王 睿,劉金花,楊銳妮,楊 鑫
(陜西理工學(xué)院化學(xué)與環(huán)境科學(xué)學(xué)院,陜西省催化基礎(chǔ)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,陜西漢中 723001)
?
CH2=C(CH3)COOCH3+O3反應(yīng)機(jī)理及主通道速率常數(shù)的理論研究
王 睿,劉金花,楊銳妮,楊 鑫
(陜西理工學(xué)院化學(xué)與環(huán)境科學(xué)學(xué)院,陜西省催化基礎(chǔ)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,陜西漢中 723001)
采用CBS-QB3方法構(gòu)建了CH2=C(CH3)COOCH3+O3反應(yīng)體系的勢能剖面,并對其反應(yīng)機(jī)理及速率常數(shù)進(jìn)行了研究.計(jì)算表明,標(biāo)題反應(yīng)首先經(jīng)過渡態(tài)TSa生成一個(gè)穩(wěn)定的五元環(huán)臭氧化物中間體IMa,然后中間體IMa按不同O—O鍵的斷裂方式發(fā)生五元環(huán)裂解反應(yīng),分別生成產(chǎn)物P1(CH2OO+CH3OC(O)C(CH3)O)和P2(CH2O+CH3OC(O)C(CH3)OO).利用經(jīng)典過渡態(tài)理論(TST)并結(jié)合Wigner矯正模型計(jì)算了200~1 200 K范圍內(nèi)標(biāo)題反應(yīng)的速率常數(shù)kTST/W.結(jié)果表明,294 K時(shí),CH2=C(CH3)COOCH3+O3反應(yīng)速率常數(shù)為4.76×10-18cm3·molecule-1·s-1,與Bernard等對類似反應(yīng)所測的實(shí)驗(yàn)值十分吻合.
CH2=C(CH3)COOCH3;O3;CBS-QB3;反應(yīng)機(jī)理;速率常數(shù)
大氣中臭氧層能夠吸收太陽光中波長306.3 nm以下的紫外線來保護(hù)地球上的生物免遭紫外線的傷害.因此,臭氧層的存在及其濃度變化對人類生存環(huán)境和全球氣候變化有著不可估量的影響[1-2],同時(shí)也使得科學(xué)家們對臭氧相關(guān)反應(yīng)并從中得出保護(hù)臭氧層的有效措施也越來越感興趣[3-4].除自由基及活性小分子等物種與臭氧反應(yīng)消耗大氣中臭氧外[5-8],烯烴是對流層大氣中最活潑的揮發(fā)性有機(jī)化合物之一,其對臭氧的損耗也不能忽視[9].因CH2=C(CH3)COOCH3含有雙鍵和酯基官能團(tuán),使得它具有高度化學(xué)活性,主要用于生產(chǎn)其他材料的中間體.同時(shí),甲基丙烯酸甲酯為無色易揮發(fā)液體[10],是揮發(fā)性有機(jī)化合物之一,其進(jìn)入大氣環(huán)境中會(huì)在極大程度上消耗臭氧,導(dǎo)致臭氧層對紫外線的吸收能力降低,從而在大氣化學(xué)以及局部空氣質(zhì)量中有重要的作用[11].因此選取甲基丙烯酸甲酯與臭氧反應(yīng),對其結(jié)構(gòu)、性質(zhì)以及反應(yīng)機(jī)理進(jìn)行理論研究,給出確切的反應(yīng)機(jī)理及速率常數(shù),為進(jìn)一步研究不飽和酸酯類化合物的大氣反應(yīng)提供了一定的理論依據(jù).
在實(shí)驗(yàn)方面,很多科學(xué)家已經(jīng)報(bào)道了關(guān)于烯酸酯類化合物的臭氧化反應(yīng).例如,在室溫條件下,Grosjean等[12]測定了CH3COOCH=CH2,CH2=CHCOOCH3和CH3COOCH2CH2=CHCH2CH3等與O3反應(yīng)的產(chǎn)物及產(chǎn)量.Bernard等[13]對CH2=C(CH3)COOCH3,CH2=CHCOOCH3和CH2=CHCOOCH2CH3的臭氧化產(chǎn)物及反應(yīng)動(dòng)力學(xué)性質(zhì)進(jìn)行了研究,已測得294 K,1.013×105Pa下CH2=C(CH3)COOCH3+O3反應(yīng)速率常數(shù)為(6.7±0.9)×10-18cm3·molecule-1·s-1,并推測得到此類反應(yīng)符合圖1所示的Criegee機(jī)理.
圖1 Criegee反應(yīng)機(jī)理示意Fig 1The reaction mechanism of Criegee reaction
在理論研究方面,何茂霞等[14]采用CCSD(T)/6-31G(d)+FC//B3LYP/6-31+G(d,p)水平對H2C=CHC(O)CH2CH3+O3以及類似反應(yīng)體系[15]的反應(yīng)機(jī)理和速率常數(shù)進(jìn)行了研究.計(jì)算結(jié)果表明,在294 K和1.013×105Pa條件下,H2C=CHC(O)CH2CH3臭氧化反應(yīng)的速率常數(shù)為1.37×10-18cm3· molecule-1·s-1.此外,本課題組[1]采用G3B3方法對CH3CHC(CH3)COOCH3+ O3的反應(yīng)機(jī)理和速率常數(shù)進(jìn)行了研究.計(jì)算結(jié)果顯示,294 K 時(shí),該反應(yīng)速率常數(shù)為7.55×10-18cm3·molecule-1· s-1.遺憾的是,有關(guān)CH2=C(CH3)COOCH3+ O3的反應(yīng)機(jī)理及速率常數(shù)卻未見報(bào)道.為了更精準(zhǔn)的探討此類反應(yīng)體系的臭氧化反應(yīng)機(jī)理和動(dòng)力學(xué)性質(zhì),并為后續(xù)生成的Criegee自由基反應(yīng)提供理論依據(jù)和指導(dǎo).本文采用CBS-QB3方法對CH2=C(CH3)COOCH3+O3反應(yīng)體系的反應(yīng)機(jī)理及速率常數(shù)進(jìn)行了理論報(bào)道.
采用CBS-QB3[16]組合方法對CH2=C(CH3)COOCH3+O3反應(yīng)中涉及到的各反應(yīng)物、中間體、過渡態(tài)和產(chǎn)物的幾何構(gòu)型進(jìn)行了全參數(shù)優(yōu)化,并在相同水平上進(jìn)行了內(nèi)稟反應(yīng)坐標(biāo)(IRC)分析,證實(shí)了過渡態(tài)與反應(yīng)物(前中間體)或產(chǎn)物(后中間體)的關(guān)聯(lián)性.
應(yīng)用VKLab程序包[17],采用傳統(tǒng)過渡態(tài)理論(TST)并結(jié)合Wigner校正模型[18-20]計(jì)算了200~1 200 K溫度范圍內(nèi)CH2=C(CH3)COOCH3+O3反應(yīng)的速率常數(shù)kTST/W,其計(jì)算方法為
(1)
圖2繪出了CH2=C(CH3)COOCH3+O3反應(yīng)在CBS-QB3水平下優(yōu)化得到的反應(yīng)物、中間體、過渡態(tài)和產(chǎn)物的結(jié)構(gòu)參數(shù)及部分實(shí)驗(yàn)值.圖2所示的O3和CH2O物種中的鍵長、鍵角與對應(yīng)的實(shí)驗(yàn)值(括號內(nèi)為實(shí)驗(yàn)值)十分吻合;此外標(biāo)題反應(yīng)是在基態(tài)單重態(tài)下進(jìn)行,此時(shí)計(jì)算的各物種的自旋角動(dòng)
圖2 CBS-QB3水平上優(yōu)化所得的CH2=C(CH3)COOCH3+O3反應(yīng)中反應(yīng)物、 中間體、過渡態(tài)和產(chǎn)物的幾何構(gòu)型[鍵長(nm), 鍵角(°)]Fig 2 The geometrical structures of the optimized reactants,transition states,intermediates,products involving the CH2=C(CH3)COOCH3+O3 reaction at the CBS-QB3 level
量平方算符本征值〈S2〉為0.0000.說明波函數(shù)被自旋污染的程度并不嚴(yán)重,因此,〈S2〉可以忽略不計(jì).說明選用CBS-QB3方法優(yōu)化結(jié)構(gòu)是合理的.圖3為本文運(yùn)用CBS-QB3方法構(gòu)建的CH2=C(CH3)COOCH3+O3的勢能剖面圖.
圖3 CBS-QB3水平上CH2=C(CH3)COOCH3+O3反應(yīng)的勢能圖Fig 3 Schematic energy diagram for the CH2=C(CH3)COOCH3+O3 reaction at the CBS-QB3 level
2.1 臭氧化反應(yīng)機(jī)理
該反應(yīng)符合Criegee反應(yīng)機(jī)理[2-23].首先是臭氧的兩個(gè)端位氧原子進(jìn)攻CH2=C(CH3)COOCH3中的C=C雙鍵進(jìn)行環(huán)加成反應(yīng),然后經(jīng)過渡態(tài)TSa形成五元環(huán)中間體IMa.因IMa中O-O鍵斷裂方式不同,該中間體又按兩條不同的路徑進(jìn)行后續(xù)反應(yīng).因此,本文將從臭氧化五元環(huán)中間體的形成以及裂解兩部分來論述CH2=C(CH3)COOCH3+O3反應(yīng)機(jī)理.
2.1.1 臭氧化五元環(huán)中間體的形成 在基態(tài)O3(1A1,C2v)分子[24]與CH2=C(CH3)COOCH3的反應(yīng)中,本文以反應(yīng)物(CH2=C(CH3)COOCH3+O3)的能量為反應(yīng)零勢能點(diǎn).反應(yīng)開始時(shí),O3分子中的兩個(gè)端位氧進(jìn)攻CH2=C(CH3)COOCH3中C(3)=C(4)雙鍵的兩個(gè)碳原子發(fā)生五元環(huán)加成反應(yīng),越過能壘(TSa) 3.97 kJ·mol-1,形成穩(wěn)定化能為224.10 kJ·mol-1的中間體IMa.在此過程中,O3中相鄰氧原子間鍵長由0.125 8變?yōu)門Sa中的0.128 9和0.128 7 nm,最終拉長到IMa中的0.143 3與0.145 7 nm,即在IMa中形成了典型的O—O單鍵.
在TSa中,O(4)原子和O(5)原子相距0.128 9 nm,十分接近反應(yīng)物O3中的實(shí)驗(yàn)鍵長值(0.127 8 nm),為類反應(yīng)物過渡態(tài),由此認(rèn)為該反應(yīng)為強(qiáng)放熱反應(yīng).C(3)=C(4)鍵長由CH2=C(CH3)COOCH3中的0.133 8 nm拉長到TSa中的0.137 9 nm,在IMa中其鍵長進(jìn)一步拉長為0.156 8 nm,接近典型的C—C單鍵鍵長.IMa 中C(3)—O(3)和C(4)—O(5)鍵長分別由TSa中的0.235 7和0.219 3 nm縮短到0.143 8和0.141 7 nm,接近正常的C—O單鍵鍵長.臭氧化物IMa的生成,標(biāo)志著偶極環(huán)加成過程的結(jié)束.
2.1.2 臭氧化五元環(huán)中間體的裂解 因斷裂方式不同,IMa經(jīng)過Path 1(IMa → TS1a → P1)和Path 2(IMa → TS2a → P2)分別生成產(chǎn)物P1(CH2OO+CH3OC(O)C(CH3)O)和P2(CH2O+CH3OC(O)C(CH3)OO).在Path 1中,IMa需克服62.05 kJ·mol-1的能壘(TS1a)形成產(chǎn)物P1((CH2OO+CH3OC(O)C(CH3)O).在過渡態(tài)TS1a的構(gòu)型中,O(3)—O(4)和C(3)—C(4)鍵長值由IMa中的0.145 7和0.156 8 nm伸長到0.203 9和0.193 1 nm.同時(shí),O(4)原子與O(5)原子互相靠近形成新鍵,鍵長縮短為0.132 2 nm.Path 2中的裂解需IMa克服66.03 kJ·mol-1的能壘越過五元環(huán)過渡態(tài)TS2a且TS2a中發(fā)生了與TS1a類似的構(gòu)型變化.新生成O(3)—O(4)的鍵長為0.131 9 nm,C(3)—O(3)鍵長也較IMa縮短了0.008 1 nm,使得作用力增強(qiáng);而O(4)—O(5)和C(3)—C(4)鍵同時(shí)拉長、逐漸斷裂,形成產(chǎn)物P2(CH3OC(O)C(CH3)OO +CH2O),所克服的能壘比形成產(chǎn)物P1 (CH2OO+CH3OC(O)C(CH3)O)增加了3.98 kJ·mol-1.
2.2 臭氧化速率常數(shù)計(jì)算
由上述分析可知,CH2=C(CH3)COOCH3+O3反應(yīng)符合Criegee反應(yīng)機(jī)理.如圖4所示,對于R+O3→IM,將該基元步的正、逆反應(yīng)的速率常數(shù)記為k1和k-1,k2a和k2b分別為IM開始生成P1和P2的速率常數(shù).所以,ka和kb分別為甲基丙烯酸甲酯的臭氧化反應(yīng)從反應(yīng)物開始分別生成P1和P2的速率常數(shù).假設(shè)圖4中所示的中間體IM與反應(yīng)物處于動(dòng)態(tài)平衡狀態(tài),根據(jù)復(fù)合反應(yīng)的穩(wěn)態(tài)近似條件,則ka和kb可由(2)式和(3)式得出
圖4 CH2=C(CH3)COOCH3+O3反應(yīng)通道示意Fig 4 The reaction channels of CH2=C(CH3)COOCH3+O3in rate constant calculations表1 200~1 200 K溫度范圍內(nèi)CH2=C(CH3)COO-CH3+O3反應(yīng)的速率常數(shù)信息(cm3·molecule-1·s-1)Tab 1 The predicted rate constant for the reaction of CH2=C(CH3)COOCH3+O3within the temperature range of 200~1 200 K
Tk1k-1k2ak2bkakbka/(ka+kb)kb/(ka+kb)2003.14×10-182.41×10-423.34×10-23.22×10-43.11×10-183.00×10-209.90×10-19.55×10-32253.50×10-183.56×10-361.34×1002.25×10-23.44×10-185.78×10-209.83×10-11.65×10-22363.67×10-187.18×10-345.35×1001.10×10-13.60×10-187.39×10-209.81×10-12.01×10-22503.91×10-183.15×10-312.63×1016.81×10-13.81×10-189.87×10-209.74×10-12.52×10-22754.37×10-183.57×10-273.06×1021.12×1014.22×10-181.54×10-199.66×10-13.52×10-22944.76×10-181.50×10-241.51×1036.87×1014.55×10-182.07×10-199.56×10-14.35×10-22984.85×10-184.87×10-242.05×1039.79×1014.63×10-182.21×10-199.55×10-14.56×10-23004.89×10-188.66×10-242.39×1031.16×1024.66×10-182.26×10-199.53×10-14.62×10-23095.09×10-181.05×10-224.63×1032.47×1024.83×10-182.58×10-199.49×10-15.07×10-23255.46×10-186.40×10-211.38×1048.49×1025.14×10-183.16×10-199.41×10-15.79×10-23506.09×10-181.86×10-186.20×1044.69×1035.66×10-184.28×10-199.29×10-17.03×10-23756.78×10-182.55×10-162.30×1052.07×1046.22×10-185.60×10-199.17×10-18.26×10-24208.19×10-184.15×10-131.66×1061.94×1057.33×10-188.57×10-198.95×10-11.05×10-15001.12×10-178.18×10-92.36×1073.94×1069.60×10-181.60×10-188.57×10-11.43×10-16001.62×10-174.82×10-52.45×1085.65×1071.32×10-173.04×10-188.15×10-11.88×10-18003.06×10-172.59×1004.67×1091.68×1092.25×10-178.10×10-187.35×10-12.65×10-19004.04×10-179.87×1011.25×10105.31×1092.84×10-171.20×10-177.03×10-12.97×10-110005.23×10-171.82×1032.77×10101.35×10103.52×10-171.71×10-176.73×10-13.27×10-112008.27×10-171.46×1059.15×10105.61×10105.13×10-173.14×10-176.20×10-13.80×10-1
(2)
(3)
表1列出了CH2=C(CH3)COOCH3+O3反應(yīng)在200~1 200 K溫度區(qū)間內(nèi)計(jì)算的速率常數(shù)信息.由表1可知,隨著溫度的升高,ka和kb呈現(xiàn)正溫度系數(shù)效應(yīng).在200~375 K溫度范圍內(nèi),ka的分支比始終處于絕對優(yōu)勢(大于90%),雖然kb的分支比也隨著溫度的升高而逐漸升高,當(dāng)溫度到達(dá)1 200 K時(shí),kb分支比為38.0%,而ka仍占據(jù)62.0%.在294 K時(shí),CH2=C(CH3)COOCH3+O3的反應(yīng)速率常數(shù)為4.76×10-18cm3·molecule-1·s-1,與Bernard等該溫度下測得的甲基丙烯酸甲酯臭氧化反應(yīng)的速率常數(shù)的實(shí)驗(yàn)值((6.7±0.9)×10-18cm3·molecule-1·s-1)接近,這也間接說明本文的計(jì)算結(jié)果具有一定的可信度.
采用CBS-QB3方法對CH2=C(CH3)COOCH3+O3反應(yīng)機(jī)理以及200~1 200 K范圍內(nèi)的速率常數(shù)進(jìn)行了理論研究,所得結(jié)論如下:
1)CH2=C(CH3)COOCH3+O3反應(yīng)屬于Criegee反應(yīng)機(jī)理,臭氧進(jìn)攻CH2=C(CH3)COOCH3中的C=C雙鍵而發(fā)生偶極加成反應(yīng),該過程只需克服3.97 kJ·mol-1的能壘即可形成穩(wěn)定的五元環(huán)中間體IMa.IMa發(fā)生五元環(huán)裂解反應(yīng),由于不同O—O鍵的斷裂使得反應(yīng)存在兩條裂解路徑分別形成產(chǎn)物P1(CH2OO+CH3OC(O)C(CH3)O)和P2(CH2O+CH3OC(O)C(CH3)OO).
2)294 K時(shí),CH2=C(CH3)COOCH3+O3反應(yīng)的總速率常數(shù)為4.76×10-18cm3·molecule-1·s-1,與Bernard等對類似反應(yīng)的所測實(shí)驗(yàn)值非常接近.此外,速率常數(shù)計(jì)算支持P1(CH2OO+CH3OC(O)C(CH3)O)為CH2=C(CH3)COOCH3+O3反應(yīng)的主產(chǎn)物.
[1] 張?zhí)锢?王渭娜,劉暢,等.反式2-甲基-2-丁烯酸甲酯與臭氧反應(yīng)機(jī)理的計(jì)算研究[J].物理化學(xué)學(xué)報(bào),2013,29(11):2313.
[2] 謝飛.平流層對流層物質(zhì)交換以及平流層水汽與臭氧的研究[D].蘭州:蘭州大學(xué),2011.
[3] GROSJEAN E,GROSJEAN D.The gas-phase reaction of alkenes with ozone:formation yields of carbonyls from biradicals in ozone-alkene-cyclohexane experiments[J].AtmosphericEnvironment,1998,32(20):3393.
[5] 李來才,鄒勤,田安民.CH2X(X=H,F,Cl)與臭氧反應(yīng)機(jī)理的量子化學(xué)研究[J].化學(xué)學(xué)報(bào),2003,61(10):1524.
[6] 胡武洪,徐建華.O(3P)與CH2=CHF反應(yīng)的理論研究[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,31(2):238.
[7] 王永成,戴國梁,耿志遠(yuǎn),等.乙烯自由基與臭氧反應(yīng)的DFT計(jì)算研究[J].物理化學(xué)學(xué)報(bào),2004,20(9):1071.
[8] ATKINSON R,AREY J.Atmospheric degradation of volatile organic compounds[J].ChemicalReviews,2003,103(12):4605.
[9] 楊曉璐,陳建華,鄧建國,等.烯烴臭氧化反應(yīng)機(jī)制的研究進(jìn)展[J].環(huán)境化學(xué),2013,32(11).
[10] 梁西良,王素漪,徐虹,等.甲基丙烯酸甲酯合成及生產(chǎn)[J].化學(xué)與粘合,2005,27(1):57.
[11] COTTERS N.BOOTH N J,CANOSA-MAS C E,et al.Release of iodine in the atmospheric oxidation of alkyl iodides and the fates of iodinated alkoxy radicals[J].AtmosphericEnvironment,2001,35(12):2169.
[12] GROSJEAN E,GREEN P G,GROSJEAN D.Liquid chromatography analysis of carbonyl(2,4-dinitrophenyl) hydrazones with detection by diode array ultraviolet spectroscopy and by atmospheric pressure negative chemical ionization mass spectrometry[J].AnalyticalChemistry,1999,71(9):1851.
[13] BERNARD F,EYHLUNENT G,DAЁLE V.Kinetics and products of gas-phase reactions of ozone with methyl methacrylate,methyl acrylate,and ethyl acrylate[J].TheJournalofPhysicalChemistryA,2010,114(32):8376.
[14] HAN L,WANG P,DONG S.Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst[J].Nanoscale,2012,4(19):5814.[15] SUN Y,CAN H,HAN D.Reactions of N-butyl acrylate and ethyl methacrylate with ozone in the gas phase[J].ComputationalandTheoreticalChemistry,2014,1039(7):33.
[16] CASASNOVAS R,FRAU J,ORTEGA-CASTRO J,et al.Simplification of the CBS-QB3 method for predicting gas-phase deprotonation free energies[J].InternationalJournalofQuantumChemistry,2010,110(2):323.
[17] ZHANG S,TRUONG T N.VKLabVersion1.0[CP].Salt Lake City:University of Utah,2001.
[18] RESENDE S M,ORNELLAS F R.Atmospheric reaction between the HS radical and chlorine[J].ChemicalPhysicsLetters,2000,318(4):340.
[19] HERINDA-RAMN J M,KARLSTRM G.Study of the hydronium ion in water.A combined quantum chemical and statistical mmechanical treatment[J].JournalofMolecularStructure,2004,712(1):167.
[20] 司維江,禚淑萍,居冠之.NH+O3→ ONH+O2反應(yīng)熱力學(xué)和動(dòng)力學(xué)研究[J].物理化學(xué)學(xué)報(bào),2003,19(10):974.
[21] FRISCH M,TRUCKS G W,SCHLEGEL H B.et al.Gaussian09[CP].Revision A.02,Gaussian.Inc.,Wallingford,CT,2009.
[22] RESENDE S M,ORNELLAS F R.Mechanism and kinetics of the reaction between HS and Cl radicals[J].TheJournalofPhysicalChemistryA,2000,104(51):11934.
[23] 袁成,馬嫣,陳敏東.烯烴氣相臭氧化反應(yīng)機(jī)理的研究進(jìn)展[J].環(huán)境化學(xué),2013,32(2):177.
[24] GERLT J A,KOZARICH J W,KENYON G L,et al.Electrophilic catalysis can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions[J].JournaloftheAmericanChemicalSociety,1991,113(25):9667.
(責(zé)任編輯 陸泉芳)
Computational study of the reaction mechanism and kinetics of CH2=C(CH3)COOCH3ozonolysis
WANG Rui, LIU Jin-hua, YANG Rui-ni,YANG Xin
(Shaanxi Province Key Laboratory of Catalytic Fundamental and Application,School of Chemical and Environment Science,Shaanxi University of Technology,Hanzhong 723001,Shaanxi,China)
The reaction mechanism and rate constant for the ozonolysis of CH2=C(CH3)COOCH3is investigated at the CBS-QB3 level.The calculated results show that the reaction of CH2=C(CH3)COOCH3and O3via a transition state TSa produce a stable five-membered ring ozonide intermidiate product IMa that can decompose readily to form P1(CH2OO+CH3OC(O)C(CH3)O)and P2(CH2O+CH3OC(O)C(CH3)OO) because it breaks different O—O bonds.The total rate constants(kTST/W) of the title reactions in the temperature range of 200~1 200 K are obtained by using the classical transition state theory (TST) with Wigner tunneling correction.The results show that the calculated rate constant is 4.76×10-18cm3·molecule-1·s-1at 294 K,which is in good agreement with Bernard’s experiment data for similar reactions.
CH2=C(CH3)COOCH3;O3;CBS-QB3;reaction mechanism;rate constant
10.16783/j.cnki.nwnuz.2016.01.013
2015-08-15;修改稿收到日期:2015-09-16
陜西理工學(xué)院科研計(jì)劃資助項(xiàng)目(SLGQD13(2)-4);陜西理工學(xué)院大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃資助項(xiàng)目(UIRP15095)
王睿(1983—),女,甘肅酒泉人,講師,博士.主要研究方向?yàn)槔碚撆c計(jì)算化學(xué).
E-mail:wangrui830413@163.com
O 641.12
A
1001-988Ⅹ(2016)01-0057-05