李留仁,趙艷艷
(1.西安石油大學 石油工程學院,陜西 西安 710065;2.中國石油化工股份有限公司 石油勘探開發(fā)研究院,北京 100083)
?
注水開發(fā)油田開發(fā)層系劃分與重組的定量原則和方法
李留仁1,趙艷艷2
(1.西安石油大學 石油工程學院,陜西 西安 710065;2.中國石油化工股份有限公司 石油勘探開發(fā)研究院,北京 100083)
多層油藏籠統(tǒng)注水、合采時,由于對層間矛盾的本質(zhì)認識不清,開發(fā)層系劃分與重組時,常遵循幾個大的定性原則,沒有具體的定量原則和方法。從兩相滲流理論出發(fā),用數(shù)值方法求解,從理論上揭示了層間矛盾的本質(zhì)是各層水驅(qū)油推進速度的差異,而不是貢獻大小的不同,指出克服層間矛盾的根本做法是讓一套開發(fā)層系內(nèi)各層水驅(qū)油均勻推進,進而提出了開發(fā)層系劃分與重組的完整定量原則和方法,同時結(jié)合油田生產(chǎn)實際,從控制見水時間差異入手,給出了簡單、易操作的開發(fā)層系劃分與重組的定量原則和方法,并在商河油田得到了較好的應用。
注水開發(fā);層間矛盾;開發(fā)層系劃分與重組;定量原則與方法
李留仁,趙艷艷.注水開發(fā)油田開發(fā)層系劃分與重組的定量原則和方法[J].西安石油大學學報(自然科學版),2016,31(6):60-65,123.
LI Liuren,ZHAO Yanyan.Quantitative rules and way for division and recombination of development layer systems in water flooding oilfield[J].Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(6):60-65,123.
層狀砂巖油藏的縱向非均質(zhì)性造成的層間矛盾是影響采收率的重要因素,為了克服層間矛盾、提高采收率,常采用劃分開發(fā)層系與重組的方法對油藏進行多層系多套井網(wǎng)開發(fā)[1-5]。劃分開發(fā)層系與重組時常遵循幾大原則[6],這些大原則只是定性的語言描述,沒有量的概念,不好把握。因此,在油田開發(fā)實踐中,常常是不同油田根據(jù)各自地層劃分實際情況,采取分段組合開發(fā)層系的方法[7-14],這樣做的結(jié)果是層間矛盾仍然突出。文獻[15]給出了開發(fā)層系劃分的模糊聚類分析方法;文獻[16-18]引入綜合影響因子的概念,研究了開發(fā)層系劃分的組合界限,指出滲透率級差控制在10以內(nèi);文獻[19]研究了開發(fā)層系重組方案的灰色決策優(yōu)化法;文獻[20]研究了斷塊油田的開發(fā)層系綜合重組方法。本文從兩相滲流理論出發(fā),揭示了層間矛盾的本質(zhì),給出了更加簡便、容易操作的開發(fā)層系劃分與重組的定量原則和方法。
首先用1個1維的5層模型為例來研究層間矛盾的本質(zhì)。模型長度L=200 m,橫截面積A=100 m2,孔隙度φ=20%,滲透率K分別為10×10-3μm2、20×10-3μm2、 30×10-3μm2、 40×10-3μm2、 50×10-3μm2?;\統(tǒng)注水、合采時,每一層的驅(qū)替壓差相等,令驅(qū)動壓差p1-p2=20 MPa,相滲曲線相同。假定液體不可壓縮,任意時間t,對于某一層來說,根據(jù)多相滲流理論,其液產(chǎn)量(每一截面處的液流量相等)為
(1)
(2)
式中:Kro,Krw,Kroc分別為油相相對滲透率、水相相對滲透率、束縛水飽和度時油相相對滲透率,無因次;μo,μw分別為油相黏度、水相黏度,mPa·s;Lf(t)為t時刻水驅(qū)油前緣位置,m,見水以后Lf(t)=L。
在油水兩相區(qū)內(nèi),任意時刻t,含水飽和度Sw的
位置x由式
(3)
確定。聯(lián)立式(1)和式(3)可求出任意時間t每一層的液產(chǎn)量和含水飽和度分布。但直接求解比較繁瑣困難。本文采用時空離散的數(shù)值方法求解。具體步驟如下:
(1)因初始時刻整個儲層中都為束縛水,求得初始時刻的液產(chǎn)量
(4)
(2)將式(4)代入式(3)得第一個時間步時的含水飽和度分布;
(3)由式(1)求出第1個時間步時的液產(chǎn)量。
(4)由式(3)求出第2個時間步時的含水飽和度分布;
(5)再由式(1)可求出第2個時間步時的液產(chǎn)量。
這樣循環(huán)直到求出不同時刻每一層的液產(chǎn)量ql(t)和含水飽和度Sw(x,t)分布,進而求出每層的含水率fw(t)、油產(chǎn)量qo(t),以及總的液產(chǎn)量Ql(t)、油產(chǎn)量Qo(t)、含水率Fw(t)。
圖1 油水相對滲透率、含水率、含水率導數(shù)、1/(Kro/μo +Krw /μw)與含水飽和度關(guān)系曲線Fig.1 Vary curves of oil-water relative permeability,water cut,derivative of water cut to water saturation and 1/(Kro/μo +Krw /μw) with water saturation
由圖2可見:每一層的液產(chǎn)量和總的液產(chǎn)量都隨時間增加而增加,但見水前后增加快慢不同;每一層的油產(chǎn)量和總的油產(chǎn)量見水前都隨時間增加,但見水后都是隨時間遞減;見水后,每一層的含水率和總的含水率都隨時間增加;儲層滲透率越高,液產(chǎn)量越高,油產(chǎn)量越高,貢獻越大,但同時含水率也越高;不同儲層的液產(chǎn)量、油產(chǎn)量、含水率隨儲層滲透率的變化不是一種簡單的線性關(guān)系,滲透率的差別導致的液產(chǎn)量、油產(chǎn)量、含水率的差異要更大。從圖3可見,800 d時,滲透率為20×10-3μm2、30×10-3μm2、40×10-3μm2、50×10-3μm2的小層的液產(chǎn)量分別是滲透率為10×10-3μm2的小層的液產(chǎn)量的4.0、7.6、11.3、15.2倍。
圖2 各層的液產(chǎn)量、油產(chǎn)量、含水率及其總的變化曲線Fig.2Varying curves of liquid producing rate,oil producing rate,water cut of each layer and all layers with time
圖3 不同時刻各層的液產(chǎn)量隨滲透率的變化曲線Fig.3 Varying curves of liquid producing rate with permeability in different production time
不同層中含水飽和度前進的快慢也不一樣,滲透率越高,前進得越快(見圖4),驅(qū)替程度越高,驅(qū)替得越徹底,水淹越嚴重(見圖4)。
滲透率越高,見水越早,含水率越高,800 d時,滲透率為10×10-3μm2的小層還未見水,而其他4個層的含水率已超過90%(見圖2)。儲層見水時間T隨儲層滲透率的變化不是簡單的線性關(guān)系,而是隨儲層滲透率與孔隙度的比值呈良好的指數(shù)關(guān)系(見圖5):
(5)
儲層滲透率與孔隙度的比值越大,儲層見水時間越短,儲層滲透率與孔隙度的比值越小,儲層見水時間越長。
圖4 生產(chǎn)800 d時不同含水飽和度在不同層中所處的位置Fig.4 The position of several water saturation in each layer at the time of 800 days
圖5 見水時間隨儲層滲透率與孔隙度比值的變化曲線Fig.5 Variation of water breakthrough time with the ratio of permeability to porosity
由上述分析可見,縱向矛盾的本質(zhì)是水驅(qū)油前進速度的差異,而不是每個層的貢獻不同,造成這一差異的根本原因是儲層滲透率與孔隙度比值的差異、流體黏度的差異和相滲的差異。因為流體黏度差異不大,雖在分母上,但其值相對孔隙度比較大,因此黏度的影響較小。因為孔隙度在分母上,其值又比較小,所以儲層滲透率與孔隙度比值的差異影響比較大。儲層滲透率與孔隙度比值的物理意義是儲層的平均孔喉半徑的平方與迂曲度的比值,容易理解,儲層的平均孔喉半徑越小,迂曲度越大,水驅(qū)油時見水越慢,反之,見水越快。
若開發(fā)層系劃分與組合得合理,一套層系有一定的儲量、產(chǎn)能的同時,重要的是各小層的含水飽和度推進快慢應該相同,而不在于一套層系內(nèi)部各小層的貢獻大小。要做到各小層的含水飽和度推進一樣快,只要各小層的水驅(qū)油前緣推進一樣快即可。此時,雖然因各小層的相滲不一,各小層內(nèi)的驅(qū)替效果和含水率有差別,但不會差別很大,相對來說各小層的水淹程度和采出程度比較均勻。因為各小層內(nèi)的水驅(qū)油前緣運動一樣快,水驅(qū)油前緣之后的含水飽和度分布也不會有大的差別。
把式(1)代入式(3)得
(6)
由式(6)可看出,若要同一層系內(nèi)部各小層的水驅(qū)油前緣含水飽和度推進速度相同,只需要各個時刻各層的
計算值相等即可,此即為開發(fā)層系劃分與重組的一個完整的定量原則。
若每層的相對滲透率、流體黏度相等,要使同一層系內(nèi)部各小層的含水飽和度推進一樣快,可簡化為只需要各層的K/φ相同,這就得到開發(fā)層系劃分與重組的一個簡單定量原則。
為了驗證上述認識,用兩層模型進行計算,設(shè):第1層滲透率為30×10-3μm2,孔隙度為15%,第2層滲透率為40×10-3μm2,孔隙度為20%,于是2層的K/φ相等(都為200×10-3μm2)。圖6為2層的液產(chǎn)量、油產(chǎn)量、含水率的計算結(jié)果,從圖6可以看出,雖然因物性不同,2層的液產(chǎn)量和油產(chǎn)量不同,貢獻也不同,但2個層的見水時間相同,見水后含水上升規(guī)律相同,這表明水驅(qū)油推進速度一樣快,不存在層間矛盾。
圖6 2個層液產(chǎn)量、油產(chǎn)量、含水率變化曲線Fig.6 Varying curves of liquid producing rate,oil producing rate and water cut of two layers with production time
同理可以推導出,在徑向滲流情況下開發(fā)層系劃分與重組的完整定量原則為, 各個時刻各小層的
計算值相等。
若每層的相對滲透率、流體黏度都一樣,同樣可得到開發(fā)層系劃分與重組的簡單定量原則也是:開發(fā)層系內(nèi)各小層的K/φ相同?,F(xiàn)實可行的辦法仍是分層系開發(fā)。
實際上,要讓一套層系內(nèi)各層的K/φ都相等幾乎是不可能的,而且各層的相滲也有差異,這就意味著依靠劃分層系開發(fā)或重組開發(fā)層系完全解決縱向矛盾的不可能性。或者說油田要完全解決縱向矛盾,只有分小層,一層一層的開發(fā)。文東油田提出的一套井網(wǎng)、多套層系、強注強采、高速開采的逐層段上返開發(fā)的調(diào)整[18]就符合這一思路。但因經(jīng)濟效益的問題,大部分油田在目前條件下很難做到一層一層地分層開發(fā)。
從上述分析可知,從控制一套開發(fā)層系內(nèi)各層的見水時間的差異程度入手,讓同一層系內(nèi)各層的見水時間差異盡可能地小,可最大地減少層間矛盾。根據(jù)上述開發(fā)層系劃分與重組的簡單定量原則,結(jié)合油田生產(chǎn)實踐,讓見水最慢與最快的時間比為3,由見水時間隨儲層滲透率與孔隙度比值的指數(shù)關(guān)系知
(K/φ)max/(K/φ)min≤3.137。
(7)
這就是開發(fā)層系劃分與重組的簡單定量原則和方法,即根據(jù)小層的滲透率與孔隙度之比劃分與重組開發(fā)層系。若忽略孔隙度的差異,則回到滲透率級差控制到3以內(nèi)這個原則。
商河油田商三區(qū)S2下油藏自上而下劃分為4個油層組,共38個小層,油藏縱向非均質(zhì)嚴重,滲透率級差達到10.44(見表1),層間矛盾突出。用本文方法對其進行開發(fā)層系劃分與重組,滲透率與孔隙度比值最大值為3.7,最小值為0.36,此值的3.137倍為1.12,因此初步將滲透率與孔隙度比值小于1.12的小層重組為一套開發(fā)層系(儲量為525.55×104t),其他層的滲透率與孔隙度比值級差為3.11,小于3.137,因此其他層重組為另一套開發(fā)層系(儲量為198.45×104t)。這樣重組后,2套開發(fā)層系的滲透率與孔隙度比值級差都控制在3.137內(nèi),將會大大地減少縱向?qū)娱g矛盾。
表1 商三區(qū)S2下油田儲層參數(shù)Tab.1 Parameters of S2L Rreservoir in Shang 3 block of Shanghe oilfield
圖7 S2下儲層滲透率與孔隙度比值Fig.7 Ratio of permeability to prosity of S2L reservoir
(1)縱向矛盾的本質(zhì)是水驅(qū)油前進速度的差異,而不是每個層的貢獻差異,造成這一差異的根本原因是儲層的縱向非均質(zhì)性。
(2)本文從理論上給出了開發(fā)層系劃分與重組的完整定量原則和簡單定量原則。
(3)從控制一套開發(fā)層系內(nèi)各層的見水時間的差異程度入手,讓見水最慢的與最快的時間比為3,控制儲層滲透率與孔隙度比值的級差在3.137以內(nèi)是比較可行的開發(fā)層系組合方法。這一方法可實現(xiàn)開發(fā)層系劃分與重組的定量化,簡單、易操作。
(4)完全解決縱向矛盾的最好方法是,分小層一層一層地開發(fā)。
[1] 楊通佑,羅迪強,李福塏.我國注水砂巖油田開發(fā)層系合理劃分問題的探討[J].石油學報,1982,8(3):31-40. YANG Tongyou,LUO Diqiang,LI Fukai.On the rational segregation of pay beds in the development of sandstone oilfield by waterflood[J].Acta Petrolei Sinca,1982,8(3):31-40.
[2] 趙守元,楊玉哲,紀德純.大慶油田高含水期層系調(diào)整的幾個問題[J].石油學報,1985,6(4):55-63. ZHAO Shouyuan,YANG Yuzhe,JI Dechun.Adjustment of productive series in Daqing oilfield during period of high watercut[J].Acta Petrolei Sinca,1985,6(4):55-63.
[3] 劉丁曾,羅昌燕.關(guān)于儲層評價和層系的細分問題[J].大慶石油地質(zhì)與開發(fā),1989,8(3):65-72. LIU Dingzeng,LUO Changyan.Some ideas on oil reservoir evaluation and finer zonation[J].Petroleum Geology & Oilfield Development in Daqing,1989,8(3):65-72.
[4] 劉春發(fā).砂巖油田注水開發(fā)中的層系井網(wǎng)問題[J].石油勘探與開發(fā),1983,10(4):65-68. LIU Chunfa.A discussion on the grouping of sand members and well patterns in a water flooding sandstone oilfield[J].Petroleum Exploration and Development,1983,10(4):65-68.
[5] 于洪文.大慶油田開發(fā)層系的演變[J].石油勘探與開發(fā),1988,15(6):51-58. YU Hongwen.The variation in the layer assemblage as the target projects in the development of Daqing oilfield[J].Petroleum Exploration and Development,1988,15(6):51-58.
[6] 姜漢橋,姚軍,姜瑞忠.油藏工程原理與方法[M].北京:石油工業(yè)出版社,2003:121-122. JIANG Hanqiao,YAO Jun,JIANG Ruizhong.The Principles and Methods of Reservoir Engineering[M].Beijing:Petroleum Industry Press,2003:121-122.
[7] 張哲,張暉,史跡忠.深層巨厚礫巖稠油油藏劃分開發(fā)層系的隔夾層研究[J].特種油氣藏,1999,6(1):23-26. ZHANG Zhe,ZHANG Hui,SHI Jizhong.Study of interbeds for dividing development layers in very thick gravel deep heavy oil reservoirs[J].Specil Oil & Gas Reservoirs,1999,6(1):23-26.
[8] 張煜,王國壯,張進平,等.層狀斷塊油藏特高含水期細分開發(fā)技術(shù)[J].石油學報,2002,23(1):56-60. ZHANG Yu,WANG Guozhuang,ZHANG Jinping,et al.The technology of subdivision development in the stratified and fault-block reservoir in the period of super-high water cut[J].Acta Petrolei Sinca,2002,23(1):56-60.
[9] 王書寶,牛栓文.東辛油田多油層復雜斷塊油藏高含水后期細分層系研究[J].石油勘探與開發(fā),2004,31(3):116-118,139. WANG Shubao,NIU Shuanwen.Layer subdivision in the late high water cut stage in the complex fault block reservoirs,Dongxin Oilfield[J].Petroleum Exploration and Development,2004,31(3):116-118,139.
[10] 付百舟,孔祥亭,陳志敏,等.喇薩杏油田聚合物驅(qū)層系組合原則研究[J].大慶石油地質(zhì)與開發(fā),2002,21(6):51-54. FU Baizhou,KONG Xiangting,CHEN Zhimin,et al.Principles for combining series of strata in polymer flooding in Lamadian-Saertu-Xingshugang Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2002,21(6):51-54.
[11] 韓紅霞,石明杰,邵運堂,等.臨13沙二下南塊特高含水期細分層系開發(fā)技術(shù)[J].斷塊油氣田,2005,12(1):60-61. HAN Hongxia,SHI Mingjie,SHAO Yuntang,et al.The technology of subdivision development in the stratified and fault-block reservoir of the south block of Lin13 Es2X in the period of super-high water cut[J].Fault-Block Oil & Gas Field,2005,12(1):60-61.
[12] 王延杰,張紅梅,江曉暉,等.多層系油田開發(fā)層系劃分和井網(wǎng)井距研究:以陸梁油田陸9井區(qū)白堊系-侏羅系油藏為例[J].新疆石油地質(zhì),2002,23(1):40-43. WANG Yanjie,ZHANG Hongmei,JIANG Xiaohui,et al.The development sequence classification and well patterns spacing study for multizone reservoir:an example from Cretaceous and Jurassic reservoirs in Lu9 well block of Luliang Oilfield[J].Xinjiang Petroleum Geology,2002,23(1):40-43.
[13] 王群超,王霞,任繼波,等。阿南低滲透砂巖油藏細分開發(fā)層系技術(shù)[J].河南油氣,2001,15(6):31-33. WANG Qunchao,WANG Xia,REN Jibo,et al.Subdivision of layer series of development in Arnan low permeability sandstone reservoir[J].Henan Petroleum,2001,15(6):31-33.
[14] 陳付真,姜漢橋,李杰,等.細分層系技術(shù)在小斷塊油藏中的應用研究[J].石油天然氣學報,2009,31(3):284-287. CHEN Fuzhen,JIANG Hanqiao,LI Jie,et al.Application of fine strata classification in small fault block reservoirs[J].Journal of Oil and Gas Technology,2009,31(3):284-287.
[15] 陳明強,葛家理.油田開發(fā)層系劃分的模糊聚類分析方法[J].西南石油學院學報,1987,9(2):25-32. CHEN Mingqiang,GE Jiali.Analytic method of reservoir series division with fuzzy classification in oilfield development[J].Journal of Southwestern Petroleum Institute,1987,9(2):25-32.
[16] 陳民鋒,姜漢橋,曾玉祥.嚴重非均質(zhì)油藏開發(fā)層系重組滲透率級差界限研究[J].海上油氣,2007,19(5):319-322,326. CHEN Minfeng,JIANG Hanqiao,ZENG Yuxiang.A study on max/min permeability ratio boundary for reasonable developed-layer recombination in extremely heterogeneous reservoirs[J].China Offshore Oil and Gas,2007,19(5):319-322,326.[17] 周琦,姜漢橋,陳民鋒.嚴重非均質(zhì)油藏開發(fā)層系組合界限研究[J].西南石油大學學報(自然科學版),2008,30(4):93-97. ZHOU Qi,JIANG Hanqiao,CHEN Minfeng.Study on reasonable development layer combination limits of extremely heterogeneous reservoirs[J].Journal of Southwest Petroleum University(Science & Technology Edition),2008,30(4):93-97.
[18] 吳應川,黃新文,盧新莉,等.非均質(zhì)多油層油田逐層段上返注水開發(fā)[J].石油學報,1997,18(4):61-64. WU Yingchuan,HUANG Xinwen,LU Xinli,et al.A new thought of upward bed-by-bed waterflood development in Wendong heterogeneous stratified oil field[J].Acta Petrolei Sinca,1997,18(4):61-64.
[19] 李巧云,張吉群,鄧寶榮,等.高含水油田層系重組方案的灰色決策優(yōu)選法[J].石油勘探與開發(fā),2011,38(4):463-468. LI Qiaoyun,ZHANG Jiqun,DENG Baorong,et al.Grey decision-making theory in the optimization of strata series recombination programs of high water-cut oilfields[J].Petroleum Exploration and Development,2011,38(4):463-468.
[20] 張琦.東辛油田辛10斷塊層系重組[J].大慶石油地質(zhì)與開發(fā),2013,32(6):86-89. ZHANG Qi.Recombination of the strata series of fault block Xin 10 in Dongxin Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2013,32(6):86-89.
責任編輯:張新寶
Quantitative Rules and Way for Division and Recombination of Development Layer Systems in Water Flooding Oilfield
LI Liuren1,ZHAO Yanyan2
(1.College of Petroleum Engineering,Xi'an Shiyou University,Xi'an 710065,Shaanxi,China;2.Research Institute of Petroleum Exploration and Development,Sinopec,Beijing 100083,China)
Based on the theory of two-phase flow,it is theoretically revealed that the essence of the interlayer contradiction is the difference of the water driving velocity of different layers,but not the difference of the contribution of different layers.It is pointed out that the fundamental way to overcome the interlayer contradiction is to make the water driving fronts of a set of development layers uniformly advance.Then the quantitative rules and method for the division and reorganization of the development layers are put forward.According to the production practice in Shanghe oilfield,the quantitative principles and methods for the division and reorganization of development layer systems are given based on the control of the difference of the water breakthrough time of different development layer systems,they are simple and easy to operate,and a good application result is achieved in Shanghe oilfield.
water injection development;interlayer contradiction;division and reorganization of development layer system;quantitative rule and method
2016-03-10
國家重大專項14項目03課題“縫洞型油藏改善水驅(qū)提高采收率技術(shù)”(編號:2016ZX05014-003)
李留仁(1963-),男,副教授,博士,主要從事油氣滲流理論與油氣田開發(fā)研究。 E-mail:860916685@qq.com
10.3969/j.issn.1673-064X.2016.06.009
TE32+5
1673-064X(2016)06-0060-06
A