李萌, 黃忠華
(北京理工大學 機電學院, 北京 100081)
?
超寬帶引信取樣脈沖寬度與相關(guān)接收輸出信號幅度關(guān)系研究
李萌, 黃忠華
(北京理工大學 機電學院, 北京 100081)
超寬帶無線電引信接收機基于相關(guān)接收原理獲取預設炸高處的目標回波信號,回波信號與經(jīng)過延遲的取樣脈沖信號進行相關(guān)運算得到引信接收機輸出信號。優(yōu)化取樣脈沖寬度可以提高超寬帶引信探測靈敏度。根據(jù)超寬帶引信相關(guān)接收原理,建立超寬帶引信相關(guān)接收數(shù)學模型,分析取樣脈沖寬度與相關(guān)接收函數(shù)幅值的關(guān)系。發(fā)射脈沖寬度分別為50 ps、100 ps、200 ps時對引信相關(guān)接收輸出信號進行仿真,仿真結(jié)果表明取樣脈沖寬度與發(fā)射脈沖寬度相等時引信相關(guān)接收輸出信號幅度最大;通過實驗結(jié)果驗證了該理論模型的正確性。研究結(jié)果適用于超寬帶引信接收機優(yōu)化設計。
兵器科學與技術(shù); 引信; 超寬帶; 相關(guān)接收; 時域多普勒
超寬帶無線電引信接收機基于相關(guān)接收原理獲取預設炸高處的目標回波信號,回波信號與經(jīng)過延遲的取樣脈沖信號進行相關(guān)運算得到引信接收機輸出信號[1-4]。優(yōu)化取樣脈沖寬度可以提高超寬帶引信探測靈敏度,采用不同寬度的取樣脈沖信號時引信接收機輸出信號幅度發(fā)生改變,研究取樣脈沖寬度與引信相關(guān)接收輸出信號幅值的關(guān)系,對超寬帶無線電引信接收機優(yōu)化設計具有指導意義。國內(nèi)外對取樣脈沖寬度研究較少,文獻[4]針對指數(shù)型取樣積分電路通過電路模型研究取樣脈沖寬度對超寬帶引信回波信噪比影響,僅得到取樣脈沖不應過寬或過窄的結(jié)果。
本文通過分析超寬帶引信接收回波信號的過程建立超寬帶引信相關(guān)接收數(shù)學模型,通過建立的超寬帶引信相關(guān)接收函數(shù)仿真分析取樣脈沖寬度與引信輸出信號幅值的關(guān)系,完善超寬帶無線電引信的理論,為引信接收機優(yōu)化設計奠定理論基礎。
基于取樣積分[5-6]的超寬帶無線電引信相關(guān)接收原理如圖1所示,接收天線輸出信號作為引信相關(guān)接收機輸入信號,通過取樣脈沖控制的取樣門實現(xiàn)取樣過程,取樣后的信號經(jīng)過積分得到相關(guān)接收輸出信號。
圖1 相關(guān)接收原理框圖Fig.1 Block diagram of correlation receiving principle
由圖1可以看出,超寬帶引信相關(guān)接收過程實質(zhì)為取樣脈沖與相關(guān)接收輸入信號進行相關(guān)運算,表示為
(1)
式中:r(t)為取樣脈沖;gt(t)為相關(guān)接收輸入脈沖序列。
將取樣脈沖數(shù)量和寬度、脈沖重復周期、引信對地速度等參數(shù)代入引信相關(guān)接收表達式中建立完整的超寬帶引信相關(guān)接收數(shù)學模型。
超寬帶引信的取樣脈沖序列表示為
(2)
式中:T為發(fā)射脈沖的重復周期。
根據(jù)時域多普勒效應[7-10],在引信接近地面的運動過程中接收脈沖信號重復周期小于發(fā)射脈沖的重復周期,表示為
(3)
式中:Tt為回波信號重復周期;v為引信相對地面的運動速度;c為電磁波速度。
超寬帶引信接收的回波脈沖序列表示為
(4)
式中:g(t)為單個回波脈沖信號。
超寬帶引信取樣脈沖信號與回波脈沖信號之間的時移關(guān)系如圖2所示。
圖2 回波脈沖相對取樣脈沖的時移Fig.2 Time shifting of echo pulse relative to sampling pulse
根據(jù)圖2示意的時移關(guān)系可得
(N-1)T=(N-1)Tt+Tr+Te=
(5)
式中:N為取樣脈沖個數(shù);Tr為取樣脈沖寬度;Te為接收的回波脈沖信號寬度。
整理(5)式計算可得
N-1= c(Tr+Te)2vT
(6)
式中:〈·〉表示取整符號。
根據(jù)(6)式將(2)式和(4)式改寫為
(7)
(8)
根據(jù)圖3所示取樣脈沖與回波脈沖信號相關(guān)過程,回波脈沖通過取樣門經(jīng)過的區(qū)間為
(9)
圖3 取樣脈沖與回波脈沖相關(guān)過程Fig.3 Correlated process of sampling pulse and echo pulse
超寬帶引信在圖2所示的區(qū)間內(nèi)完成取樣脈沖與回波脈沖信號的相關(guān)運算,引信預定炸高?0表示為
(10)
式中:τ0為取樣脈沖信號的預定延遲時間。
圖2所示的相關(guān)接收區(qū)間表示為
[?0-Tv2 c(Tr+Te)2vT ,?0+Tv2 c(Tr+Te)2vT ]
.
(11)
(11)式表示的區(qū)間即為取樣脈沖與回波脈沖信號相關(guān)運算過程中引信距離地面的高度范圍,用引信距地面高度表示相關(guān)運算的取值范圍:
(12)
整理(12)式得
(13)
將(13)式代入(1)式得到引信相關(guān)接收函數(shù)表達式為
(14)
式中:?
∈[?0-N-12Tv,?0+N-12Tv],N-1= c(Tr+Te)2vT .
采用高斯2階導函數(shù)模擬超寬帶引信發(fā)射的窄脈沖信號[11],高斯2階導函數(shù)表達式為
(15)
式中:σ為高斯信號的均方差,控制了脈沖的有效寬度,也稱為脈寬因子,可表示為σ=kwp,wp為脈沖寬度,k為脈寬因子系數(shù)。脈沖寬度分別為50 ps、100 ps和200 ps的窄脈沖幅度歸一化時域波形如圖4所示。
圖4 超寬帶窄脈沖時域波形Fig.4 Time domain waveform of UWB narrow pulse
超寬帶引信發(fā)射信號經(jīng)過發(fā)射天線、地面散射和接收天線后得到的回波信號表示為
(16)
(17)
式中:MeNe表示分解的單元數(shù)量;Rq為引信到地面單元的距離。
為簡化計算,忽略天線在不同輻射方向上輻射波形的不同,彈體落角為90°,仿真得到引信發(fā)射信號脈寬為200 ps,引信對地速度200 m/s,距離地面6 m的回波信號如圖5所示。
圖5 地面目標引信回波信號Fig.5 UWB fuze echo signal from ground target
圖6 引信相關(guān)接收函數(shù)輸出信號Fig.6 UWB fuze output signal of correlation receiving function
取樣脈沖信號r(t)用高斯2階導函數(shù)表示,將(17)式代入(14)式得引信相關(guān)接收函數(shù)表達式為
(18)
式中:?
∈[?0-N-12Tv,?0+N-12Tv],N-1= c(Tr+Te)2vT .
引信發(fā)射信號為200 ps脈寬的高斯2階導函數(shù),取樣脈沖信號選用不同脈寬的高斯2階導函數(shù)時引信相關(guān)接收函數(shù)輸出信號如圖6所示。
取樣脈沖寬度與引信相關(guān)接收函數(shù)輸出信號幅度關(guān)系曲線如圖7所示。
圖7 取樣脈沖寬度與相關(guān)接收輸出信號幅度關(guān)系曲線Fig.7 Relation curve between sampling pulse width and amplitude of correlation received output signals
如圖6所示通過數(shù)值仿真得到超寬帶引信相關(guān)接收輸出信號,選取發(fā)射脈沖寬度分別為50 ps、100 ps、200 ps和300 ps時繪制取樣脈沖寬度從0到1 ns對應的超寬帶引信相關(guān)接收輸出信號幅度曲線如圖7所示,可以看出取樣脈沖寬度與發(fā)射脈沖寬度相等時引信相關(guān)接收輸出信號幅度取得最大值。
引信預設炸高6 m,采用推板法測試超寬帶引信相關(guān)接收機輸出信號,敷銅推板尺寸為76 cm×77 cm,選取不同脈寬的取樣脈沖進行實驗測試,取樣脈寬分別為489 ps、511 ps和555 ps引信相關(guān)接收機輸出信號如圖8所示。
如圖8所示取樣脈寬分別為489 ps、511 ps和555 ps引信相關(guān)接收機輸出信號幅度依次為4.7 V、7.5 V和5.5 V,引信發(fā)射脈沖寬度為502 ps,實驗結(jié)果驗證仿真方法正確性,表明取樣脈寬等于發(fā)射脈寬引信相關(guān)接收機輸出信號幅度較大。
圖8 引信相關(guān)接收機輸出信號Fig.8 Fuze correlation receiver output signals
根據(jù)超寬帶引信相關(guān)接收原理建立超寬帶引信相關(guān)接收數(shù)學模型,分析取樣脈沖寬度與相關(guān)接收函數(shù)幅值的關(guān)系。發(fā)射脈沖寬度分別為50 ps、100 ps、200 ps時對引信相關(guān)接收輸出信號進行仿真,利用高斯2階導函數(shù)模擬超寬帶引信發(fā)射窄脈沖信號,仿真結(jié)果表明取樣脈沖寬度與發(fā)射脈沖寬度相等時引信相關(guān)接收輸出信號幅度最大。通過實驗結(jié)果驗證理論模型正確性,研究結(jié)果適用于超寬帶引信接收機優(yōu)化設計。
References)
[1] Chen S, Zhao H C, Zhang S N. Study of ultra-wideband fuze signal processing method based on wavelet transform[J]. IET Radar, Sonar & Navigation, 2014, 8(3):167-172.
[2] Wang S G, Wei G H, Liu H B. Test research on UWB effects and mechanism of radio fuze[C]∥4th Asia-Pacific Conference on Environmental Electromagnetics. Dalian, China:IEEE, 2006.
[3] Li Z B. Implementation and development of compact UWB proximity fuze sensor system[C]∥2011 International Conference on Computational Problem-Solving. Chengdu, China:IEEE, 2011.
[4] 宋寶軍, 付紅衛(wèi), 王欣. 取樣脈沖寬度對沖激引信回波信噪比的影響[J]. 探測與控制學報, 2012, 34(5):11-15. SONG Bao-jun, FU Hong-wei, WANG Xin. Effect of sampling impulse width on impulse radar fuze echo SNR[J]. Journal of Detection and Control, 2012, 34(5):11-15.(in Chinese)
[5] Wu Y, Sepehri N. Interpolation of band limited signals from uniform or non-uniform integral samples[J]. Electronics Letters, 2011, 47(1):53-55.
[6] Holt A G J, Hill J J, Linggard R. Integral sampling[J]. Proceedings of the IEEE, 1973, 61(5):679-680.
[7] Ubolkosold P, Knedlik S, Loffeld O. A method to extend the estimation range of the existing time-domain Doppler centroid estimators[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):185-188.
[8] Wang Y Y, Fish P J. Arterial Doppler signal simulation by time domain processing[J]. European Journal of Ultrasound Engineering, 1996, 3(1):71-81.
[9] Barber W D, Eberhard J W, Karr S G. A new time domain technique for velocity measurements using Doppler ultrasound[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3):213-229.
[10] Vaitkus P J, Cobbold R C. A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging.
I. Theory [J]. IEEE Transactions on Ultrasonics, Ferroelec-trics, and Frequency Control, 1998, 45(4):939-229.
[11] YU X F, Gao M, Li W Z. Computer simulation design of a UWB proximity fuze impulser based on SRD[C]∥ 2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, CA, US:IEEE, 2009:141-143.
[12] 沈磊, 黃忠華. 超寬帶無線電引信回波信號建模與仿真[J]. 兵工學報, 2015, 36(5):795-800. SHEN Lei, HUANG Zhong-hua. Modeling and simulation of echo signal of UWB radio fuze[J]. Acta Armamentarii, 2015, 36(5):795-800.(in Chinese)
Research on Relation between Sampling Pulse Width and Output Signal Amplitude for Ultra-wideband Radio Fuze
LI Meng, HUANG Zhong-hua
(School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081,China)
Ultra-wide bandwidth (UWB) radio fuze receiver receives a target echo signal based on a correlation receiving principle. The signals from fuze receiver are obtained by the correlation calculation of echo signal and delayed sampling pulse signal. The sampling pulse width can be optimized to increase the detection sensitivity of UWB fuze. A correlation receiving mathematical model of UWB fuze is established based on the correlation receiving theory, and the relationship between the sampling pulse width and the amplitude correlation receiver function is analyzed. The received output signals are simulated when transmitted pulse width is 50 ps, 100 ps and 200 ps. The simulated results show that the fuze-received output signal has the maximum amplitude when the sampling pulse width is the same as the transmitted pulse width.
ordnance science and technology; fuze; ultra-wide bandwidth; correlation receiving; time-domain Doppler
2016-04-18
總裝備部預先研究項目(62201040601)
李萌(1986—),男,博士研究生。E-mail: phdmeng@bit.edu.cn; 黃忠華(1965—),男,副教授,博士生導師。E-mail:huangzh@bit.edu.cn
TJ43+4.1
A
1000-1093(2016)11-1989-06
10.3969/j.issn.1000-1093.2016.11.004