亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        BOUNDEDNESS FOR SOME SCHRDINGER TYPE OPERATORS ON MORREY SPACES WITH VARIABLE EXPONENT RELATED TO CERTAIN NONNEGATIVE POTENTIALS

        2016-12-07 08:58:56WANGMinSHULishengQUMengCHENGMeifang
        數(shù)學(xué)雜志 2016年6期
        關(guān)鍵詞:交換子安徽師范大學(xué)王敏

        WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

        WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

        In this paper,the boundedness of some Schrdinger type operators and the commutators is considered.Using the boundedness of them on Lpspace,we obtain the boundedness of some schrdinger type operators and the commutators on Morrey with variable exponents.

        Morrey spaces;commutators;Schrdinger type operators;variable exponent

        2010 MR Subject Classification:42B20;42B35

        Document code:AArticle ID:0255-7797(2016)06-1149-11

        1 Introduction

        In this paper,we consider the schrdinger differential operator

        where V(x)is a nonnegative potential belonging to the reverse Hlder class Bqfor q≥

        A nonnegative locally Lqintegrable function V(x)on Rnis said to belong to Bq(q>1) if there exists a constant C>0 such that the reverse Hlder inequality

        holds for every ball in Rn,see[1].

        Shen[1]established Lpestimates for schrdinger type operators with certain potentials.Kurata,Nishigaki and Sugano[2]considered the boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators.Recently,paper[3] by Tang and Dong proved the boundedness of some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials.

        It is well known that function spaces with variable exponents were intensively studied during the past 20 years,due to their applications to PDE with non-standard growth conditions and so on,we mention e.g.[4,5].A great deal of work was done to extend the theory of potential,singular type operators and their commutators on the classical Lebesgue spaces to the variable exponent case(see[6-8]).Also,many results about potential,singular type operators and their commutators were studied on Morrey Spaces with variable exponent(see [9-12]).Hence,it will be an interesting problem whether we can establish the boundedness of some schrdinger type operators on Morrey spaces with variable exponent related to certain nonnegative potentials.The main purpose of this paper is to answer the above problem.

        To meet the requirements in the next sections,here,the basic elements of the theory of the Lebsegue spaces with variable exponent are briefly presented.

        Let p(·):Rn→[1,∞)be a measurable function.The variable exponent Lebesgue space Lp(·)(Rn)is defined by

        Lp(·)(Rn)is a Banach space with the norm defined by

        We denote p-:=ess

        Let P(Rn)be the set of measurable function p(·)on Rnwith value in[1,∞)such that 1<p-≤p(·)≤p+<∞.

        where the supremum is taken over all balls B containing x.B(Rn)is the set of p(·)∈P(Rn) satisfying the condition that M is bounded on Lp(·)(Rn).

        We say a function p(·):Rn-→R is locally log-Hlder continuous at the origin,if there exists a constant C such that

        for all x∈Rn.If,for some p(∞)∈R and C>0,there holds

        for all x∈Rn,then we say p(·)is log-Hlder continuous at infinity.

        Definition 1.1[9]For any p(·)∈B(Rn),let kp(·)denote the supremum of those q>1 such that p(·)/q∈B(Rn).Let ep(·)be the conjugate of kp'(·).

        Definition 1.2[9]Let p(·)∈L∞(Rn)and 1<p(x)<∞.A Lebesgue measurable function u(x,r):Rn×(0,∞)→(0,∞)is said to be a Morrey weight function for Lp(·)(Rn) if there exists a constant C>0 such that for any x∈Rnand r>0,u fulfills

        We denote the class of Morrey weight functions by Wp(·).

        Next we define the Morrey spaces with variable exponent related to the nonnegative potential V.

        For x∈Rn,the function mV(x)is defined by

        Definition 1.3 Let p(·)∈B(Rn),u(x,r)∈Wp(·)and-∞<α<∞.For f∈(Rn)and V∈Bq(q>1),we say the Morrey spaces with variable exponent related to the nonnegative potential V is the collection of all function f satisfying

        In particular,when α=0 or V=0,the spaces(Rn)is the Morrey spaces with variable exponent Mp(·),u(Rn)introduced in[9].It is easy to see thatMp(·),u(Rn)for α>0 and Mp(·),u(Rn)?(Rn)for α<0.If p(x)is a constant, u(x,r)=rλand λ∈[0,n/p),we have

        Now it is in this position to state our results.

        for any k∈N,where Ckdenotes a positive constant depend on k.In the rest of this paper, we always assume that T is one of the schrdinger type operators?(-△+V)-1?,?(-△+ V)-1/2and(-△+V)-1/2?with V∈Bn.

        Theorem 1.1 Suppose V∈Bn,-∞<α<∞,p(x)∈B(Rn).If u∈Wp(·),then

        Let b∈BMO(see its definition in[14]),we define the commutator of T by

        Theorem 1.2 Suppose V∈Bn,b∈BMO,-∞<α<∞,p(x)∈B(Rn).If

        then

        Remark 1 We can easily show that u fulfills(1.3)implies u∈Wp(·)

        Next,we consider the boundedness of fractional integrals related to schrdinger operators.

        The L-fractional integral operator is defined by

        By Lemma 3.3 in[15],one can get the kernel Kβ(x,y)of Iβsatisfy the following inequality

        for any k∈N and 0<β<n.

        Theorem 1.3 Suppose V∈Bn/2,-∞<α<∞,p(x),q(x)∈B(Rn)satisfy p+<If exists q0satisfying

        Remark 2 Wq(·)?Wp(·).Indeed,for j≥0,by inequality(2.3)in the next section,we have

        Therefore,using inequality(1.1),we obtain Wq(·)?Wp(·).

        Let b∈BMO,we define the commutator of Iβby[b,Iβ]f=bIβf-Iβ(bf).

        Theorem 1.4 Suppose V∈Bn/2,b∈BMO,-∞<α<∞,p(·)∈

        If p+<and

        then

        For brevity,C always means a positive constant independent of the main parameters and may change from one occurrence to another.B(x,r)={y∈Rn:|x-y|<r},χBkbe the characteristic function of the set Bkfor k∈Z.|S|denotes the Lebesgue measure of S.The exponent p'(x)means the conjugate of p(x),that is,1/p'(x)+1/p(x)=1.

        2 Proofs of Theorems

        In order to prove our result,we need some conclusions as follows.

        Lemma 2.1[16]Let p(·)∈P(Rn).Then the following conditions are equivalent:

        (1)p(·)∈B(Rn);

        (2)p'(·)∈B(Rn);

        (3)p(·)/q∈B(Rn)for some 1<q<p-;

        (4)(p(·)/q)'∈B(Rn)for some 1<q<p-.

        Lemma 2.1 ensures that kp(·)is well-defined and satisfies 1<kp(·)≤p-.Moreover, p+≥ep(·).

        Lemma 2.2[17]If p(·)∈P(Rn),then for all f∈Lp(·)(Rn)and all g∈Lp'(·)(Rn)we have

        where rp:=1+1/p--1/p+.

        Lemma 2.3[6]If p(·)∈B(Rn),then there exists C>0 such that for all balls B in Rn,

        Lemma 2.4[9]Let p(x)∈B(Rn)and 1<p-≤p+<∞.There exist C1,C2>0 such that for any B∈B,

        Lemma 2.5[9]Let p(x)∈B(Rn).For any 1<q<kp(·)and 1<s<kp'(·),there exist constants C1,C2>0 such that for any x0∈Rnand r>0,we have

        The next lemma can be get by inequality(1.4)and Corollary 2.12 in[6].

        Lemma 2.6[6]Let β>0,p(x),q(x)∈P(Rn)satisfy p+<.If exists q0satisfyingfor some C>0.

        Theorem 1 in[8]and inequality(1.4)are rewrited as the following lemma.

        Lemma 2.7 Suppose that p(·)∈.then we have

        for f∈Lp(·)(Rn)and b∈BMO(Rn).

        Using Corollary 2.5 and Corollary 2.10 in[6]and the inequality(1.2),we can get the following result.

        Lemma 2.9[18]Let k be a positive integer.Then we have that for all b∈BMO(Rn) and all i,j∈Z with i>j,

        Lemma 2.10[1,3]Suppose V∈Bqwith q≥n/2.Then there exist positive constants C and k0such that

        (1)mV(x)~mV(y)if|x-y|≤

        (2)mV(y)≤C(1+|x-y|mV(x))kOmV(x);

        (3)mV(y)≥

        We will give the proofs of Theorems 1.3 and 1.4 below.The arguments for Theorems 1.1 and 1.2 are similar,we omit the details here.

        Proof of Theorem 1.3 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,we write f(x)=f0(x)+fj(x),where f0= fχB(z,2r),fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

        By Lemma 2.6,we obtain

        Because inequality(1.1)and Lemma 2.5 imply that u(x,r)≥Cu(x,2r).Therefore,we obtain

        Furthermore,for any j≥1,x∈B(z,r)and y∈B(z,2j+1r)B(z,2jr),we note that |x-y|≥|y-z|-|x-z|>C2jr.Thus we get

        Using Lemma 2.10,we derive the estimate

        Thus we get that

        Lemma 2.2 ensures that

        for some constant C>0.

        Subsequently,taking the norm‖·‖Lq(·)(Rn),we have

        Applying Lemma 2.3 with B=B(z,2j+1r),we obtain

        Using the above inequality on(2.2),we obtain

        In view of the fact that for any ball B,we have

        Lemma 2.4 implies that

        for some constants C1>C2>0 independent of B.

        Hence using(2.3)with B=B(z,2j+1r),we have

        Therefore

        Thus we arrive at the inequality

        Taking k=(-[α]+1)(k0+1),we obtain

        As u∈Wq(·)and α<0,we have

        Proof of Theorem 1.4 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,write f(x)=f0(x)+fj(x),where f0=fχB(z,2r), fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

        First,we estimate D1.

        Lemma 2.7 shows that‖[b,Iβ]f0‖Lq(·)(Rn)≤C‖b‖BMO‖f0‖Lp(·)(Rn).Thus,we find that

        because inequality(1.1)and Lemma 2.5 imply that u(z,2r)≤Cu(z,r).

        Next,we estimate D2.

        For any j≥1,x∈B(z,r)and y∈B(z,2j1r)B(z,2jr),we note that|x-y|≥|y-z|-|x-z|>C2jr.Using inequality(2.1)and Lemma 2.2,we obtain

        Subsequently,taking the norm‖·‖Lq(·)(Rn)and using Lemma 2.9,we have

        The arguments here are quite similar to the proof of Theorem 1.3,so we have

        Taking k=(-[α]+1)(k0+1),we obtain

        As u fulfills(1.3)and α<0,we obtain

        Consequently we have proved Theorem 1.4.

        References

        [1]Shen Z.Lpestimates for Schrdinger operators with certain potentials[J].Ann.Inst.Fourier(Grenoble),1995,45(2):513-546.

        [2]Kurata K,Nishigaki S,Sugano S.Boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators[J].Proc.Amer.Math.Soc.,2000,128(4):1125-1134.

        [3]Tang L,Dong J.Boundedness for some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials[J].J.Math.Anal.Appl.,2009,355(1):101-109.

        [4]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration[J]. SIAM J.Appl.Math.,2006,66(4):1383-1406.

        [6]Cruz-Uribe D,Fiorenza A,Martell J M,et al.The boundedness of classical operators on variable Lpspaces[J].Ann.Acad.Sci.Fenn.Math.,2006,31(1):239-264.

        [7]Huang A,Xu J.Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J].Appl.Math.J.Chin.Univ.,2010,25(1):69-77.

        [8]Izuki M.Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend.Circ.Mat.Palermo.,2010,59(3):461-472.

        [9]Ho K P.The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J].Math.Inequal.Appl.,2013,16:363-373,.

        [10]Almeida A,Hasanov J,Samko S.Maximal and potential operators in variable exponent Morrey spaces[J].Geor.Math.J.,2008,15:195-208.

        [11]Xuan Z,Shu L.Boundedness for commutators of Caldern-Zygmund operator on morrey spaces with variable exponent[J].Anal.The.Appl.,2013,29(2):128-134.

        [12]Kokilashvili V,Meskhi A.Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J].Armenian Math.J.,2008,1:18-28.

        [13]Nekvinda A.Hardy-Littlewood maximal operator on Lp(x)(Rn)[J].Math.Inequal.Appl.,2004,7: 255-265.

        [14]Stein E M.Harmonic analysis:real-variable methods,orthogonality,and oscillatory integrals[M]. Princeton,NJ:Princeton Univ.Press,1993.

        [15]Tang L.Weighted norm inequalities for Schrdinger type operators[J].Forum Math.:2013,27(4): 2491-2532.

        [16]Diening L.Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J].Bulletin des Sci.Math.,2005,129(8):657-700.

        [18]Izuki M.Boundedness of commutators on Herz spaces with variable exponent[J].Rend.Circ.Mat. Palermo,2010,59(2):199-213.

        王敏,束立生,瞿萌,程美芳

        (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽蕪湖241003)

        本文考慮了一類Schrdinger型算子和其交換子的有界性問題.利用其在Lp空有界性間上的,獲得了一類Schrdinger型算子和其交換子在變指數(shù)Morrey空間上的有界性.

        Morrey空間;交換子;Schrdinger型算子;變指數(shù)

        MR(2010)主題分類號(hào):42B20;42B35O174.2

        ?date:2014-04-15Accepted date:2014-09-15

        Supported by NSFC(11201003);University NSR Project of Anhui Province (KJ2014A087)and Anhui Provincial Natural Science Foundation(1408085MA01).

        Biography:Wang Min(1990-),male,born at Wuwei,Anhui,postgraduate,major in harmonic analysis.

        猜你喜歡
        交換子安徽師范大學(xué)王敏
        Ap(φ)權(quán),擬微分算子及其交換子
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
        Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
        魅力中國(2018年4期)2018-07-30 11:11:44
        Hemingway’s Marriage in Cat in the Rain
        Electricity supplier era of packaging design Current Situation and Prospects
        東方教育(2017年1期)2017-04-20 02:52:09
        變指標(biāo)Morrey空間上的Marcinkiewicz積分及交換子的有界性
        與Schr?dinger算子相關(guān)的交換子的L~p-有界性
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        Marcinkiewicz積分交換子在加權(quán)Morrey空間上的有界性
        Bromate formation in bromide-containing waters irradiated by gamma rays?
        亚洲一区精品中文字幕| 狠狠色综合7777久夜色撩人| 在线亚洲欧美日韩精品专区| 在线观看网址你懂的| 亚洲视频在线中文字幕乱码| 国产高清在线视频一区二区三区| 亚洲中字慕日产2020| 亚洲人成7777影视在线观看| 亲少妇摸少妇和少妇啪啪| 国产精品日韩av一区二区| 强奷乱码中文字幕| 日韩国产精品一区二区Hd| 国内精品人人妻少妇视频| av免费在线免费观看| 国产精品无码久久久久久| 国产三级精品三级国产| 成人短篇在线视频夫妻刺激自拍| 色佬精品免费在线视频| 777午夜精品免费观看| 国产系列丝袜熟女精品视频| 一区二区三区日本美女视频| 久久亚洲精品国产亚洲老地址| 国产人妻精品一区二区三区不卡| 无码人妻丝袜在线视频| 久久人妻少妇嫩草av蜜桃 | 麻豆av毛片在线观看| 亚洲综合网国产精品一区| 蜜臀久久99精品久久久久久小说 | 狠狠躁狠狠躁东京热无码专区| 国产99久久久国产精品免费| 国产精品日日做人人爱| 欧美尺寸又黑又粗又长| a欧美一级爱看视频| 国产精品一区二区韩国av| 国产欧美日韩一区二区三区 | 精品亚洲一区二区99| 一区二区三区在线视频观看| 99久久免费国产精品| 亚洲AⅤ无码片一区二区三区| 国产精品自拍视频免费观看| 亚洲av无码乱码在线观看富二代|