亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        軸承鋼GCr15高速沖擊絕熱剪切帶的研究

        2016-12-13 03:02:52趙鵬程俞樹榮李淑欣何燕妮
        材料科學(xué)與工藝 2016年6期

        趙鵬程,俞樹榮,李淑欣,何燕妮

        (蘭州理工大學(xué)石油化工學(xué)院,蘭州730050)

        軸承鋼GCr15高速沖擊絕熱剪切帶的研究

        趙鵬程,俞樹榮,李淑欣,何燕妮

        (蘭州理工大學(xué)石油化工學(xué)院,蘭州730050)

        為了加深對風(fēng)機軸承失效的進一步理解,從而提高其服役壽命,本文提出并研究了軸承鋼GCr15在動載荷下的失效模式,采用分離式霍普金森壓桿(SHPB)對軸承鋼GCr15進行動態(tài)沖擊試驗,借助光學(xué)顯微鏡、SEM和FIB/TEM研究動態(tài)載荷下絕熱剪切帶的形成機理和組織變化.研究表明:沖擊載荷下GCr15內(nèi)部產(chǎn)生致密的絕熱剪切帶,且裂紋伴隨著剪切帶產(chǎn)生.剪切帶中的晶粒被嚴(yán)重細化,由亞結(jié)構(gòu)和納米等軸晶組成.帶中心部位大量位錯缺陷的存在說明晶粒是在動態(tài)回復(fù)和不完全動態(tài)再結(jié)晶主導(dǎo)機制下逐步被細化的過程.細化的晶粒使得ASB內(nèi)顯微硬度值顯著升高.

        GCr15;軸承鋼;高速沖擊;絕熱剪切帶;納米晶;SHPB;動態(tài)再結(jié)晶;動態(tài)回復(fù)

        GCr15鋼是應(yīng)用最廣泛的高碳鉻軸承鋼之一.一般工況下的軸承經(jīng)歷的是接觸疲勞載荷.然而,風(fēng)機齒輪箱軸承運行中由巨風(fēng)和陣風(fēng)引起的瞬態(tài)載荷作用在軸承上,使其承受一定的沖擊載荷,這在海上風(fēng)電中尤為明顯[1].但在風(fēng)機齒輪箱軸承設(shè)計時并未對瞬態(tài)載荷給予重視,這是導(dǎo)致軸承壽命遠低于設(shè)計壽命的因素之一[2].由于在失效模式和機理方面認識的分歧,對風(fēng)機齒輪箱軸承的研究重點放在接觸疲勞[3-7],并沒有從動態(tài)沖擊載荷下的失效模式角度去考慮.

        在高應(yīng)變率動態(tài)載荷,如高速沖壓與成型、切削加工、爆炸等動態(tài)變形中材料內(nèi)部局部塑性失穩(wěn)而形成絕熱剪切帶(Adiabatic Shearing Band,ASB),這是材料動載荷下的失效模式[8-9].國內(nèi)外學(xué)者對不同材料高速沖擊載荷下的絕熱剪切帶進行了大量研究[10-14],但對GCr15鋼剪切帶的研究主要針對高速切削過程中形成的類似剪切帶的白亮組織[15-16],除YUE等對高應(yīng)變率下GCr15動態(tài)再結(jié)晶模型的研究外[17],對其高速沖擊下絕熱剪切帶的研究鮮有報道.

        本文將采用分離式霍普金森壓桿(SHPB)試驗裝置,對軸承鋼GCr15帽形試樣進行高速沖擊試驗,研究絕熱剪切帶的形成機理和晶粒細化的演變過程.

        1 實 驗

        實驗用材料為GCr15軸承鋼,其化學(xué)成分如表1所示.材料熱處理狀態(tài)為860°C下真空保溫2 h后油淬至室溫.隨后在160℃保溫2 h回火,熱處理后的組織為回火馬氏體組織,硬度約為680 HV.帽形試樣設(shè)計尺寸如圖1所示.在室溫下,以2.25 atm為子彈發(fā)射管氣壓對試樣進行高速沖擊試驗后,采用光學(xué)顯微鏡和SEM對斷裂后截面進行微觀組織分析.在 FEI Helios Nanolab 600i型雙束掃描電鏡下利用聚焦離子束(FIB)技術(shù)制備TEM樣品,在Tecnai G2 F20 S-TWIN型透射電鏡下觀察其組織形貌.利用HVT-1000A型顯微硬度計測量剪切帶附近的硬度變化.

        表1 GCr15化學(xué)成分Table 1 The chemical composition of GCr15

        圖1 帽形試樣設(shè)計尺寸Fig.1 Dimensions of the hat?shaped specimen

        2 結(jié)果與分析

        2.1 GCr15絕熱剪切帶SEM微觀組織形貌

        經(jīng)高速沖擊后,由于GCr15材料本身的高強度低塑性性能,沖擊后的試樣在帽與圓柱狀基體交界處斷裂成幾塊,如圖2所示.在帽形試樣的交界部位發(fā)現(xiàn)多條絕熱剪切帶,其在光學(xué)顯微鏡下呈現(xiàn)白亮帶,如圖3(a)所示.主裂紋在試樣的帽與底的交界處形成并將兩者分開,在其附近形成了如圖3(a)中所觀察到的白亮帶.裂紋在剪切帶和基體交界處形成,擴展至一定距離后轉(zhuǎn)向.其中另有一條很細的白亮帶沿著近似平行于主裂紋的方向形成(圖中虛線所示),并在其內(nèi)部觀察到擴展的裂紋,如圖3(a)左上角的局部放大圖所示.由此可見,剪切帶的產(chǎn)生伴隨著裂紋的產(chǎn)生.理論上,剪切帶的方向與沖擊方向成45°,但實際觀察到的剪切帶并不是嚴(yán)格的45°,而是有一定的偏轉(zhuǎn).這是由于帽形試樣交界部分所承受的力并非純剪切狀態(tài),而是剪切和壓縮的共同作用[11].

        圖2 試樣宏觀斷裂形貌Fig.2 Fracture morphology of the specimens after impact

        圖3(b)為高倍SEM下剪切帶的形貌,其位置如圖3(a)中紅色框所示,是由高度局部化剪切變形后的組織組成,寬度約為3.5 μm.在基體與剪切帶之間,是組織明顯被拉長但形貌比剪切帶中心組織疏松的過渡區(qū)(實線與虛線之間),該部分晶粒被拉長的同時發(fā)生了一定程度的旋轉(zhuǎn),如圖3(b)中橢圓框內(nèi)的組織,這是大剪切變形下剪切帶兩側(cè)組織共有的特征[18].

        圖3 帽形試樣中絕熱剪切帶顯微形貌Fig.3 ASB morphology of the hat?shaped specimen:(a)Morphology of the ASBs under optical microscope;(b)SEM Morphology of the ASBs

        2.2 GCr15絕熱剪切帶TEM組織特征

        由于剪切帶只在局部位置產(chǎn)生,常規(guī)制備TEM薄膜的方法很難定位到剪切帶的中心.因而采用FIB對剪切帶所在的部位進行準(zhǔn)確定位切割,如圖4(a)所示為TEM樣品所處位置.所切割區(qū)域包括剪切帶的過渡區(qū)和剪切帶本身.由圖4(b)可以看出,在過渡區(qū)和ASB帶內(nèi)是由亞微米和納米級的晶粒組成.

        圖4 FIB制備TEM試樣位置及TEM試樣全圖Fig.4 Location of TEM sample prepared by FIB and TEM sample:(a)Positioning of the TEM foil sample by FIB;(b)TEM sample covering the transition region and ASB region

        絕熱剪切帶內(nèi)組織的變化如圖5所示.圖5(a)為過渡區(qū)內(nèi)的組織,是由拉長的晶粒和大量位錯聚集組成.原有馬氏體形貌已觀察不到.晶粒沿著剪切方向被明顯拉長.在剪應(yīng)力作用下晶內(nèi)大量位錯產(chǎn)生并纏結(jié),聚集在晶粒內(nèi)的不同部位或晶界處.隨著變形的進一步增加,位錯聚集的程度不斷增加,在與相鄰晶粒處形成晶界,從而形成新的亞結(jié)構(gòu)或亞晶粒,因此,拉長的晶粒被細化.如圖5(a)中虛線內(nèi)被拉長的晶粒A,糾纏的位錯分別聚集在其上下部位,因其與周圍晶粒反差很大的襯度而呈現(xiàn)黑色.該晶粒被分割成3部分.相鄰三角形的晶粒B形成很直的晶界,但在右下角被正聚集的位錯分割(虛線框內(nèi)).圖5(b)ASB帶中,新形成的晶界清晰可見,晶粒尺寸相對減小,但被拉長的晶粒仍可見.同時這些被細化了的晶粒仍被正在形成的位錯纏結(jié)所分割,如新形成的晶粒C、D和E中又繼續(xù)被分割為亞晶粒.隨著變形的增大,剪切帶中心處的晶粒被進一步細化,見圖5(c),平均晶粒尺寸100 nm左右,并可見大量等軸晶及正在形成等軸晶的雛形.絕熱剪切帶中晶粒被細晶化的同時也產(chǎn)生了變形攣晶,盡管攣晶的數(shù)量極少,如圖5(d)所示.即使在剪切帶中心,仍可見大量的整齊堆垛的位錯纏結(jié),如圖5(d)右下角的放大圖.

        圖5 過渡區(qū)和ASB帶內(nèi)晶粒的細化過程Fig.5 The grain refinement process in the transition region and inside the ASBs:(a)The elongated subgrains are partitioned through entangled dislocation clusters;(b)Small grains are formed by splitting and rotating the elongated subgrains;(c)Prototype of equiaxed grains are formed;(d)Twins and dislocations in ASBs

        剪切帶內(nèi)細化的晶粒導(dǎo)致其硬度顯著增加,如圖6所示顯微硬度值的變化.由基體到絕熱剪切帶中心顯微硬度值呈現(xiàn)上升趨勢,并在ASB中心達到最大值880 HV,遠大于基體顯微硬度值680 HV.

        圖6 ASB附近區(qū)域顯微硬度Fig.6 Microhardness in the regions near ASB

        2.3 ASB形成機理

        剪切帶的形成常被分為相變帶和形變帶[19-20].前者是在高速沖擊下由于塑性變形釋放的熱量未能及時散發(fā),局部溫度急劇升高并超過材料熔點,從而發(fā)生相變,如鈦合金[21]和鋁合金[22]中發(fā)生的相變.而后者是由于在剪切帶形成過程中溫度達不到熔點或時間很短無法導(dǎo)致溶解(動態(tài)載荷沖擊時塑性變形在幾十到幾百微秒內(nèi)完成),在動態(tài)再結(jié)晶主導(dǎo)機制下形成剪切帶,這在許多材料中已被證實[9,14-22].在本文GCr15鋼的TEM觀察分析中,無論是在過渡區(qū)還是ASB帶中都沒有發(fā)現(xiàn)非晶態(tài)的新相,這說明無相變產(chǎn)生.

        由剪切帶晶粒細化過程可知,剪切帶外圍由拉長的晶粒和纏結(jié)的位錯組成,而在剪切帶內(nèi)部是由納米級亞結(jié)構(gòu)和等軸晶組成.在大的剪切變形下晶粒被拉長,在晶粒和晶界處產(chǎn)生大量纏結(jié)的位錯塞積,隨著變形的進一步發(fā)展,塞積的位錯在與之相鄰的晶粒處形成晶界,導(dǎo)致新的亞結(jié)構(gòu)和晶粒的形成.該過程被XUE[11]稱為位錯胞“雪崩”作用機制,并認為該作用的發(fā)生是剪切帶開始形成的條件.而DUAN和ZHANG[23]認為拉長的晶粒被碎化的過程是由于位錯攀移所致,該觀點得到了 HOSSEINI[16]的支持,與其在 AISI 52100高速切削過程中所觀察到的晶粒細化的方式一致.主導(dǎo)晶粒細化過程的內(nèi)在機制是動態(tài)回復(fù)和動態(tài)再結(jié)晶.當(dāng)剪切帶內(nèi)升溫達不到動態(tài)回復(fù)和再結(jié)晶溫度時,不發(fā)生該機制,觀察不到位錯和亞晶粒的產(chǎn)生[24].在GCr15剪切帶的演變過程中觀察到大量細小的羽毛狀的晶粒及彎曲的晶界(圖5(b)和(d)),這進一步說明了該過程中發(fā)生了動態(tài)回復(fù)和動態(tài)再結(jié)晶.完全再結(jié)晶所形成的晶粒不含缺陷,而GCr15剪切帶中心晶粒中觀察到大量的位錯缺陷.由此可知,該過程是由動態(tài)回復(fù)和不完全再結(jié)晶控制.研究結(jié)果表明[25]:在沖擊過程中,應(yīng)力下降時剪切帶開始形成.由于在整個剪切帶中變形程度和溫度升高不均勻,帶中心應(yīng)變集中最大,且溫度升高最快[26],因此,剪切帶優(yōu)先在中心形成,其晶粒細化的程度最嚴(yán)重.隨著應(yīng)力和溫度的降低,剪切帶中心以外的晶粒逐步被細化,形成過渡區(qū),是拉長的晶粒和亞晶粒共存的區(qū)域.

        3 結(jié) 論

        1)在高應(yīng)變率沖擊載荷作用下,帽型試樣中形成致密的絕熱剪切帶,并在剪切帶與基體交界處伴隨有裂紋的產(chǎn)生.絕熱剪切帶是GCr15動態(tài)沖擊載荷下的失效模式.

        2)在動態(tài)回復(fù)和不完全動態(tài)再結(jié)晶主導(dǎo)的機制下,絕熱剪切帶優(yōu)先在帶中心形成,由細化的亞結(jié)構(gòu)和納米等軸晶組成.隨著應(yīng)力和溫度的降低,剪切帶中心以外的晶粒逐步被細化.晶粒的細化使得由基體到剪切帶內(nèi)部顯微硬度值急劇增大,在帶中心達到最大值.

        [1]李俊峰.2014中國風(fēng)電發(fā)展報告[R].北京:中國環(huán)境科學(xué)出版社,2014.LI Junfeng.2014 China wind power review and outlook[R].Beijing:China Environmental Science Press,2014.

        [2]EVANS M H,RICHARDSON A D,WANG L,et al.Confirming subsurface initiation at non?metallic inclusions as one mechanism for white etching crack(WEC)formation[J].Tribology International,2014,75(5):87-97.

        [3]EVANS M H,RICHARDSON A D,WANG L,et al.Effect of hydrogen on butterfly and white etching crack(WEC)formation under rolling contact fatigue(RCF)[J].Wear,2013,306(1-2):226-241.

        [4]BRUCE T,ROUNDING E,LONG H,et al.Charac?terisation of white etching crack damage in wind tur?bine gearbox bearings[J].Wear,2015,s 338-339:164-177.

        [5]劉宏基,孫俊杰,江濤,等.一種超高碳鋼的滾動接觸疲勞研究[J].金屬學(xué)報,2014(12):1446-1452.LIU Hongji,SUN Junjie,JIANG Tao,et al.Rollingcontact fatigue behavior of an ultrahigh carbon steel[J].Acta Metallurgica Sinica,2014(12):1446-1452.

        [6]GOULD B,GRECO A.Theinfluence of sliding and contact severity on the generation of white etching cracks[J].Tribology Letters,2015,60(2):1-13.

        [7]鄭遜昭,夏玉洲.GCr15軸承鋼接觸疲勞亞表面孔洞的形成[J].材料科學(xué)與工藝,1996,4(3):29-33.ZHEN Xunzhao,XIA Yuzhou.Formation of subsurface hole in contact fatigue of GCr15 bearing steel[J].Materials Science&Technology,1996,4(3):29-33.

        [8]肖大武,李英雷,蔡靈倉.絕熱剪切研究進展[J].實驗力學(xué),2010,25(4):463-475.XIAO Dawu,LI Yinglei,CAI Lingcang.Research progress of adiabatic shear bands[J].Journal of Experimental Mechanics,2010,25(4):463-475.

        [9]WRIGHT T W.Physics andmathematics of adiabatic shear bands[J].Applied Mechanics Reviews,2003,56(3):1-3.

        [10]PEIRS J,TIRRY W,AMIN?AHMADI B,et al.Microstructure of adiabatic shear bands in Ti6Al4V[J].Materials Characterization,2013,75(1):79-92.

        [11]XUE Q,GRAY G T.Development of adiabatic shear bands in annealed 316L stainless steel:Part II.TEM studies ofthe evolution ofmicrostructure during deformation localization[J].Metallurgical&Materials Transactions A,2006,37(8):2447-2458.

        [12]ZOU D L,LUAN B F,LIU Q,et al.Formation and evolution of adiabatic shear bands in zirconium alloy impacted by split Hopkinson pressure bar[J].Journal of Nuclear Materials,2013,437(s 1-3):380-388.

        [13]張勝男,程興旺.AerMet100超高強度鋼的動態(tài)力學(xué)性能研究[J].材料工程,2015,43(12):24-30.ZHANG Shengnan, CHENG Xingwang.Dynamic mechanical properties of AerMet100 ultra?high strength steel[J].Journal of Materials Engineering,2015,43(12):24-30.

        [14]秦玉榮,蘇杰,楊卓越,等.三種超高強度鋼的動態(tài)力學(xué)性能[J].金屬熱處理,2014,39(12):83-86.QIN Yurong,SU Jie,YANG Zhuoyue,et al.Dynamic mechanical properties of three kindsofultrahigh strength steel[J].Heat Treament of Metals,2014;39(12):83-86.

        [15]HOSSEINI S B,BENO T,JOHANSSON S,et al.A Methodology for temperature correction when using two?color pyrometers ?compensation for surface topography and material[J].Experimental Mechanics, 2014,54(3):369-377.

        [16]HOSSEINI S B,KLEMENT U, YAO Y, etal.Formation mechanisms of white layers induced by hard turning of AISI 52100 steel[J].Acta Materialia,2015,89:258-267.

        [17]YUE C X,ZHANG L W,LIAO S L,et al.Research on the dynamic recrystallization behavior of GCr15 steel[J].Materials Science&Engineering A,2009,499(1):177-181.

        [18]POLYZOIS I,BASSIM N.An examination of the formation of adiabatic shear Bands in AISI 4340 steel through analysis of Grains and grain deformation[J].Materials Science& Engineering A,2015,631:18-26.

        [19]ROGERS H C.Adiabaticplastic deformation[J].Annual Review of Materials Research,1979,9(4):283-311.

        [20]XU Y,ZHANG J,BAI Y,et al.Shear localization in dynamic deformation:microstructural evolution[J].Metallurgical&Materials Transactions A,2008,39(4):811-843.

        [21]LEE D G,YOU H L,LEE S,et al.Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V havingequiaxed and bimodalmicrostructures[J].Metallurgical&Materials Transactions A,2004,35(10):3103-3112.

        [22]ZHU D,ZHENG Z,CHEN Q.Adiabatic shear failure of aluminum matrix composites and microstructural characteristics of transformed bands[J].Materials Science&Engineering A,2014,595(3):241-246.

        [23]DUAN C Z,ZHANG L C.Adiabatic shear banding in AISI1045 steelduring high speed machining:Mechanisms of microstructural evolution[J].Materials Science&Engineering A,2011,532(3):111-119.

        [24]GONG X, FAN JL, HUANG B Y, etal.Microstructure characteristics and a deformation mechanism of fine?grained tungsten heavy alloy under high strain rate compression[J].Materials Science&Engineering A,2010,527(s 29-30):7565-7570.

        [25]MARCHAND A,DUFFY J.An experimental study of the formation process of adiabatic shear bands in a structural steel[J].Journal of the Mechanics&Physics of Solids,1988,36(3):251-283.

        [26]LI N,WANG Y D,PENG R L,et al.Localized amorphism after high?strain?rate deformation in TWIP steel[J].Acta Materialia,2011,59(16):6369-6377.

        (編輯 呂雪梅)

        Study on the adiabatic shear band of GCr15 bearing steel under high?strain?rate impact

        ZHAO Pengcheng,YU Shurong,LI Shuxin,HE Yanni
        (School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,China)

        In order to further understand the failure of wind turbine bearing and improve their service life,the failure mode of bearing steel GCr15 under dynamic load is presented and studied in this paper.Dynamic impact tests were conducted in GCr15 by using the Split Hopkinson Pressure Bar.The formation mechanism of adiabatic shear bands(ASBs)and microstructural evolution were investigated by using optical microscope,SEM and FIB/TEM.The results show that compact ASBs were produced in GCr15 and cracks were formed along ASBs under impact loading.Grains were severely refined in ASBs and the ASBs were consisted of substructures and nano?sized equiaxed grains.The existence of massive dislocation defects in the subgrains in the core of the ASBs indicates that the grain refinement was dominated by dynamic recovery and incomplete dynamic recrystallization.The microhardness increased sharply at the core of ASBs due to the refined grains.

        GCr15;bearing steel;high strain rate impact;adiabatic shear band;nanocrystalline;SHPB;dynamic recrystallization;dynamic recovery

        TG113

        A

        1005-0299(2016)06-0034-05

        2016-01-19.

        國家自然科學(xué)基金資助項目(51275225).

        趙鵬程(1990—),男,碩士研究生;

        俞樹榮(1962—),男,教授,博士生導(dǎo)師;

        李淑欣(1975—),女,教授,博士生導(dǎo)師.

        趙鵬程,E?mail:zwyz1234@aliyun.com.

        10.11951/j.issn.1005-0299.20160606

        亚洲 欧美 综合 在线 精品 | 精品一区二区三区免费播放| 国产人妻无码一区二区三区免费 | 偷拍一区二区三区黄片| 91成人国产九色在线观看| 青青草大香蕉视频在线观看| 日日摸天天碰中文字幕你懂的| 精东天美麻豆果冻传媒mv| 国产av电影区二区三区曰曰骚网| 国产精品jizz观看| 如何看色黄视频中文字幕| 亚洲另类国产精品中文字幕| 羞羞色院99精品全部免| 国产精品天天看天天狠| 人妻少妇无码精品视频区| 中文字幕亚洲欧美日韩2019| 毛片免费在线观看网址| 国产免费无码9191精品| 在线观看国产av一区二区| 日本最新视频一区二区| 免费观看a级毛片| 国产精品_国产精品_k频道| 人妻少妇看a偷人无码精品| 久久频道毛片免费不卡片| 无码AV无码免费一区二区| av高清视频在线麻豆免费观看| 日本系列有码字幕中文字幕| 国产香港明星裸体xxxx视频| 国产午夜福利久久精品| 日日猛噜噜狠狠扒开双腿小说 | 日本口爆吞精在线视频| 久久精品人妻嫩草av蜜桃| 麻豆精品一区二区三区| 无码人妻一区二区三区免费看| 蜜桃无码一区二区三区| 国产精品麻豆最新AV| 久久久久久久久国内精品影视| 一区二区三区黄色一级片| 日韩av一区二区三区激情在线 | 亚洲黄色av一区二区三区| 成年美女黄的视频网站|