonlinear second order impulsive differential equations in banach space[J]. Journal of Mathematical Analysis and Applications, 1994, 181(2):407-421.

        [16]杜珺. 二階脈沖微分方程邊值問(wèn)題解的存在性[J]. 生物數(shù)學(xué)學(xué)報(bào), 2012, 27(2): 311-321. DU Jun. The existence result of solution to boundary value problem of a class of second-order impulsive differential equation[J]. Journal of Biomathematics, 2012, 27(2): 311-321.

        [17] HERRERO M A, VAZQUEZ J L. On the propagation properties of a nonlinear degenerate parabolic equation[J]. Communications in Partial Differential Equations, 1982, 7(12): 1381-1402.

        [18]ESTEBAN J R,VAZQUEZ J L. On the equation of the turbulent filtration in one-dimensional porous media[J]. Nonlinear Analysis, 1986, 10(11):1305-1325.

        [19] KAUL S, LAKSHMIKANTHAM V, LEELA S. Extremal solutions comparison principle and stability criteria for impulsive differential equations with variable times[J]. Nonlinear Analysis Theory Methods & Applications, 1994, 22(10): 1263-1270.

        [20] GUO Dajun. A class of second order impulsive integro-differential equations on unbounded domain in a banach space[J]. Applied Mathematics & Computation, 2002, 125(1): 59-77.

        [21]YAN Baoqiang. Boundary value problems on the half -line with impulses and infinite delay[J]. Journal of Mathematical Analysis & Applications, 2001, 259(1): 94-114.

        [22] LIANG Sihua, ZHANG Jihui. The existence of countably many positive solutions for some nonlinear singular there-point impulsive boundary value problems[J]. Nonlinear Analysis, 2009, 71(10): 4588-4597.

        [23] GUO Dajun. Variational approach to a class of impulsive differential equations[J]. Boundary Value Problems, 2014,2014(1):1-10.

        [24] ZHAO Yulin, CHEN Haibo. Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations[J]. Applied Mathematics & Computation, 2008, 206(206): 925-931.

        Existence of solutions to boundary value problem of fractional differential equations with impulsive

        JIANG Weihua, LI Qingmin, ZHOU Cailian

        (School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

        In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.

        analytic theory of ordinary differential equation; impulse; contraction mapping theorem; Krasnoselskii’s fixed point theorem; boundary value problem; the half line

        1008-1542(2016)06-0562-13

        10.7535/hbkd.2016yx06007

        2016-03-24;

        2016-09-10;責(zé)任編輯:張 軍

        河北省自然科學(xué)基金(A2013208108)

        江衛(wèi)華(1964—),女,河北邯鄲人,教授,博士,主要從事應(yīng)用泛函分析、常微分方程邊值問(wèn)題方面的研究。

        E-mail:jianghua64@163.com

        O175.8 MSC(2010)主題分類(lèi):34B18

        A

        江衛(wèi)華,李慶敏,周彩蓮.分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性[J].河北科技大學(xué)學(xué)報(bào),2016,37(6):562-574. JIANG Weihua, LI Qingmin, ZHOU Cailian.Existence of solutions to boundary value problem of fractional differential equations with impulsive[J].Journal of Hebei University of Science and Technology,2016,37(6):562-574.

        猜你喜歡
        邊值問(wèn)題不動(dòng)點(diǎn)微積分
        非線性n 階m 點(diǎn)邊值問(wèn)題正解的存在性
        帶有積分邊界條件的奇異攝動(dòng)邊值問(wèn)題的漸近解
        集合與微積分基礎(chǔ)訓(xùn)練
        集合與微積分強(qiáng)化訓(xùn)練
        追根溯源 突出本質(zhì)——聚焦微積分創(chuàng)新題
        一類(lèi)抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        活用“不動(dòng)點(diǎn)”解決幾類(lèi)數(shù)學(xué)問(wèn)題
        TED演講:如何學(xué)習(xí)微積分(續(xù))
        不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對(duì)合
        非線性m點(diǎn)邊值問(wèn)題的多重正解
        亚洲第一区二区快射影院| 看黄a大片日本真人视频直播| 久久精品人人爽人人爽| 亚洲精品亚洲人成在线下载| 99精品又硬又爽又粗少妇毛片| 中文字幕人妻少妇伦伦| 国产精品多p对白交换绿帽| 国产精品无码精品久久久| av片在线观看免费| 亚洲av无码av在线播放| 亚洲AV无码日韩一区二区乱| 午夜免费观看国产视频| 人人摸人人搞人人透| 少妇高潮尖叫黑人激情在线| 在线观看网址你懂的| 日韩精品一区二区三区av| 人妻少妇精品视频一区二区三| 伊人久久大香线蕉午夜av| 亚洲精品无码久久久| 在线视频精品免费| 国产成人亚洲合色婷婷| 91盗摄偷拍一区二区三区| 全免费a级毛片免费看无码| 免费看泡妞视频app| 91呻吟丰满娇喘国产区| 国语对白三级在线观看| 亚洲av福利院在线观看| 女同性黄网aaaaa片| 色综合久久无码中文字幕app| 亚洲日产AV中文字幕无码偷拍| 放荡成熟人妻中文字幕| 欧美大胆性生话| 国产精品视频露脸| 豆国产95在线 | 亚洲| av天堂吧手机版在线观看| 大香焦av一区二区三区| 麻豆久久久9性大片| 女同性恋精品一区二区三区| 国产一品二品三区在线观看| 激烈的性高湖波多野结衣| 处破痛哭a√18成年片免费|