亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        環(huán)境雌激素雙酚A暴露現(xiàn)狀及其雄性生殖毒性研究概況

        2016-12-02 05:41:40蔣志惠謝文艷李新平張小鶯
        生態(tài)毒理學報 2016年4期
        關(guān)鍵詞:雙酚睪酮雄性

        蔣志惠,謝文艷,李新平,張小鶯

        西北農(nóng)林科技大學 動物醫(yī)學院,楊凌 712100

        ?

        環(huán)境雌激素雙酚A暴露現(xiàn)狀及其雄性生殖毒性研究概況

        蔣志惠,謝文艷,李新平,張小鶯*

        西北農(nóng)林科技大學 動物醫(yī)學院,楊凌 712100

        雙酚A(bisphenol A,BPA)作為典型的環(huán)境雌激素,在環(huán)境中廣泛存在,具有接觸機會頻繁、劑量累積、潛伏期長等特點,是對生殖系統(tǒng)危害極大的一類污染物。研究表明BPA可在地表水、野生動物體內(nèi)檢測出,甚至在健康人群的體液中存在,尤其在嬰兒體內(nèi)含量較高。BPA進入機體后可通過I相和II相代謝酶分解,其分解產(chǎn)物的毒性目前仍不清楚。BPA在體內(nèi)發(fā)揮雌激素樣作用,與雌二醇競爭性地結(jié)合到雌激素受體上,阻礙雄激素受體的活性,促進促黃體生成素與催乳素的合成,最終抑制雄性激素的合成。BPA可破壞血睪屏障,直接刺激睪丸細胞的凋亡并導致精子質(zhì)量下降,其中主要通過影響下丘腦-垂體-性腺軸(HPG)上促性腺激素釋放激素受體(GnRHR)、促黃體生成素受體(LHRβ)和促卵泡雌激素(Fshb)的表達和直接刺激睪丸和附睪細胞,降低睪酮合成酶的表達及活性,抑制與精子生成相關(guān)蛋白的表達,從而影響生殖能力。同時,BPA代謝過程中消耗大量的抗氧化酶,產(chǎn)生氧自由基,其氧化產(chǎn)物可能會對睪丸和附睪的損傷形成二次打擊??傊p酚A造成雄性生殖損傷障礙主要是損傷HPG軸正負反饋調(diào)節(jié)的平衡以及影響調(diào)節(jié)激素相關(guān)基因的表達和直接損傷睪丸細胞和精子質(zhì)量。

        雙酚A;生殖毒性;含量檢測;代謝

        Received 27 October 2015 accepted 31 December 2015

        雙酚A (bisphenol A,BPA,CAS no. 80-05-7)即是環(huán)境內(nèi)分泌干擾物的一種,常作為增塑劑而被廣泛應用,包括嬰兒奶瓶、塑料和金屬材料的食品飲料容器的內(nèi)壁涂層、牙套密封劑等。因其化學結(jié)構(gòu)與雌激素類似(圖1),具有弱雌激素和強抗雄激素活性,導致雄性生殖發(fā)育毒性。隨著塑料制品的廣泛應用,人們接觸BPA的機會也越來越多,經(jīng)調(diào)查,平均每年排放到大氣中的BPA可達100 t[2],另外,包括灰塵、水、紙也發(fā)現(xiàn)了BPA的污染[3-4]。美國疾控中心調(diào)研發(fā)現(xiàn)90%的美國人在尿液中檢測到BPA的存在[5]。當大部分塑料制品在有裂紋或長期應用造成磨損時,就會分解釋放出BPA,滲入食品或飲料,從而進入人體。BPA通過皮膚、呼吸道、消化道等進入動物或人體后,引起機體多系統(tǒng)損傷,如生殖系統(tǒng)、發(fā)育系統(tǒng)、免疫系統(tǒng)、神經(jīng)系統(tǒng)、代謝系統(tǒng),并具有基因毒性和氧化毒性,其中,對生殖系統(tǒng)的影響已成為當前研究的重中之重[1]。

        圖1 雙酚A和雌二醇的化學結(jié)構(gòu)Fig. 1 The chemical structure of BPA and estradiol

        表1 地表水和野生動物體內(nèi)BPA的含量

        注:GC-ECD,氣相色譜-電子捕獲檢測器;HPLC,高效液相色譜法;GC-MS,氣相色譜-串聯(lián)質(zhì)譜法;UPLC,超高效液相色譜法;ND,未檢測出。

        Notes: ECD, GC-63Ni Electron Capture Detector; HPLC, High Performance Liquid Chromatography; GC-MS, Gas Chromatography-Mass Spectrometer; UPLC, Ultra Performance Liquid Chromatography; ND, Not-Detected.

        1 雙酚A暴露標志物監(jiān)測 (Monitoring of environmental exposure to BPA)

        隨著人們對BPA的關(guān)注,專家學者監(jiān)測了環(huán)境及野生動物中BPA的含量,發(fā)現(xiàn)在工廠附近河流水體存在大量BPA,甚至在一些地區(qū)的地表水中也檢測到了BPA的存在。同時,野生魚出現(xiàn)了雌雄同體的現(xiàn)象[6],并發(fā)現(xiàn)BPA的存在(如表1)。2013年,美國疾病防控中心(CDC)監(jiān)測人類血液或尿液中BPA的含量,發(fā)現(xiàn)2 594名美國成年人尿液樣本中,共有95%的樣品中能檢出BPA[12]。美國國家健康與營養(yǎng)調(diào)查(NHANES)報道,基于尿液中BPA的含量推測人類平均每天進食BPA約25 ng·kg-1[13]。值得注意的是,BPA可通過乳汁進入嬰兒體內(nèi)[14],且與其他年齡段相比含量最高[15]。另外,研究者采集曾接受牙齒矯正患者的唾液,結(jié)果表明使用牙齒密封劑患者均能檢測出BPA的含量。其他國家包括中國、德國、澳大利亞、西班牙、韓國和日本等也對人群尿液中BPA含量進行了檢測,發(fā)現(xiàn)各國均有不同程度的BPA污染(表2)。研究表明,健康人群中均可檢出BPA,BPA的EC50是3.24~34.85 μg·mL-1[16],雖然目前研究結(jié)果表明體內(nèi)含量未達到對機體損傷計量,但BPA可長期累積在機體內(nèi),當長期食用含雙酚A的食品和其他接觸將會存在相當大的隱患。

        表2 人類體液中BPA的含量

        注:GC-MS/MS,氣相色譜-串聯(lián)質(zhì)譜法;HPLC-FD,高效液相-熒光色譜法;Online SPE-HPLC-MS/MS,在線固相萃取-高效液相色譜-串聯(lián)質(zhì)譜法;LC/LC-MS/MS,液相色譜-串聯(lián)質(zhì)譜法;SGIC-HPLC-FD,硅凝膠免疫柱-高效液相-熒光檢測法;CME-LC-FD,微萃取-液相色譜-熒光色譜法;ND,未檢測出;-,未說明。

        Notes: GC-MS/MS, Gas Chromatography-Mass Spectrometer/Mass Spectrometer; HPLC-FD, High Performance Liquid Chromatography-Fluorescent Detection; Online SPE-HPLC-MS/MS, Online Solid Phase Extraction-High Performance Liquid Chromatography- Mass Spectrometer/Mass Spectrometer; SGIC-HPLC-FD, Silicon Gel Immune Column-High Performance Liquid Chromatography-Fluorescent Detection; CME-LC-FD, Coacervative Microextraction-Liquid Chromatography-Fluorescence Detection; ND, Not detected; -, Not shown.

        2 雙酚A的代謝 (Metabolism of BPA)

        BPA主要是通過肝臟和胃腸道中的I相代謝酶CYP450家族發(fā)生1位取代,生成2,2-雙(4-羥苯基)丙醇,o-羥基苯二酚或丙二酚-o-醌。在人類和大鼠中,90% I相代謝產(chǎn)物可通過II相結(jié)合酶-谷胱甘肽結(jié)合酶(GSTs)家族結(jié)合成無毒形式的單葡萄糖醛酸(如圖2)。BPA可影響多種I相代謝酶如表3所示,其中I相代謝酶主要是CYP3A家族[29],當BPA刺激人源肝臟細胞時,可誘導CYP3A4基因的表達[30]。當不同濃度的BPA刺激細胞時,CYP3A4的表達呈現(xiàn)正相關(guān)[29]。BPA在體內(nèi)的代謝過程主要有3個途徑。途徑一:BPA通過CYP450酶氧化生成羥乙基乙醇(HCA)和鏈有谷胱甘肽(GSH)的4-異丙苯酚[31]。途徑二:可通過羥基化反應形成間位羥基化的BPA(m-OH BPA),然后氧化成對位鏈有苯醌基的BPA,GSH共價結(jié)合到苯醌基團上,另外GSH還可鏈在去除水分子后的羥基化的BPA上[32]。途徑三:BPA可通過C-C鍵斷開使其烷基鏈退化轉(zhuǎn)移,通過CYP450酶催化發(fā)生鄰位取代反應形成醌類化合物,產(chǎn)生的醌類化合物由于其化學鍵之間的范德華力小而不穩(wěn)定,可釋放出正電荷,故可通過與水分子結(jié)合生成羥乙基乙醇[33],或者與GSH結(jié)合生成4-異丙苯酚[32]。以上3種途徑的代謝產(chǎn)物均為無毒化合物,但有研究表明環(huán)境微生物體內(nèi)代謝的BPA對石斑魚的毒性要高于BPA本身,其代謝產(chǎn)物可導致石斑魚胚胎在受精后的死亡率升高,同時增加石斑魚胚胎畸形的比例,提示BPA的代謝還存在其他未知途徑。

        圖2 肝臟中BPA的生物代謝過程Fig. 2 Proposed metabolism of BPA in human liver

        3 雙酚A對雄性生殖的毒性作用機理 (Mechanization of BPA induced reproduction injury)

        隨著雙酚A在體內(nèi)逐漸累積,發(fā)揮擬雌激素作用,可造成男性激素紊亂,生精細胞的損傷,最終導致雄性不育。精子的質(zhì)量是評價雄性生殖能力的指標,刺激精子合成的激素的水平和生成精子的場所睪丸的質(zhì)量是影響精子質(zhì)量的主要因素。

        3.1 雙酚A導致睪丸損傷的作用機理

        在BPA的刺激下,可引起睪丸細胞凋亡、產(chǎn)生氧化應激,進而造成精子生成紊亂。病理學研究表明BPA可引起睪丸細胞出現(xiàn)空泡、細胞核消失、壞死、曲精小管中精子含量降低,精子凝集成團,間質(zhì)細胞減少等變化。TUNEL法檢測表明BPA組熒光量增加,同時與凋亡信號相關(guān)的蛋白caspase-3和Bcl-2表達量升高,通過激活JNKs/p38 MAPK蛋白磷酸化,刺激c-jun和CHOP基因表達,說明BPA可引起睪丸細胞凋亡[43-44]。同時,BPA可刺激核轉(zhuǎn)錄因子NF-κB從細胞質(zhì)進入細胞核進行轉(zhuǎn)錄,促進炎癥的產(chǎn)生。另外,BPA在體內(nèi)代謝時消耗大量的谷胱甘肽還原酶,導致機體不能及時清除自由基,使其自由基含量增加,進而刺激睪酮細胞損傷。

        哺乳動物體內(nèi)95%雄激素(睪酮和雄烯二酮)是由睪丸間質(zhì)細胞分泌,其利用血膽固醇或乙酸鹽,在其細胞器內(nèi)質(zhì)網(wǎng)、線粒體及微粒體中,經(jīng)過一系列的生物學過程,合成睪酮。從膽固醇到睪酮的轉(zhuǎn)化過程中,主要涉及到下列步驟(圖3):①膽固醇須從線粒體膜外由類固醇急性調(diào)節(jié)蛋白(StAR)和轉(zhuǎn)運蛋白(TSPO)轉(zhuǎn)運進入線粒體膜內(nèi)。②線粒體內(nèi)的膽固醇在CYP11A1催化下變?yōu)樵邢┐纪?。③孕烯醇酮可?jīng)3β-類固醇脫氫酶(3β-HSD)脫氫成孕酮。④孕酮經(jīng)CYP17A1代謝成雄烯二酮。⑤雄烯二酮經(jīng)17β-類固醇脫氫酶(17β-HSD)脫氫生成睪酮。這一過程,影響其中的每一步驟都會影響睪酮的生成。研究發(fā)現(xiàn),當睪丸細胞暴露在BPA時,可降低CYP11A1、3β-HSD、17β-HSD和CYP17A1的表達,表明BPA可通過抑制生成類固醇酶的表達進而影響睪酮的生成[40]。

        表3 BPA對不同種屬和組織中CYP的表達

        圖3 體內(nèi)激素合成主要信號分子通路注:促黃體生成素可刺激類固醇生成急性調(diào)節(jié)蛋白(StAR)將膽固醇由細胞質(zhì)轉(zhuǎn)運到細胞核,進而被膽固醇側(cè)鏈裂解酶(CYP11A1)、3β羥化類固醇脫氫酶(3β-HSD)、17,20裂解酶(CYP17A1)和17β羥化類固醇脫氫酶(17β-HSD)代謝生成睪酮。Fig. 3 Main molecular signaling pathways involved in the regulation of homeostasisNotes: Luteinizing hormone stimulates the sterodiogenic acute regulatory protein (StAR) conjunction with the CYP 11A1 in inner mitochondria membrane of testis, tethered to the outer mitochondrial membrane, and then the cholesterol were synthesized into testosterone by CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD.

        圖4 影響精子功能的相關(guān)蛋白注:該圖改編自Rahman等的文章[45]。Fig. 4 Pathways regulated by selected fertility-related proteins in spermatozoaNotes: Adapt from Rahman et al. ,2015[45]

        3.2 雙酚A導致激素紊亂的作用機理

        BPA可通過作用下丘腦-垂體-性腺軸,通過干擾雄激素受體(AR)活性,導致雄激素不能與受體結(jié)合而發(fā)揮功能。另外,在下丘腦或垂體中,BPA可與雌二醇競爭性結(jié)合在雌二醇激素受體(ER)上,抑制機體的負反饋調(diào)節(jié)作用,使正反饋持續(xù)刺激LH的分泌,進而刺激睪丸中雌二醇的產(chǎn)生,發(fā)揮雌激素樣作用,BPA還可促進催乳素、性激素結(jié)合蛋白的表達和分泌,降低抑制素B和雄烯二酮的水平,擾亂激素的平衡[46]。

        3.3 雙酚A導致精子損傷的作用機理

        BPA可破壞睪丸中的血睪屏障直接作用于精子,通過降低ATP的含量,導致精子的活性、數(shù)量、運動性降低,畸形率增加[44]。高劑量BPA(100 μmol·L-1)可引起參與精子生成的酪氨酸蛋白磷酸化導致頂體細胞早熟,影響受精質(zhì)量和胚胎發(fā)育。通過生物信息學分析已篩選出BPA影響精子功能相關(guān)的蛋白,包括參與氧化應激、能量代謝、精子的運動與活化、頂體反應、細胞生長、精子生成和生育能力的蛋白[45](圖4)。其中GAPDH和GPX4分別是糖酵解和電子傳遞過程中參與酶,可調(diào)節(jié)精子的運動性。GPX4和PRDX5是精子生成過程中的抗氧化物酶,他們可清除體內(nèi)99.9%的H2O2。Actin肌動蛋白可調(diào)節(jié)精子的運動。

        4 小結(jié) (Conclusions)

        雙酚A作為主要的環(huán)境雌激素,可導致雄性激素水平下降,損傷睪丸功能,降低精子的質(zhì)量,因此可成為典型的雄性生殖障礙模型的誘導劑,通過研究BPA在體內(nèi)的代謝特點,損傷的作用靶點等內(nèi)容,為研發(fā)雄性生殖保護的新藥提供思路。

        [1] Srivastava S, Gupta P, Chandolia A, et al. Bisphenol A: A threat to human health? [J]. Journal of Environmental Health, 2015, 77(6): 20-26

        [2] Vandenberg L N, Chahoud I, Heindel J J, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A [J]. Environmental Health Perspectives, 2010, 118(8): 1055-1070

        [3] Vandenberg L N, Hauser R, Marcus M, et al. Human exposure to bisphenol A (BPA) [J]. Reproductive Toxicology, 2007, 24(2): 139-177

        [4] Welshons W V, Nagel S C, vomSaal F S. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure [J]. Endocrinology, 2006, 147(6): S56-S69

        [5] Lang I A, Galloway T S, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults [J]. The Journal of the American Medical Association, 2008, 300(11): 1303-1310

        [6] Zheng B, Liu R, Liu Y, et al. Phenolic endocrine-disrupting chemicals and intersex in wild crucian carp from Hun River, China [J]. Chemosphere, 2015, 120: 743-749

        [7] Li J, Fu J, Zhang H, et al. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing [J]. Science of the Total Environment, 2013, 450: 162-168

        [8] Esteban M,Gorga M, Petrovic S, et al. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain [J]. Science of the Total Environment, 2014, 466: 939-951

        [9] Kim S, Lee S, Kim C, et al. In vitro and in vivo toxicities of sediment and surface water in an area near a major steel industry of Korea: Endocrine disruption, reproduction, or survival effects combined with instrumental analysis [J]. Science of the Total Environment, 2014, 470: 1509-1516

        [10] Gu Y, Yu J, Hu X, et al. Characteristics of the alkylphenol and bisphenol A distributions in marine organisms and implications for human health: A case study of the East China Sea [J]. Science of the Total Environment, 2016, 539: 460-469

        [11] Chen W L, Guo J C, Wang G S, et al. Distribution of feminizing compounds in the aquatic environment and bioaccumulation in wild tilapia tissues [J]. Environmental Science and Pollution Research, 2014, 21(19): 11349-11360

        [12] Centers for Disease Control and Prevention (CDC). 2011-2012 Data Documentation, Codebook, and Frequencies [EB/OL]. (2014-10)[2015-10-27]. http://wwwn.cdc.gov/nchs/nhanes/2011-2012/EPH_G.htm

        [13] LaKind J S, Naiman D Q. Temporal trends in bisphenol A exposure in the United States from 2003-2012 and factors associated with BPA exposure: Spot samples and urine dilution complicate data interpretation [J]. Environmental Research, 2015, 142: 84-95

        [14] Kuruto N R, Tateoka Y, Usuki Y, et al. Measurement of bisphenol A concentrations in human colostrum [J]. Chemosphere, 2007, 66: 1160-1164

        [15] Calafat A M, Weuve J, Ye X, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants [J]. Environmental Health Perspectives, 2009, 117: 639-644

        [17] Kim K, Park H, Yang W, et al. Urinary concentrations of bisphenol A and triclosan and associations with demographic factors in the Korean population [J]. Environmental Research, 2011, 111(8): 1280-1285

        [18] Arakawa C, Fujimaki K, Yoshinaga J I, et al. Daily urinary excretion of bisphenol A [J]. Environmental Health Preventive Medicine, 2004, 9(1): 22-26

        [19] Takeuchi T, Tsutsumi O. Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels [J]. Biochemical and Biophysical Research Communications, 2002, 291(1): 76-78

        [20] Mao L, Sun C, Zhang H, et al. Determination of environmental estrogens in human urine by high performance liquid chromatography after fluorescent derivatization with p-nitrobenzoyl chloride [J]. Analytical Chimica Acta, 2004, 522(2): 241-246

        [21] He Y, Miao M, Herrinton L J, et al. Bisphenol A levels in blood and urine in a Chinese population and the personal factors affecting the levels [J]. Environmental Research, 2009, 109(5): 629-633

        [22] Nomura S O, Harnack L, Robien K. Estimating bisphenol A exposure levels using a questionnaire targeting known sources of exposure [J]. Public Health Nutrition, 2015, 2: 1-14

        [23] Koch H M, Kolossa G M, Schr?ter K C, et al. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: A retrospective exposure evaluation [J]. Journal of Exposure Science and Environmental Epidemiology, 2012, 22(6): 610-616

        [24] Becker K, G?en T, Seiwert M, et al. GerES IV: Phthalate metabolites and bisphenol A in urine of German children [J]. International Journal of Hygiene and Environmental Health, 2009, 212(6): 685-692

        [25] Sch?ringhumer K, Cichna K M. Sample clean-up with sol-gel enzyme and immunoaffinity columns for the determination of bisphenol A in urine [J]. Journal of Chromatography B, 2007, 850(1): 361-369

        [26] García P A, Lunar M L, Rubio S, et al. Determination of urinary bisphenol A by coacervative microextraction and liquid chromatography-fluorescence detection [J]. Analytica Chimica Acta, 2008, 630(1): 19-27

        [27] Berman T, Goldsmith R, G?en T, et al. Demographic and dietary predictors of urinary bisphenol A concentrations in adults in Israel [J]. International Journal of Hygiene and Environmental Health, 2014, 217(6): 638-644

        [28] Joskow R, Barr D B, Barr J R, et al. Exposure to bisphenol A from bis-glycidyldimethacrylate-based dental sealants [J]. The Journal of the American Dental Association, 2006, 137(3): 353-362

        [29] Kuzbari O, Peterson C M, Franklin M R, et al. Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: Implications for toxicity testing paradigms [J]. Reproductive Toxicology, 2013, 37: 24-30

        [30] Quesnot N, Bucher S, Fromenty B, et al. Modulation of metabolizing enzymes by bisphenol A in human and animal models [J]. Chemical Research in Toxicology, 2014, 27(9): 1463-1473

        [31] Krol E S. Metabolic detoxication pathways for sterigmatocystin in primary tracheal epithelial cells: Structural identification of glutathione adducts [J]. Chemical Research in Toxicology, 2011, 24(9): 1339-1340

        [32] Jaeg J P, Perdu E, Dolo L, et al. Characterization of new bisphenol A metabolites produced by CD1 mice liver microsomes and S9 fractions [J]. Journal Agricultural and Food Chemistry, 2004, 52(15): 4935-4942

        [33] Nakamura S, Tezuka Y, Ushiyama A, et al. Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity [J]. Toxicology Letters, 2011, 203(1): 92-95

        [34] Jeong H G, Kimand J Y, Choi C Y. Down-regulation of murine Cyp1a-1 in mouse hepatoma Hepa-1c1c7 cells by bisphenol A [J]. Biochemical and Biophysical Research Communications, 2000, 277(3): 594-598

        [35] Elumalai P, Krishnamoorthy G, Selvakumar K, et al. Studies on the protective role of lycopene against polychlorinated biphenyls (Aroclor 1254)-induced changes in StAR protein and cytochrome P450 scc enzyme expression on Leydig cells of adult rats [J]. Reproductive Toxicology, 2009, 27(1): 41-45

        [36] Gilibili R R, Vogl A W, Chang T K, et al. Localization of cytochrome P450 and related enzymes in adult rat testis and downregulation by estradiol and bisphenol A [J]. Toxicological Sciences, 2014, 140(1): 26-39

        [37] Hanioka N, Jinno H, Tanaka K T, et al. Interaction of bisphenol A with rat hepatic cytochrome P450 enzymes [J]. Chemosphere, 2000, 41(7): 973-978

        [38] Gao J, Zhang Y, Yang Y, et al. Molecular characterization of PXR and two sulfotransferases and hepatic transcripts of PXR, two sulfotransferases and CYP3A responsive to bisphenol A in rare minnow Gobiocypris rarus [J]. Molecular Biology Reports, 2014, 41(11): 7153-7165

        [39] Martínez P P, Morales M, Martínez J L, et al. Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 155(2): 333-343

        [40] Peretz J, Flaws J A. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles [J]. Toxicology and Applied Pharmacology, 2013, 271(2): 249-256

        [41] 王強, 吳沂芮, 朱靖剛, 等. 雙酚A通過雌激素受體影響小鼠睪丸和附睪蘭尼堿受體基因的表達[J]. 江蘇大學學報, 2015, 25(1): 1-4

        Wang Q, Wu Y R, Zhu J G, et al. The effect of bisphenol A on ryanodine receptors expression in testicle and epididymis [J]. Chinese Journal of Jiangsu University, 2015, 25(1): 1-4 (in Chinese)

        [42] Huang H, Leung L K. Bisphenol A downregulates CYP19 transcription in JEG-3 cells [J]. Toxicology Letters, 2009, 189(3): 248-252

        [43] Qi S, Fu W, Wang C, et al. BPA-induced apoptosis of rat Sertoli cells through Fas/FasL and JNKs/p38 MAPK pathways [J]. Reproductive Toxicology, 2014, 50: 108-116

        [44] Othman A I, Edrees G M, Missiry M A, et al. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity [J]. Toxicology and Industrial Health, 2014: 0748233714561286

        [45] Rahman M S, Kwon W S, Lee J S, et al. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa [J]. Scientific Reports, 2015, 16(5): 9169

        [46] Liu X, Miao M, Zhou Z, et al. Exposure to bisphenol-A and reproductive hormones among male adults [J]. Environmental Toxicology and Pharmacology, 2015, 39(2): 934-941

        Bisphenol A Exposure and Male Reproductive Injury: An Review

        Jiang Zhihui, Xie Wenyan, Li Xinping, Zhang Xiaoying*

        College of Veterinary Medicine, Northwest A&F University,Yangling 712100, China

        Bisphenol A (BPA) is one of the xenoestrogens and being used as agent for endocrine disruption. The impacts of BPA on male infertility have been investigated in several animal species including fish (in river and lake) as well as in humans. It is metabolized by phase I and phase II enzyme, as a substrate for the ipso-metabolism catalyzed by microsomal cytochrome P450 (CYP450). BPA interrupts the androgen receptor activity and competitively combines with estrogen receptor, thereby increasing the levels of prolactin and LH, decreasing the level of testosterone. BPA stimulates the testicular cell apoptosis and decreases the testosterone synthetase activity through the hypothalamus- pituitary- gonad (HPG) axis regulation. The relative gene expression reveals an increase in gonadotropin releasing hormone receptor (Gnrhr), luteinizing hormone beta (LHRβ) and follicle stimulating hormone beta (FSHβ), Continuous exposure to BPA can lead to impairing functioning in sexual development, reproduction and behavior. BPA also decreases sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa and increases the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation thus leading to a precocious acrosome reaction. One of the metabolites of BPA is ROS, which may cause “second hit” for testicle and epididymis injury. In conclusion, BPA exposure compromises sperm production and functionality, disrupts the HPG axis balance and redox pathways resulting in a state of hypogonadotropic hypogonadism.

        bisphenol-A (BPA); reproductive toxicity; content evaluation; metabolism

        教育部外國文教專家聘請計劃(X2015016);陜西省國際科技合作基地建設(shè)項目(2015SD0018);陜西省2011協(xié)同創(chuàng)新中心建設(shè)項目(陜西秦巴山區(qū)生物資源綜合開發(fā))

        蔣志惠(1987-),女,博士研究生,研究方向為藥理毒理學,E-mail: jiangzhihui19870326@126.com;

        *通訊作者(Corresponding author), E-mail: zhang.xy@nwsuaf.edu.cn

        10.7524/AJE.1673-5897.20151027003

        2015-10-27 錄用日期:2015-12-31

        1673-5897(2016)4-001-09

        X171.5

        A

        簡介:張小鶯(1976—),男,博士,教授,研究方向為藥理毒理學。

        蔣志惠, 謝文艷, 李新平, 等. 環(huán)境雌激素雙酚A暴露現(xiàn)狀及其雄性生殖毒性研究概況[J]. 生態(tài)毒理學報,2016, 11(4): 1-9

        Jiang Z H, Xie W Y, Li X P, et al. Bisphenol A exposure and male reproductive injury: An review [J]. Asian Journal of Ecotoxicology, 2016, 11(4): 1-9 (in Chinese)

        猜你喜歡
        雙酚睪酮雄性
        來的是誰?
        麥穗魚(雄性)
        垂釣(2023年11期)2024-01-21 16:07:04
        Raf/MEK/ERK及Ca2+/CaN信號通路在雙酚A影響巨噬細胞分泌IL-10中的作用
        大鰭鱊(雄性)
        垂釣(2023年9期)2023-12-10 19:39:30
        淺談睪酮逃逸
        運動員低血睪酮與營養(yǎng)補充
        血睪酮、皮質(zhì)醇與運動負荷評定
        聚甲基亞膦酸雙酚A酯阻燃劑的合成及其應用
        中國塑料(2016年2期)2016-06-15 20:30:00
        正說睪酮
        大眾健康(2016年3期)2016-05-31 23:59:46
        萌物
        飛碟探索(2016年5期)2016-05-10 23:44:30
        久久精品日本不卡91| 久久一区二区三区不卡| 亚洲高清一区二区三区视频| 中文字幕av永久免费在线| 18禁黄污吃奶免费看网站| 精品爆乳一区二区三区无码av| 日韩亚洲国产av自拍| 亚洲av网站在线免费观看| 无码专区一ⅴa亚洲v天堂| 99re热视频这里只精品| 国产艳妇av在线出轨| av网站韩日在线观看免费| 国产成人av一区二区三区不卡| 国产高清一区二区三区视频| 欧美色色视频| 国产一区二区三区不卡在线播放 | 在线精品一区二区三区| 中文字幕在线观看国产双飞高清 | 97午夜理论片影院在线播放| 久久综合第一页无码| 扒开双腿操女人逼的免费视频| 久久一区二区三区久久久| 天堂а√在线最新版中文在线| 99热成人精品免费久久| 久久婷婷夜色精品国产| 亚洲 小说区 图片区 都市| 国产真实夫妇交换视频| 国产成人av在线影院无毒| 国产精品麻豆一区二区三区 | 色又黄又爽18禁免费网站现观看| 国产亚洲精品aaaaaaa片| 91精品啪在线看国产网站| 午夜少妇高潮在线观看视频| 国产乱妇无乱码大黄aa片| 国产激情视频白浆免费| 日本a一区二区三区在线| 麻豆精品国产专区在线观看| 亚洲精品无码乱码成人| 人妻少妇看A偷人无码电影| 日本免费一区二区三区在线播放| 99久久久国产精品免费蜜臀|