白玉成,魯松松,唐曉龍,梁士偉,李東芹,王燕,陳強
(蘭州大學生命科學學院,生物化學與分子生物學研究所,蘭州 730000)
?
溫度對紅尾沙蜥代謝晝夜節(jié)律的影響
白玉成,魯松松,唐曉龍,梁士偉,李東芹,王燕,陳強*
(蘭州大學生命科學學院,生物化學與分子生物學研究所,蘭州 730000)
爬行動物很多生理、生化和行為指標都表現(xiàn)出晝夜節(jié)律。代謝晝夜節(jié)律不僅涉及內(nèi)在因子的固有控制,而且受到多種外部因素的影響。為了探究溫度對代謝晝夜節(jié)律的影響,在恒定的溫度下(18 ℃和28 ℃)測定了紅尾沙蜥Phrynocephaluserythrurus體溫、心率、標準代謝率(SMR)和血糖濃度的晝夜變化。結(jié)果表明:(1)在2個溫度下紅尾沙蜥體溫沒有明顯的晝夜變化;(2)晝間SMR明顯高于夜間,18 ℃下SMR水平以及SMR晝夜變化的范圍都低于28 ℃下的結(jié)果;(3)心率的變化也與代謝率的變化一致,但最低點提前了2 h;(4)28 ℃下的血糖濃度整體水平顯著高于18 ℃下的,而波動規(guī)律卻不同:28 ℃條件下白天平均值高于晚上,血糖濃度在16∶00顯著高于20∶00、00∶00和12∶00;18 ℃條件下,血糖濃度在20∶00和08∶00明顯低于00∶00和12∶00(P<0.05),而在04∶00和16∶00處于中間水平。該研究證實了紅尾沙蜥SMR、心率和血糖濃度等生理生化指標也存在明顯的晝夜節(jié)律,雖然這種現(xiàn)象受環(huán)境溫度的影響,但主要還是由內(nèi)在因子決定,這可能與某些激素的分泌活動有關(guān)。
紅尾沙蜥;晝夜節(jié)律;代謝;溫度
節(jié)律性是生物生理過程的一個基本特征(Turek,1998)。許多生物功能都表現(xiàn)出晝夜和季節(jié)性變化來適應(yīng)光、溫度、食物利用率等環(huán)境因素的周期性變化(El Allalietal.,2013)。所謂晝夜節(jié)律就是生化、生理或行為等接近24 h的周期性變化(Reppert & Weaver,2002)。爬行動物的生物鐘系統(tǒng)是由松果體、頂眼、丘腦視交叉上核和側(cè)視網(wǎng)膜上的振蕩器共同組成的多重振蕩系統(tǒng),不同物種略有不同(Tosinietal.,2001)。
動物的代謝、活動狀態(tài)以及體溫調(diào)節(jié)都呈現(xiàn)出一定的晝夜節(jié)律(Rismiller & Heldmaier 1991;Ellisetal.,2007;Reyes & Milsom,2010)。這些節(jié)律既相互影響又相互獨立,也就是說代謝的晝夜變化可以獨立于活動和溫度的晝夜變化(Rismiller & Heldmaier,1991)。Ellis等(2007)證實了松果蜥Tiliquarugosa運動的日節(jié)律是內(nèi)生性的生物節(jié)律,而且這種活動節(jié)律和溫度調(diào)節(jié)節(jié)律高度一致,由相同的主振蕩器控制。許多外溫動物和內(nèi)溫動物都有內(nèi)在的生物鐘幫助它們調(diào)整生理機能以適應(yīng)外界因素的周期性變化(Tosinietal.,2001;Brownetal.,2002;Seifert & Mortola,2002)。在恒定的環(huán)境條件下,許多動物表現(xiàn)出來的晝夜節(jié)律現(xiàn)象仍然存在,這表明這些現(xiàn)象是由內(nèi)在因子驅(qū)動的(Tosinietal.,2001)。然而外界因素也影響動物的生物鐘,例如溫度影響壁虎Gekkojaponicus的活動規(guī)律(Tawaetal.,2014)。此外,Svendsen等(2014)報道了低氧對鱘魚Acipenserfulvescens代謝率晝夜節(jié)律的影響。這些研究表明動物的代謝、運動以及體溫調(diào)節(jié)等生理活動的晝夜節(jié)律不僅涉及內(nèi)在因素的控制,而且受多種外在因素的影響。
動物整體水平的代謝率與心率密切相關(guān),已有研究表明心率可以作為恒溫動物和變溫動物代謝水平的指標(Bevanetal.,1994;McCarronetal.,2001;McPheeetal.,2003;Currieetal.,2014),即通過心率能間接地反映代謝水平。更有意思的是,短頸龜Emyduramacquarii胚胎的心率在恒定溫度(26 ℃和30 ℃)下能維持周期性變化(Loudonetal.,2013)。血糖作為生理活動的重要能源,在代謝中起著非常重要的作用。動物血糖穩(wěn)態(tài)的維持對于代謝的晝夜波動是必須的,已有研究表明血糖濃度也有明顯的晝夜節(jié)律,攝食和肝糖原分解是血糖波動的主要原因(La Fleur,2003)。安樂蜥Anoliscarolinensis在禁食狀態(tài)下,通過糖元分解來維持血糖穩(wěn)態(tài)(Gist,1972),因此我們猜測代謝率的晝夜變化可能和血糖濃度有關(guān)。關(guān)于荒漠沙蜥Phrynocephalusprzewalskii血糖晝夜變化的研究已有報道(Li & Shen,1999),但該實驗沒有排除溫度對血糖濃度的影響,蜥蜴血糖濃度在恒定溫度下是否存在明顯的晝夜變化還需進一步探究。
紅尾沙蜥P.erythrurus棲息于西藏北部的羌塘高原地區(qū),被認為是世界上垂直分布最高的蜥蜴(海拔4 500~5 300 m)(Zhao & Adler,1993;Jin & Liu,2010)。當?shù)貧鉁貢円瓜嗖詈艽蟆S醒芯勘砻魃钤诤涞貐^(qū)的爬行動物用代謝調(diào)整作為適應(yīng)策略來克服多變的環(huán)境條件(Malatestaetal.,2007)。Tang等(2013)報道了紅尾沙蜥的代謝特征與荒漠沙蜥有顯著的差異,同時紅尾沙蜥血紅蛋白和肌紅蛋白也具有一些獨特的高原適應(yīng)特征(Luetal.,2015;Xinetal.,2015)。目前國內(nèi)外報道了大量有關(guān)爬行動物體溫、代謝率、心率和血糖濃度晝夜變化的研究,而關(guān)于紅尾沙蜥的研究很少。為了探究溫度對紅尾沙蜥代謝節(jié)律的影響,本實驗在恒定溫度下(18 ℃和28 ℃)連續(xù)24 h測定了紅尾沙蜥的體溫、心率、SMR和血糖濃度,目的在于探究紅尾沙蜥代謝的晝夜變化模式以及溫度對這種節(jié)律的影響。
1.1 實驗動物
2014年8月于青海省格爾木市唐古拉山鎮(zhèn)(34°13′N,92°13′E,海拔4 543 m,年平均氣溫-3.99 ℃)捕獲72只成體紅尾沙蜥(平均體質(zhì)量4.40 g±0.88 g,吻肛長51.0 mm±3.5 mm)。捕獲后帶到蘭州大學實驗室,飼養(yǎng)在常壓低氧箱中(長100 cm×寬45 cm×高45 cm),通過控制氮氣的通入使箱內(nèi)氧濃度維持在11.8%(相當于海拔4 543 m氧濃度),以減少氧濃度變化對蜥蜴的影響,具體方法參考Tang等(2013)。07∶00—19∶00給予自然光照,輔助加熱光源(100 W白熾燈)在09∶00—17∶00工作,使箱內(nèi)形成溫度梯度,飼養(yǎng)過程中自由取食黃粉蟲和純凈水。實驗開始前蜥蜴在恒定溫度下(18 ℃和28 ℃)馴化48 h,馴化過程禁食確保蜥蜴空腹狀態(tài)(Heetal.,2013;Tangetal.,2013),而其他條件與飼養(yǎng)條件一致。
1.2 體溫和心率的測定
隨機選取20只成體紅尾沙蜥,分成2組(n=10),分別在18 ℃和28 ℃條件下馴化48 h;在避光、恒溫(18 ℃和28 ℃)條件下用溫度傳感器(CW100,北京新航興業(yè)科貿(mào)有限公司,北京)測定蜥蜴的泄殖腔溫度,即蜥蜴體溫(body temperature,Tb);同時記錄環(huán)境溫度(environmental temperature,Te)。通過BL420-F生物采集分析系統(tǒng)記錄(成都泰盟科技有限公司)的心電圖得到心率,方法參考He等(2013)。實驗結(jié)束后蜥蜴放回飼養(yǎng)箱中恢復(fù)至少48 h后用于后續(xù)實驗。
1.3 標準代謝率的測定
在靜息狀態(tài)下用動物呼吸測量系統(tǒng)(RP1LP,Qubit,Canada)測定蜥蜴的標準代謝率(standard metabolic rate,SMR),用單位時間內(nèi)產(chǎn)生的CO2來表示SMR(Yueetal.,2012)。實驗前隨機選取20只成體紅尾沙蜥分成2組(n=10),分別在18 ℃和28 ℃條件下馴化48 h;在避光、恒溫(18 ℃和28 ℃)條件下,連續(xù)24 h測定每個個體的SMR。通入氣體的氧濃度為11.8%,流量為300 mL·min-1。實驗結(jié)束后蜥蜴放回飼養(yǎng)箱中恢復(fù)至少48 h后用于后續(xù)實驗。
1.4 血糖濃度的測定
隨機將72只紅尾沙蜥分成兩大組(n=36),每組蜥蜴又隨機分成6組(n=6),分別在18 ℃和28 ℃條件下馴化48 h;分別在20∶00、00∶00、04∶00、08∶00、12∶00和16∶00用肝素處理過的微量采血管從頸部采血(120~200 μL),3 000 rpm,4 ℃離心10 min,取上清液測定血糖濃度。血糖濃度用葡萄糖試劑盒測定(南京建成生物工程研究所)。
1.5 統(tǒng)計分析
所有數(shù)據(jù)用SPSS 16.0進行統(tǒng)計分析,在統(tǒng)計分析前進行正態(tài)性和方差同質(zhì)性檢驗。用單因素方差分析(One-way ANOVA)、LSD和Tamhane’s T2多重比較分別檢驗不同溫度或不同時間點蜥蜴的體溫、心率、SMR和血糖濃度的差異。SMR與血糖濃度和心率的關(guān)系用Pearson相關(guān)分析。所有描述性統(tǒng)計值用Mean±SE表示,顯著水平設(shè)置為α=0.05。
2.1 紅尾沙蜥體溫的晝夜變化
在恒定條件下紅尾沙蜥的體溫并沒有發(fā)生明顯的變化,盡管隨環(huán)境溫度的輕微波動而略有起伏,但變化趨勢與環(huán)境溫度的變化一致(圖1;28 ℃:F11,55=0.814,P=0.624;18 ℃:F11,33=1.313,P=0.261)。
2.2 紅尾沙蜥心率的晝夜變化
紅尾沙蜥心率有晝夜波動,一般都是晝間較高,夜間較低,從最低點到最高點都呈逐漸上升趨勢(圖2;28 ℃:F11, 55=0.717,P=0.717;18 ℃:F11, 32=0.859,P=0.590)。28 ℃條件下,晝間均值每分鐘108 beats左右,夜間均值每分鐘100 beats左右,最高點(12∶00,每分鐘116 beats±8 beats)和最低點(02∶00,每分鐘96 beats±6 beats)差異有統(tǒng)計學意義(P<0.05),降低了約17.2%;18 ℃條件下,晝間均值每分鐘50 beats左右,夜間均值每分鐘46 beats左右,最低點(00∶00,每分鐘42 beats±5 beats)和最高點(10∶00,每分鐘57 beats±6 beats)差異有統(tǒng)計學意義(P<0.05),降低了約26.3%;總體而言,在24 h之內(nèi)18 ℃下的心率都明顯低于28 ℃下的心率(P<0.05),且最低點提前了2 h。
圖1 恒定溫度下紅尾沙蜥體溫的晝夜變化
Tb.體溫Body temperature, Te.環(huán)境溫度 Environmental temperature.
圖2 恒定溫度下紅尾沙蜥心率的晝夜變化
*表示同一個時間點2個溫度之間的差異有統(tǒng)計學意義(P<0.05),不同字母表示同一溫度下不同時間點之間的差異有統(tǒng)計學意義(P<0.05);下圖同。
*There is a significant difference between 18 ℃ and 28 ℃ in the same time points (P<0.05), different letters indicate there is significant difference among different time points at two constant temperatures (P<0.05); the same below.
2.3 紅尾沙蜥SMR的晝夜變化
在恒定條件下,紅尾沙蜥的SMR存在明顯的晝夜變化,夜間SMR比較穩(wěn)定,晝間SMR波動較大且高于夜間,2個恒定溫度下的變化模式基本相同(圖3;28 ℃:F11, 67=8.374,P<0.05;18 ℃:F11,68=24.366,P<0.05)。28 ℃條件下,10∶00達到峰值[(11.860±2.359) mgCO2·min-1·kg-1],之后開始逐漸下降,04∶00達到最低值[(2.196±0.068) mgCO2·min-1·kg-1],約為峰值的18.5%;18 ℃條件下,峰值也出現(xiàn)在10∶00[(8.967±1.025)mgCO2·min-1·kg-1],最低值出現(xiàn)在02∶00[(0.954±0.062) mgCO2·min-1·kg-1],約為峰值的12.0%。與28 ℃下的SMR相比,18℃下SMR較低,除了06∶00、08∶00、10∶00,其余時間差異均具有統(tǒng)計學意義(P<0.05),且最低值提前了2 h。
圖3 恒定溫度下紅尾沙蜥標準代謝率的晝夜變化
2.4 紅尾沙蜥血糖濃度的晝夜變化
紅尾沙蜥外周血糖濃度在恒定條件下仍呈現(xiàn)晝夜波動,28 ℃的整體水平顯著高于18 ℃,而波動規(guī)律卻不盡相同。28 ℃條件下,紅尾沙蜥血糖濃度晝間平均值高于夜間,最高值出現(xiàn)在16∶00(13.88 mmol·L-1),顯著高于20∶00、00∶00和12∶00 (P<0.05),最低點在20∶00(12.44 mmol·L-1);18℃條件下,紅尾沙蜥在20∶00和08∶00的血糖濃度明顯低于00∶00和12∶00(P<0.05),而04∶00和16∶00的血糖濃度處于中間值(圖4)。
本研究探究了溫度對紅尾沙蜥體溫、心率、SMR和血糖濃度的影響,這是首次同步連續(xù)記錄了體溫、心率和代謝率。結(jié)果表明紅尾沙蜥的SMR、心率和血糖濃度在恒溫、恒定光照條件下仍存在明顯的晝夜變化,并且這種變化受溫度影響。
蜥蜴的體溫在2種溫度下都沒有明顯的晝夜變化,雖然有輕微的波動,但和環(huán)境溫度的波動一致(盡管我們采取的恒溫措施,但環(huán)境溫度仍然有小范圍的波動),是由環(huán)境溫度變化而引起的。這些結(jié)果與以往的報道有所不同(Tosini & Menaker,1995;Firth & Belan,1998;Currieetal.,2014),這可能是由于該實驗中蜥蜴固定在一個沒有溫度梯度的環(huán)境中,以至于蜥蜴不能進行有效的行為性體溫選擇,而且沒有提供光照等外源的節(jié)律性調(diào)節(jié),也影響了蜥蜴的生理性體溫調(diào)節(jié)。在爬行動物中,溫度對心率的影響已得到廣泛研究,一般是較高溫度下心率也較高(Liu & Li,2005;Heetal.,2013),紅尾沙蜥的心率也呈現(xiàn)這樣的規(guī)律,28 ℃時心率明顯高于18 ℃時。結(jié)果顯示,在2個恒定條件下,紅尾沙蜥心率仍存在明顯的晝夜變化,最高點都在10∶00,最低點都出現(xiàn)在夜間,這說明紅尾沙蜥心率的這種節(jié)律是由內(nèi)在因素決定的。相比于28 ℃,18 ℃時的心率最低點(出現(xiàn)在00∶00)提前了2 h,最高點和最低點之間的差值為每分鐘4 beats,僅為28 ℃條件下的20%,這說明溫度影響了紅尾沙蜥心率的晝夜變化規(guī)律,低溫提前了心率最低點出現(xiàn)的時間,降低了心率波動的范圍。
圖4 恒定溫度下紅尾沙蜥血糖濃度的晝夜變化
爬行動物代謝率的晝夜節(jié)律已有報道,本文的實驗結(jié)果表明紅尾沙蜥的SMR在2個恒定溫度下都存在明顯的晝夜變化,都是晝間代謝率要明顯高于夜間,這與在其他爬行動物中的研究結(jié)果一致(Hicks & Riedesel,1983;Rismiller & Heldmaier,1991;Hareetal.,2006;Reyes & Milsom,2010)。相比于28 ℃,18 ℃時紅尾沙蜥代謝率明顯降低;紅尾沙蜥在2個溫度下,代謝率的頂峰都出現(xiàn)在10∶00,最低點出現(xiàn)在凌晨,這與其是晝行性動物相吻合。此外,18 ℃時的代謝率最低點(02∶00)比28 ℃時提前了2 h,而且降低的幅度也有所減少,這種變化表明溫度影響了紅尾沙蜥的代謝節(jié)律,這些結(jié)果與之前關(guān)于蜥蜴代謝率的報道一致(Rismiller & Heldmaier,1991;Milsometal.,2008)。盡管低溫下代謝率最低點提前了2 h而最高點沒有提前,即最低點和最高點之間的時長增加了,但增加不明顯,約為28 ℃下時長的1.3倍,這種結(jié)果與關(guān)于洞穴魚Phreatichthysandruzzii的報道類似(Cavallari,2010),也可能是溫度補償?shù)慕Y(jié)果。溫度補償就是生物鐘周期在相對恒定的生理溫度范圍內(nèi)保持不變,是生物鐘的基本屬性(Izumoetal.,2003)。研究表明心率可以作為代謝率的指示(Currieetal.,2014;Zenaetal.,2015),而本文中也得到了相同的結(jié)果:在2個恒定溫度下紅尾沙蜥代謝率和心率都呈顯著正相關(guān)(表1),通過心率可以間接地反映紅尾沙蜥代謝水平的晝夜變化。然而蜥蜴的體溫沒有明顯變化,這表明紅尾沙蜥代謝率和心率的晝夜變化并不是完全由體溫調(diào)節(jié)行為決定的。Rismiller和Heldmaier(1991)證實了綠蜥Lacertaviridis在恒定溫度和黑暗下也能維持氧消耗的晝夜變化。Milsom等(2008)報道了泰蜥蜴Tupinambismerianae在28 ℃和17 ℃的黑暗條件下也能保持固有的晝夜變化。本實驗中也得出了相似的結(jié)論,這表明爬行動物代謝的晝夜變化的建立是由某些內(nèi)在因素驅(qū)動的。
表1 紅尾沙蜥代謝率與血糖和心率的相關(guān)性分析
依賴于中樞神經(jīng)系統(tǒng)和內(nèi)分泌系統(tǒng)調(diào)節(jié)血糖代謝是生物維持正常功能的必要條件(La Fleur,2003)。本實驗中高溫下紅尾沙蜥血糖濃度明顯高于低溫時的血糖濃度,但血糖濃度的變化在2個溫度下有所不同,而且與代謝率沒有明顯的相關(guān)性(表1)。在哺乳動物中,糖皮質(zhì)激素通過調(diào)節(jié)生物鐘來維持葡萄糖的穩(wěn)態(tài)(Soetal.,2009);在兩棲動物中,血漿糖皮質(zhì)激素的升高可以提高代謝率(Wacketal.,2012);在爬行動物中,血漿葡萄糖濃度的變化與糖皮質(zhì)激素濃度的變化也緊密相關(guān)(Pereiraetal.,2013),所以我們推測紅尾沙蜥血糖濃度的變化也可能與糖皮質(zhì)激素的分泌有關(guān)。腎上腺素能促進脂肪體脂肪水解、肝糖原和肌糖原分解使血糖升高(Norris,2007),蠑螈Trituruscarnifex在7月腎上腺素在05∶00最低,11∶00最高(Gayetal.,2010),這可能與該動物的代謝活動相關(guān)。紅尾沙蜥的血糖濃度以及代謝率、心率晝夜變化可能與糖皮質(zhì)激素和腎上腺激素的分泌活動有關(guān),這還需進一步探究。
綜上所述,紅尾沙蜥代謝有明顯的晝夜變化,晝間代謝水平高于夜間,低溫抑制了血糖的輸出,降低了整體代謝水平,血糖濃度的變化與代謝水平的波動不同步,這可能與能量的消耗有關(guān)。這些節(jié)律是由內(nèi)生因子控制的,但仍受環(huán)境溫度的影響。
Bevan RM, Woakes AJ, Butler PJ,etal. 1994. The use of heart rate to estimate oxygen consumption of free-ranging black-browed albatrossesDiomedeamelanophrys[J]. The Journal of Experimental Biology, 193(1): 119-137.
Brown SA, Zumbrunn G, Fleury-Olela F,etal. 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks[J]. Current Biology, 12(18): 1574-1583.
Cavallari N. 2010. Evolution of the circadian clock in extreme environment: lessons from cavefish[D]. Ferrara: Università degli Studi di Ferrara.
Currie SE, K?rtner G, Geiser F,etal. 2014. Heart rate as a predictor of metabolic rate in heterothermic bats[J]. The Journal of Experimental Biology, 217(9): 1519-1524.
El Allali K, Achaaban MR, Bothorel B,etal. 2013. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelusdromedarius)[J]. American Journal of Physiology-Regulatory, Integrative & Comparative Physiology, 304(11): R1044-R1052.
Ellis DJ, Firth BT, Belan I. 2007. Circadian rhythms of locomotor activity and temperature selection in sleepy lizards,Tiliquarugosa[J]. Journal of Comparative Physiology A, 193(7): 695-701.
Firth BT, Belan I. 1998. Daily and seasonal rhythms in selected body temperatures in the Australian lizardTiliquarugosa(Scincidae): field and laboratory observations[J]. Physiological and Biochemical Zoology, 71(3): 303-311.
Gay F, Valiante S, Sciarrillo R,etal. 2010. Annual and daily serum aldosterone and catecholamine patterns in males of the Italian crested newt,Trituruscarnifex(Amphibia, Urodela)[J]. Italian Journal of Zoology, 77(4): 384-390.
Gist DH. 1972. The effects of starvation and refeeding on carbohydrate and lipid reserves ofAnoliscarolinensis[J]. Comparative Biochemistry and Physiology Part A: Physiology, 43(4): 771-780.
Hare KM, Pledger S, Thompson MB,etal. 2006. Daily patterns of metabolic rate among New Zealand lizards (Reptilia: Lacertilia: Diplodactylidae and Scincidae)[J]. Physiological and Biochemical Zoology, 79(4): 745-753.
He JZ, Xiu MH, Tang XL,etal. 2013. The different mechanisms of hypoxic acclimatization and adaptation in lizardPhrynocephalusvlangaliiliving on Qinghai-Tibet Plateau[J]. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(3): 117-123.
He JZ, Xiu MH, Tang XL,etal. 2013. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard,Phrynocephalusprzewalskii[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(2): 207-213.
Hicks JW, Riedese ML. 1983. Diurnal ventilatory patterns in the garter snake,Thamnophiselegans[J]. Journal of comparative physiology, 149(4): 503-510.
Izumo M, Johnson CH, Yamazaki S. 2003. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping[J]. Proceedings of the National Academy of Sciences, 100(26): 16089-16094.
Jin YT, Liu NF. 2010. Phylogeography ofPhrynocephaluserythrurusfrom the Qiangtang Plateau of the Tibetan Plateau[J]. Molecular Phylogenetics and Evolution, 54(3): 933-940.
La Fleur SE. 2003. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue[J]. Journal of Neuroendocrinology, 15(3): 315-322.
Li RD, Shen JM. 1999. Circadian and seasonal variation of blood sugar content of lizardPhrynocephalusprzewalskii[J]. Zoological Research, 20(6): 477-478.
Liu CB, Li RD. 2005. Electrocardiogram and heart rate in response to temperature acclimation in three representative vertebrates[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 142(4): 416-421.
Loudon FK, Spencer RJ, Strassmeyer A,etal. 2013. Metabolic circadian rhythms in embryonic turtles[J]. Integrative and Comparative Biology, 53(1): 175-182.
Lu SS, Xin Y, Tang XL,etal. 2015. Differences in hematological traits between high-and low-altitude lizards (genusPhrynocephalus)[J]. PLoS ONE, 10(5): e0125751.
Malatesta M, Frigato E, Baldell B,etal. 2007. Influence of temperature on the liver circadian clock in the ruin lizardPodarcissicula[J]. Microscopy Research and Technique, 70(7): 578-584.
McCarron H, Buffenstein R, Fanning F,etal. 2001. Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropusgiganteus) and red kangaroos (Macropusrufus) in the arid regions of south east Australia[J]. Journal of Comparative Physiology B, 171(5): 401-411.
McPhee JM, Rosen DA, Andrews RD,etal. 2003. Predicting metabolic rate from heart rate in juvenile steller sea lionsEumetopiasjubatus[J]. Journal of Experimental Biology, 206(11): 1941-1951.
Milsom WK, Andrade DV, Brito SP,etal. 2008. Seasonal changes in daily metabolic patterns of tegu lizards (Tupinambismerianae) placed in the cold (17 ℃) and dark[J]. Physiological and Biochemical Zoology, 81(2): 165-175.
Norris DO. 2007. Vertebrate endocrinology 4th ed[M]. Amsterdam: Academic Press: 483-489.
Pereira CM, Booth DT, Bradley AJ,etal. 2013. Blood concentrations of lactate, glucose and corticosterone in dispersing hatchling sea turtles[J]. Biology Open, 2(1): 63-67.
Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals[J]. Nature, 418(6901): 935-941.
Reyes C, Milsom WK. 2010. Circadian and circannual rhythms in the metabolism and ventilation of red-eared sliders (Trachemysscriptaelegans)[J]. Physiological and Biochemical Zoology, 83(2): 283-298.
Rismiller PD, Heldmaier G. 1991. Seasonal changes in daily metabolic patterns ofLacertaviridis[J]. Journal of Comparative Physiology B, 161(5): 482-488.
Seifert EL, Mortola JP. 2002. The circadian pattern of breathing in conscious adult rats[J]. Respiration Physiology, 129(3): 297-305.
So AYL, Bernal TU, Pillsbury ML,etal. 2009. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis[J]. Proceedings of the National Academy of Sciences, 106(41): 17582-17587.
Svendsen JC, Genz J, Anderson WG,etal. 2014. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeonAcipenserfulvescens[J]. PLoS ONE, 9(4): e94693.
Tang XL, Xin Y, Wang HH,etal. 2013. Metabolic characteristics and response to high altitude inPhrynocephaluserythrurus(Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world[J]. PLoS ONE, 8(8): e71976.
Tawa Y, Jono T, Numata H. 2014. Circadian and temperature control of activity in schlegel's Japanese gecko,Gekkojaponicus(Reptilia: Squamata: Gekkonidae)[J]. Current Herpetology, 33(2): 121-128.
Tosini G, Bertolucci C, Foà A. 2001. The circadian system of reptiles: a multioscillatory and multiphotoreceptive system[J]. Physiology & Behavior, 72(4): 461-471.
Tosini G, Menaker M. 1995. Circadian rhythm of body temperature in an ectotherm (Iguanaiguana)[J]. Journal of Biological Rhythms, 10(3): 248-255.
Turek FW. 1998. Circadian rhythms[J]. Hormone Research in Paediatrics, 49(3-4): 109-113.
Wack CL, DuRant SE, Hopkins WA,etal. 2012. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 161(2): 153-158.
Xin Y, Tang XL, Wang HH,etal. 2015. Functional characterization and expression analysis of myoglobin in high-altitude lizardPhrynocephaluserythrurus[J]. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 188: 31-36.
Yue F, Tang XL, Zhang DJ,etal. 2012. Body temperature and standard metabolic rate of the female viviparous lizardEremiasmultiocellataduring reproduction[J]. Canadian Journal of Zoology, 90(1): 79-84.
Zena LA, Gargaglioni LH, Bícego KC. 2015. Temperature effects on baroreflex control of heart rate in the toad,Rhinellaschneideri[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 179: 81-88.
Zhao EM, Adler K. 1993. Herpetology of China[M]. Oxford, Ohio: Contributions to Herpetology 10. Society for the Study of Amphibians & Reptiles.
Effect of Temperature on the Circadian Rhythms of Metabolism inPhrynocephaluserythrurus
BAI Yucheng, LU Songsong, TANG Xiaolong, LIANG Shiwei, LI Dongqin, WANG Yan, CHEN Qiang*
(Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China)
Many biochemical, physiological, and behavioral parameters of reptiles showed daily fluctuations.Circadian rhythms of metabolism involved not only in the control of endogenous factors but also in the effects of various exogenous factors.To test the influence of temperature on the circadian rhythms of metabolism, the variation of body temperature, heart rate, standard metabolic rate (SMR) and plasma glucose concentration inPhrynocephaluserythrurusunder two temperature regimes (18 ℃ and 28 ℃) were investigated.Circadian rhythms were present in the SMR ofP.erythruruswith higher values during the day than that during the night in constant conditions and the magnitude of the daily change was reduced at 18 ℃.Additionally, the variation of heart rate was consistent with SMR except the nadir which came earlier at 18 ℃, implying a metabolic suppression in the low temperature.However, the body temperature did not show obvious circadian rhythm at constant conditions.The plasma glucose concentration at 28 ℃ was significantly higher than that at 18 ℃ with different circadian fluctuation: the value at 16∶00 was significantly higher than that at 20∶00, 00∶00 and 12∶00 under 28 ℃.However, the values at 20∶00 and 08∶00 were significantly lower than that at 00∶00 and 12∶00 under 18 ℃, and the values at 04∶00 and 16∶00 were moderate.The present study confirmed the circadian rhythms in the SMR, heart rate and plasma glucose concentration ofP.erythrurus.The control of some endogenous factors played major role in the circadian rhythms of metabolism, while temperature had notable effects in entraining these rhythms, which may be associated with the secretion of some hormones.
Phrynocephaluserythrurus; circadian rhythms; metabolism; temperature
2016-01-15 接受日期:2016-04-13 基金項目:國家自然科學基金項目(No.31472005,No.31272313)
白玉成(1990—),男,碩士,研究方向為動物生理生化, E-mail:baiych2009@163.com
*通信作者Corresponding author,男,教授,博士,博士生導(dǎo)師,研究方向為爬行動物生理生態(tài)學,E-mail:chenq@lzu.edu.cn
10.11984/j.issn.1000-7083.20160020
Q959.6
A
1000-7083(2016)03-0327-06