李翔 楊沅君 劉杰夫 董茜
糖尿病腎病治療的研究進(jìn)展*
李翔①楊沅君②劉杰夫③董茜①
糖尿病腎病是糖尿病最常見(jiàn)的并發(fā)癥,也是導(dǎo)致慢性腎衰竭的重要原因,但臨床的治療方法效果局限。目前的研究從抑制鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白2、蛋白激酶C、多元醇通路以及晚期糖化終末產(chǎn)物等方面,試圖干擾發(fā)病過(guò)程中的炎性反應(yīng)、氧化應(yīng)激、免疫應(yīng)答和組織纖維化來(lái)特異性治療。干細(xì)胞移植方法也為進(jìn)一步治療糖尿病腎病提供了新希望。
糖尿病腎??; 治療; 發(fā)病機(jī)制; 干細(xì)胞
First-author’s address:Department of Clinical Medicine,Xuzhou Medical University,Xuzhou 221000,China
隨著經(jīng)濟(jì)的發(fā)展、人們生活習(xí)慣的改變和生活節(jié)奏加快,糖尿?。╠iabetes mellitus,DM)的發(fā)病率日益上升。糖尿病腎病(diabetic nephropathy,DN)是DM最常見(jiàn)的微血管并發(fā)癥,也是導(dǎo)致終末期腎?。╡nd-stage renal disease,ESRD)的最常見(jiàn)原因,嚴(yán)重威脅人類(lèi)的健康[1]。然而,目前臨床上的治療方法有很大的局限性,不能有效地減緩病情的發(fā)展[2]。因此,有越來(lái)越多的學(xué)者致力于探索治療DN的新思路(見(jiàn)圖1)?,F(xiàn)就近年來(lái)治療DN的研究進(jìn)展予以綜述。
圖1 針對(duì)病因的可用治療靶點(diǎn)
1.1鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白2 在高糖或高胰島素環(huán)境下,腎近端小管表面表達(dá)的鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白2(sodium-glucose transporter 2,SGLT2)升高,導(dǎo)致其介導(dǎo)的對(duì)Na+和葡萄糖的重吸收程度升高[3],這提示使用SGLT2抑制劑,能夠阻斷鈉和糖的共轉(zhuǎn)運(yùn),改善患者的高血糖和高血壓水平。臨床試驗(yàn)聯(lián)合SGLT2抑制劑和RAAS阻斷表現(xiàn)出了極佳的心血管和腎臟保護(hù)效果[4-5],具體的作用機(jī)制不清,可能與血管緊張素轉(zhuǎn)換酶Ⅱ、血管緊張素1-7/1-9的升高[6]、以及球管反饋有關(guān),但文獻(xiàn)[7-8]研究表明其具有增加生殖系統(tǒng)感染和骨折的風(fēng)險(xiǎn)。
1.2蛋白激酶C 蛋白激酶C(protein kinase C,PKC)作為一細(xì)胞質(zhì)酶,廣泛存在于機(jī)體組織器官及細(xì)胞中。其活性包括調(diào)節(jié)血管內(nèi)皮細(xì)胞通透性和收縮性、ECM的合成、細(xì)胞增殖和調(diào)亡、血管新生、白細(xì)胞黏附、激活和抑制細(xì)胞因子和細(xì)胞生長(zhǎng)等。PKC有多種亞型,其中PKCα、β被認(rèn)為與DN的發(fā)病密切相關(guān)。PKCα與PICK2、β-arrestin2結(jié)合,使得nephrin蛋白的內(nèi)吞作用增強(qiáng),從而導(dǎo)致蛋白尿[9]。Meier等[10]發(fā)現(xiàn):PKCβ基因敲除的DN大鼠的蛋白尿并沒(méi)有明顯改善,但腎小球增生和細(xì)胞外基質(zhì)的產(chǎn)生減少。Menne等[11]綜合兩者的結(jié)果,同時(shí)抑制PKCα和PKCβ,較好的阻止了DN的發(fā)展。另外,近年來(lái)還發(fā)現(xiàn)PKCε、aPKC在腎臟保護(hù)中具有重要作用[12-13]。
1.3多元醇通路 多元醇通路由醛糖還原酶(aldose reductase,AR)及其受體NADPH和山梨糖醇脫氫酶及其受體NAD組成。腎小球細(xì)胞內(nèi)持續(xù)的高糖環(huán)境會(huì)導(dǎo)致AR活化。作為多元醇通路的限速酶,AR活化使葡萄糖大量轉(zhuǎn)化為山梨醇,引起細(xì)胞滲透性損傷[14]。另外,AR在調(diào)節(jié)多元醇通路的同時(shí)也在糖代謝、細(xì)胞外基質(zhì)病理變化中起重要作用。大量AR的激活會(huì)引起AGE、ROS以及TGF-β的增多[15],導(dǎo)致氧化應(yīng)激和組織纖維化。還有研究表明,AR可促進(jìn)PKC的激活,通過(guò)上述途徑加速腎小球的損傷。因此多元醇通路將是較好的治療DN的靶點(diǎn)。
1.4晚期糖化終末產(chǎn)物 高血糖和氧化應(yīng)激會(huì)促進(jìn)內(nèi)源性晚期糖基化終產(chǎn)物(advanced glycation end products,AGE)的產(chǎn)生[16]。AGE在組織中的積聚,會(huì)造成腎小球基底膜結(jié)構(gòu)改變、電荷屏障減弱、足細(xì)胞受損、細(xì)胞外基質(zhì)增生,并最終導(dǎo)致腎小球硬化和蛋白尿。而AGE除了自身的積聚會(huì)導(dǎo)致組織損傷外,與其受體AGER或Toll樣受體2和4結(jié)合后,還會(huì)激活一系列的胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路[17],釋放炎性因子并導(dǎo)致氧化應(yīng)激。體外實(shí)驗(yàn)將AGE與腎小管上皮細(xì)胞共同培養(yǎng),可見(jiàn)TGF-β、PAI-1、MCP-1的高表達(dá)[18]。在文獻(xiàn)[19-20]DN的動(dòng)物實(shí)驗(yàn)中,抑制AGE的形成或破壞其誘導(dǎo)的交聯(lián)反應(yīng)都具有腎臟保護(hù)作用。目前的研究致力于抑制內(nèi)源性AGE的生成,以及尋找新的AGER拮抗劑,用于治療糖尿病引起的微血管并發(fā)癥。新的高親和力DNA適體用于阻斷AGE生成的方法也展現(xiàn)出了良好的應(yīng)用前景[21]。
盡管不斷地研究新的藥物作用靶點(diǎn)給治療DN提供了很好的思路,但到目前為止療效還是很有限[22],因此急需開(kāi)辟新的途徑以求進(jìn)一步的治療。干細(xì)胞移植方法能夠促進(jìn)受損的腎臟組織、細(xì)胞的再生或直接分化為相應(yīng)細(xì)胞來(lái)修復(fù)腎臟,給進(jìn)一步治療DN提供了希望,因而受到了人們的關(guān)注。
胚胎干細(xì)胞(embryonic stem cell,ESCs)是從早期胚胎(原腸胚期之前)或原始性腺中分離出來(lái)的一類(lèi)細(xì)胞,它具有體外培養(yǎng)無(wú)限增殖、自我更新和多向分化的潛能。ESCs除了能分化為胰島素分泌細(xì)胞外[23],在特定的生長(zhǎng)因子或誘導(dǎo)劑的作用下還能夠向腎臟細(xì)胞譜系分化,如近端小管樣細(xì)胞[24],但由其帶來(lái)的倫理問(wèn)題一直限制著它的發(fā)展。
間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)既具有多向分化潛能、免疫抑制和異體移植的安全性[25-27],又避免了ESCs的倫理問(wèn)題,近年來(lái)被廣泛用于多種疾病治療的研究。MSCs能夠分化為胰島素分泌細(xì)胞、腎小管上皮細(xì)胞、上皮細(xì)胞和足細(xì)胞[28-30]。文獻(xiàn)[31]研究報(bào)告指出MSCs的移植能夠改善蛋白尿、血清肌酐/尿素氮比值、腎小球高壓、系膜增生和纖維化。然而MSCs移植療法仍有許多缺點(diǎn):來(lái)自不同供體的MSCs的異質(zhì)性很大,而且在慢性心血管系統(tǒng)疾病的患者和慢性腎病模型的大鼠中,MSCs的增殖和分化能力會(huì)降低[32],這些都會(huì)影響其治療效果,需要繼續(xù)研究來(lái)解決這些問(wèn)題。由尿液中分離出來(lái)的干細(xì)胞—尿源性干細(xì)胞(urinederived stem cells,USCs)是近來(lái)發(fā)現(xiàn)的新的干細(xì)胞亞型[33]。從尿中提取干細(xì)胞更加地安全和經(jīng)濟(jì)。USCs具有較長(zhǎng)的端粒酶長(zhǎng)度,自我更新能力和增生能力都很強(qiáng),但是關(guān)于其應(yīng)用于DN的治療暫無(wú)報(bào)道。
DN的發(fā)生發(fā)展涉及多種發(fā)病機(jī)制的參與,不斷深入研究發(fā)病機(jī)制,將為DN的治療提供更多治療靶點(diǎn)以及早期診斷的標(biāo)志。近來(lái)有研究報(bào)道自噬參與了糖尿病腎病的發(fā)病過(guò)程,其作用將是未來(lái)研究熱點(diǎn)。隨著DN研究不斷深入,干細(xì)胞、基因療法不斷發(fā)展,相信在不久的將來(lái),糖尿病腎病的患者一定會(huì)得到更好的治療。
[1] Duran-Salgado M B,Rubio-Guerra A F.Diabetic nephropathy and inflammation[J].World Journal of Diabetes,2014,5(3):393-398.
[2] Molitch M E,Defronzo R A,F(xiàn)ranz M J,et al.Nephropathy in diabetes[J].Diabetes Care,2004,27(Suppl 1):S79-S83.
[3] Brown J.Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes[J].Diabetes,2006,54(12):3427-3434.
[4] Rosenstein R,Hough A.Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J].New England Journal of Medicine,2015,373(22):2117-2128.
[5] Wanner C,Inzucchi S E,Lachin J M,et al.Empagliflozin and progression of kidney disease in type 2 diabetes[J].New England Journal of Medicine,2016,375(4):323-334.
[6] Tikellis C,Bialkowski K,Pete J,et al.ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes[J].Diabetes,2008,57(4):1018-1025.
[7] Kohan D E,F(xiàn)ioretto P,Tang W,et al.Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J].Kidney International,2014,85(4):962-971.
[8] Watts N B,Bilezikian J P,Usiskin K,et al.Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus[J].The Journal of Clinical Endocrinology & Metabolism,2015,101(1):157-166.
[9] Quack I,Woznowski M,Potthoff S A,et al.PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia[J]. Journal of Biological Chemistry,2011,286(15):12 959-12 970.
[10] Meier M,Park J K,Overheu D,et al.Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model[J].Diabetes,2007,56(2):346-354.
[11] Menne J,Shushakova N, Bartels J, et al. Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy[J]. Diabetes,2013,62(4):1167-1174.
[12] Meier M,Menne J,Park J K,et al.Deletion of protein kinase C-ε signaling pathway induces glomerulo-sclerosis and tubulointerstitial fibrosis in vivo[J].Journal of the American Society of Nephrology Jasn,2007,18(4):1190-1198.
[13] Doublier S,Salvidio G,Lupia E,et al.Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II[J].Diabetes,2003,52(4):1023-1030.
[14] De-Min Y U,Liu D M,Liu X H,et al.Effect of aldose reductase inhibitor on rat kidney aldose reductase gene expression[J].Journal of Tianjin Medical University,2005,11(4):4.
[15] Xie P,Sun L Oates P J,et al.Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy:its implications in tubulointerstitial fibrosis[J].Ajp Renal Physiology,2010,298(6):F1393-F1404.
[16] Chilelli N C,Burlina S,Lapolla A.AGEs,rather than hyperglycemia, are responsible formicrovascular complications in diabetes: A“glycoxidation-centric”point of view[J].Nutrition Metabolism & Cardiovascular Diseases Nmcd,2013,23(10):913-919.
[17] Miyata T,Ueda Y,Asahi K,et al.Mechanism of the inhibitory effect of OPB-9195 on advanced glycation end product and advanced lipoxidation end product formation[J].Journal of the American Society of Nephrology,2000,11(9):1719-1725.
[18] Sasai Y,Iwakawa K,Yanagida K,et al.Advanced glycation endproducts stimulate renal epithelial cells to release chemokines that recruit macrophages, leading to renal fibrosis[J].Bioscience Biotechnology and Biochemistry,2012,76(9):1741-1745.
[19] Stracke H,Hammes H P,Werkmann D,et al.Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats[J]. Experimental & Clinical Endocrinology & Diabetes,2001,109(6):330-336.
[20] Kihm L P,Mü llerkrebs S,Klein J,et al.Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis[J]. Journal of the American Society of Nephrology,2011,22(5):914-926.
[21] Taguchi K,F(xiàn)ukami K,Yamagishi S,et al.DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy[J].Diabetes,2013,62(9):3241-3250.
[22] Liu Y,Tang S C W.Recent Progress in Stem Cell Therapy for Diabetic Nephropathy[J].Kidney Diseases,2015,2(1):20-27.
[23] Jiang W,Yan S,Zhao D X,et al.In vitro derivation of functional insulin-producing cells from human embryonic stem cells[J].Cell Research,2007,17(4):333-344.
[24] Narayanan K,Schumacher K M,Tasnim F,et al.Human embryonic stem cells differentiate into functional renal proximal tubular-like cells[J].Kidney International,2013,83(4):593-603.
[25] Aziz M T A,Wassef M A A,Ahmed H H,et al.The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy[J].Diabetology& Metabolic Syndrome,2014,6(1):1-10.
[26] Fang Y,Tian X,Bai S,et al.Autologous transplantation of adipose-derived mesenchymal stem cells,ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting,oxidative stress,pro-inflammatory cytokines and the p38 MAPK signaling pathway[J].International Journal of Molecular Medicine,2012,30(1):85-92.
[27] T?gel F E,Westenfelder C.Kidney protection and regeneration following acute injury:progress through stem cell therapy[J]. American Journal of Kidney Diseases,2012,60(6):1012-1022.
[28] Karnieli O,Izhar-Prato Y,Bulvik S,et al.Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation[J].Stem Cells,2007,25(11):2837-2844.
[29] Poulsom R,F(xiàn)orbes S J,Hodivala-Dilke K,et al.Bone marrow contributes to renal parenchymal turnover and regeneration[J]. Journal of Pathology,2001,195(195):229-235.
[30] Prockop D J.Repair of tissues by adult stem/progenitor cells(MSCs):controversies, myths, and changing paradigms[J]. Molecular Therapy,2009,17(17):939-946.
[31] Lv S,Cheng J,Sun A,et al.Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocininduced diabetic nephropathy in rats via inhibiting oxidative stress[J].International Immuno- pharmacology,2014,104(1):275-282.
[32] Yamada A,Yokoo T,Yokote S,et al.Comparison of multipotency and molecular profile of MSCs between CKD and healthy rats[J].Human Cell,2014,27(2):59-67.
[33] Bharadwaj S,Liu G,Shi Y,et al.Multipotential differentiation of human urine-derived stem cells:Potential for therapeutic applications in urology[J].Stem Cells,2013,31(9):1840-1856.
Research Progress in the Treatment of Diabetic Nephropathy/
LI Xiang,YANG Yuan-jun,LIU Jiefu,et al.//
Medical Innovation of China,2016,13(30):142-145
Diabetic nephropathy is the most common complication of diabetes,and it is also an important cause of chronic renal failure,but the clinical treatment effect is limited.The current study from the inhibition of sodium glucose cotransporter 2,protein kinase C,polyol pathway and advanced glycation end products and so on,to inflammatory reaction and interference in the pathogenesis of oxidative stress,immune response and tissue fibrosis to specific treatment.Stem cell transplantation provides a new hope for the treatment of diabetic nephropathy.
Diabetic nephropathy; Therapeutics; Pathogeneses; Stem cell
10.3969/j.issn.1674-4985.2016.30.040
江蘇高校品牌專業(yè)建設(shè)工程一期資助項(xiàng)目(PPZY2015B161)
①徐州醫(yī)科大學(xué)臨床醫(yī)學(xué)系 江蘇 徐州 221000
②徐州醫(yī)科大學(xué)麻醉學(xué)院
③徐州醫(yī)科大學(xué)影像學(xué)院
董茜
(2016-06-24) (本文編輯:郎威)
中國(guó)醫(yī)學(xué)創(chuàng)新2016年30期