李創(chuàng)第,高碩,葛新廣,鄒萬(wàn)杰,李暾
(廣西科技大學(xué)土木建筑工程學(xué)院,廣西柳州545006)
五參數(shù)Maxwell阻尼器耗能結(jié)構(gòu)在有界噪聲激勵(lì)下隨機(jī)響應(yīng)解析解
李創(chuàng)第,高碩,葛新廣,鄒萬(wàn)杰,李暾
(廣西科技大學(xué)土木建筑工程學(xué)院,廣西柳州545006)
對(duì)設(shè)置五參數(shù)Maxwell阻尼器的單自由度耗能結(jié)構(gòu)在有界噪聲激勵(lì)下的隨機(jī)響應(yīng)問(wèn)題進(jìn)行研究.首先,采用五參數(shù)Maxwell阻尼器的積分型模型,建立了耗能結(jié)構(gòu)時(shí)域非擴(kuò)階微分積分動(dòng)力方程;然后,利用傳遞函數(shù)法,直接在耗能結(jié)構(gòu)非擴(kuò)階空間上獲得耗能結(jié)構(gòu)在任意激勵(lì)下位移、速度和阻尼器受力的時(shí)域瞬態(tài)響應(yīng)的解析解;最后,基于此精確解,獲得耗能結(jié)構(gòu)在有界噪聲激勵(lì)下位移、速度和阻尼器受力的隨機(jī)響應(yīng)方差解析解,并給出了算例,從而建立了此種耗能結(jié)構(gòu)在有界噪聲激勵(lì)下隨機(jī)響應(yīng)解析分析的一整套方法.
五參數(shù)Maxwell阻尼器;傳遞函數(shù)法;阻尼器受力響應(yīng);有界噪聲;解析解
粘彈性阻尼器耗能性能優(yōu)良,已廣泛應(yīng)用于各種結(jié)構(gòu)的被動(dòng)減振控制[1-4].Maxwell阻尼器本構(gòu)方程簡(jiǎn)單,模型計(jì)算參數(shù)便于從試驗(yàn)數(shù)據(jù)中擬合[5-6],且一般流體阻尼器比較符合兩參數(shù)Maxwell模型,粘彈性阻尼器也可用兩參數(shù)Maxwell模型近似表示或用五參數(shù)Maxwell模型較好表示,故兩參數(shù)Maxwell模型[1-3,7-11]和五參數(shù)Maxwell模型[1-3,12]的應(yīng)用研究受到日益重視.
目前分析五參數(shù)Maxwell阻尼器耗能結(jié)構(gòu)動(dòng)力響應(yīng)的精確法只有擴(kuò)階復(fù)模態(tài)法[7-10,12],文獻(xiàn)[7,9]用擴(kuò)階復(fù)模態(tài)法分析了Maxwell阻尼器耗能結(jié)構(gòu)在Knain-Tajimi譜隨機(jī)地震激勵(lì)下的位移平穩(wěn)方差響應(yīng),由于尚未獲得平穩(wěn)響應(yīng)解析解,故研究側(cè)重于大量數(shù)值計(jì)算結(jié)構(gòu)的歸納與總結(jié);擴(kuò)階復(fù)模態(tài)法因擴(kuò)階方程組物理意義不明確,變量個(gè)數(shù)劇增,計(jì)算效率低,且尚未涉及對(duì)耗能結(jié)構(gòu)安全有重大影響的阻尼器受力的響應(yīng)分析,使該方法的實(shí)際應(yīng)用受到限制.
有界噪聲隨機(jī)激勵(lì)模型[13-15],不僅可以模擬寬帶和白噪聲隨機(jī)激勵(lì),而且可以模擬窄帶隨機(jī)激勵(lì);不僅可以模擬地震激勵(lì)[16-17]、脈動(dòng)風(fēng)激勵(lì)[18-21],而且還可以模擬軌道和路面隨機(jī)起伏激勵(lì)[22],因而在國(guó)內(nèi)外得到較廣泛的應(yīng)用[23-25].
本文采用非擴(kuò)階微分積分方程精確建模,運(yùn)用傳遞函數(shù)法,獲得五參數(shù)Maxwell阻尼耗能單自由度結(jié)構(gòu)在任意激勵(lì)下非擴(kuò)階時(shí)域瞬態(tài)響應(yīng)解析解和基于有界噪聲激勵(lì)隨機(jī)響應(yīng)的解析解,具有工程應(yīng)用價(jià)值.
設(shè)置五參數(shù)Maxwell阻尼器的單自由度耗能結(jié)構(gòu),在任意激勵(lì)F(t)作用下,結(jié)構(gòu)計(jì)算模型見(jiàn)圖1,其運(yùn)動(dòng)方程為:
式(1)中:m,c,k分別為結(jié)構(gòu)的質(zhì)量、阻尼和剛度;x為結(jié)構(gòu)位移;p(t)為五參數(shù)Maxwell阻尼器的作用力;特別地,對(duì)于地震激勵(lì),F(xiàn)(t)=-mx¨g(t),其中,x¨g(t)為地震地面加速度.
根據(jù)五參數(shù)Maxwell阻尼器的本構(gòu)關(guān)系[12],阻尼器的作用力p(t)可表示為:
圖1 結(jié)構(gòu)計(jì)算模型Fig.1 Structure calculation model
2.1耗能結(jié)構(gòu)特征值
設(shè)結(jié)構(gòu)的初始位移x(t=0)和速度x.(t=0)均為零,對(duì)式(4)進(jìn)行拉氏變換得:
由于特征值方程式(11)是關(guān)于s的一元四次代數(shù)方程,故可求得耗能結(jié)構(gòu)4個(gè)特征值sj的解析解[27],其中一對(duì)共軛復(fù)特征值和2個(gè)負(fù)實(shí)特征值.
2.2傳遞函數(shù)解析式
因特征值sj為傳遞函數(shù)H(s)的極點(diǎn),故可將H(s)展開(kāi)為:
2.3耗能結(jié)構(gòu)位移和速度時(shí)域瞬態(tài)響應(yīng)解析解
由式(6)、式(8)、式(12)和式(15),得:
對(duì)上述兩式取拉式逆變換,得耗能結(jié)構(gòu)位移和速度時(shí)域瞬態(tài)響應(yīng)解析解:
式中:ηj根據(jù)式(13)求出.
2.4阻尼器的受力響應(yīng)解析解
由式(6)、式(8)、式(10)和式(17),得:
對(duì)上式取拉氏逆變換,得:
由式(2)、式(3)和式(9)知,阻尼器的受力響應(yīng)為:
將式(20)、式(23)代入上式,并根據(jù)式(8),得阻尼器受力的時(shí)域瞬態(tài)響應(yīng)解析解:
3.1有界噪聲激勵(lì)的相關(guān)函數(shù)和譜密度
有界噪聲激勵(lì)F(t)的相關(guān)函數(shù)CF(τ)和譜密度SF(ω)分別為[16-21]:
式中:E[·]表示取數(shù)學(xué)期望;τ和ω分別為F(t)的時(shí)差和頻率變量;D,α,β分別為F(t)的方差、相關(guān)因子和卓越頻率因子.
特別地,對(duì)于地震動(dòng)激勵(lì)x¨g(t),可取為[16-17,28]:
3.2耗能結(jié)構(gòu)平穩(wěn)隨機(jī)響應(yīng)解析解
由式(20)、式(21)和式(25),得耗能結(jié)構(gòu)響應(yīng)的平穩(wěn)解為:
則耗能結(jié)構(gòu)的位移、速度和阻尼器受力響應(yīng)協(xié)方差為:
式中:上標(biāo)“*”表示取復(fù)共軛.
將式(40)代入式(37),得:
將式(41)代入式(34)~式(36),并令τ=0,得有界噪聲激勵(lì)下耗能結(jié)構(gòu)位移、速度和阻尼器受力隨機(jī)響應(yīng)方差解析解:
特別地,對(duì)于地震激勵(lì),F(xiàn)(t)=-mx¨g(t);在表達(dá)式(41)中,令D=m2Dg和q=-αg+iβg,則式(42)~式(44)即可表示為耗能結(jié)構(gòu)的隨機(jī)地震響應(yīng)方差解析解.
對(duì)于如圖2所示的軟土場(chǎng)地條件下的單自由度結(jié)構(gòu),其質(zhì)量為m,剛度為k,阻尼為c,安裝五參數(shù)Maxwell阻尼器對(duì)結(jié)構(gòu)進(jìn)行耗能減震.結(jié)構(gòu)計(jì)算參數(shù)分別取為:結(jié)構(gòu)質(zhì)量m=1 kg,結(jié)構(gòu)剛度k=200N/m,阻尼比ζ=0.05;五參數(shù)Maxwell阻尼器計(jì)算參數(shù)分別取為:平衡模量k0=50N/m,松弛時(shí)間倒數(shù)μ1=10 s-1,μ2=20 s-1,兩分支標(biāo)準(zhǔn)Maxwell阻尼器的阻尼系數(shù)分別按4種工況(I~IV)取:c1=6,12,24,36 N·s/m,c2=3,6,12,18 N·s/m.有界噪聲地震動(dòng)激勵(lì)x¨g(t)相關(guān)參數(shù)取值為:地震烈度I=8,ζg=0.96,ωg=10.9 rad/s.計(jì)算所得結(jié)構(gòu)特征值sj和計(jì)算參數(shù)ηj見(jiàn)表1;結(jié)構(gòu)位移、速度和阻尼器受力響應(yīng)方差見(jiàn)表2.
圖2 結(jié)構(gòu)計(jì)算模型Fig.2 Structure calculation model
表1 結(jié)構(gòu)特征值和計(jì)算參數(shù)Tab.1 Structural characteristic values and calculation parameters
表1給出了結(jié)構(gòu)特征值sj和計(jì)算參數(shù)ηj在4種工況下的計(jì)算結(jié)果,表2給出了耗能結(jié)構(gòu)在各工況下的結(jié)構(gòu)響應(yīng)方差,表明本文計(jì)算方法的可實(shí)施性;由表2所示結(jié)果可知,與無(wú)阻尼器的普通結(jié)構(gòu)響應(yīng)對(duì)比,五參數(shù)Maxwell阻尼器耗能結(jié)構(gòu)減震性能優(yōu)良,且耗能結(jié)構(gòu)在阻尼器松弛時(shí)間不變的情況下,同時(shí)增加兩分支標(biāo)準(zhǔn)Maxwell阻尼器的阻尼系數(shù),結(jié)構(gòu)的位移和速度均方響應(yīng)均減小,而阻尼器的受力均方響應(yīng)增大,表明增加同類型的阻尼器,可進(jìn)一步增加結(jié)構(gòu)耗能減震性能,減小結(jié)構(gòu)地震響應(yīng),此計(jì)算結(jié)果與實(shí)際情況相符;此外,利用頻域法和數(shù)值積分法,所得數(shù)值解與本文傳遞函數(shù)法所獲結(jié)構(gòu)響應(yīng)方差完全一致(如圖3~圖5所示),從而驗(yàn)證了本文方法的正確性.
表2 結(jié)構(gòu)響應(yīng)方差及對(duì)比Tab.2 Response variance of structures and comparison
圖3 結(jié)構(gòu)位移響應(yīng)方差Fig.3 Response variance of displacement
圖4 結(jié)構(gòu)速度響應(yīng)方差Fig.4 Response variance of velocity
圖5 阻尼器受力響應(yīng)方差Fig.5 Response variance of damper's force
對(duì)五參數(shù)Maxwell阻尼耗能單自由度結(jié)構(gòu)在有界噪聲激勵(lì)下的平穩(wěn)隨機(jī)響應(yīng)進(jìn)行了研究,獲得了摘要所述結(jié)果.本文所用傳遞函數(shù)法,無(wú)需對(duì)結(jié)構(gòu)動(dòng)力方程擴(kuò)階即可獲得結(jié)構(gòu)在任意激勵(lì)下的響應(yīng)解析解,物理意義明確;且由于有界噪聲激勵(lì)模型可以模擬多種工程隨機(jī)激勵(lì),從而使本文所獲該激勵(lì)下的結(jié)構(gòu)響應(yīng)方差解析解具有較好的工程應(yīng)用意義.
[1]SOONGTT,DARGUSH G F.Passive Engrgy Dissipation Systems in Structural Engineering[M].England:John Wiley and Ltd,1997.
[2]CHRISTOPOULOS C,F(xiàn)ILIATRAULT A.Principle of Passive Supplemental Damping and Seismic Isolation[M].Pavia:IUSS Press,2006.
[3]周云.粘彈性阻尼減震結(jié)構(gòu)設(shè)計(jì)[M].武漢:武漢理工大學(xué)出版社,2006.
[4]李創(chuàng)第,鄒萬(wàn)杰,葛新廣,等.多自由度一般積分型粘彈性阻尼減震結(jié)構(gòu)的隨機(jī)響應(yīng)與等效阻尼[J].工程力學(xué),2013,30(4):136-145.
[5]PARK SW.Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control[J].International Journal of Solids and Structures,2001,38(s44-45):8065-8092.
[6]CHANG T S,SINGH M P.Mechanical Model Parameters for Viscoelastic Dampers[J].Journal of Engineering Mechanics,2009,135(6):581-584.
[7]SINGH M P,VERMA N P,MORESCHI L M.Seismic Analysis and Design with Maxwell Dampers[J].Journal of Engineering Mechanics,2003,129(3):273-282.
[8]YAMADA K.Dynamic Characteristics of SDOF Structure with Maxwell Element[J].Journal of Engineering Mechanics,2014,134(5):396-404.
[9]PALMERI A,RICCIARDELLIF,DE LUCA A,etal.State Space Formulation for Linear Viscoelastic Dynamic Systems with Memory[J].Journal of Engineering Mechanics,2003,129(7):715-724.
[10]PALMERIA.Correlation Coefficients for Structures with Viscoelastic Dampers[J].Engineering Structures,2006,28(8):1197-1208.
[11]葛新廣,李創(chuàng)第,鄒萬(wàn)杰.Maxwell阻尼減震結(jié)構(gòu)的最大非平穩(wěn)響應(yīng)[J].廣西工學(xué)院學(xué)報(bào),2012,23(4):1-7.
[12]ZHANG R H,SOONG T T.Seismic Design of Viscoelastic Dampers for Structural Application[J].Journal of Structural Engineering,1992,118(5):1375-1392.
[13]HUANG Z L,ZHUW Q,NIYQ,et al.Stochastic Averaging of Strongly Non-Linear Oscillators under Bounded Noise Excitation[J].Journal of Sound and Vibration,2002,254(2):245-267.
[14]ZHUW Q,HUANGZL,KO JM,et al.Optimal Feedback Control of Strongly Non-Linear Systems Excited by Bounded Noise[J].Journal of Sound and Vibration,2004,274(3):701-724.
[15]朱位.非線性隨機(jī)動(dòng)力學(xué)與控制-Hamilton理論體系框架[M].北京:科學(xué)出版社,2003.
[16]李桂青.抗震結(jié)構(gòu)計(jì)算理論和方法[M].北京:地震出版社,1985.
[17]胡聿賢.地震工程學(xué)[M].北京:地震出版社,2006.
[18]LIN Y K,LIQ C.Stochastic Stability of Wind Excited Structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54(94):75-82.
[19]LIN Y K.Stochastic Stability of Wind-Excited Long-S pan Bridges[J].Probabilistic Engineering Mechanics,1996,11(4):257-261.
[20]LIN Y K,LIQ C.New Stochastic Theory for Bridges Stability in Turbulent Flow II[J].Journal of Engineering Mechanics,1995,121(1):102-116.
[21]ZHU J,WANGQC,XIEW C,et al.Flow-Induced Instability under Bounded Noise Excitation in Cross-F low[J].Journal of Sound and Vibration,2008,312(3):476-495.
[22]DIMENTBERG M F.Stability and Subcritical Dynamics of Structures with Spatially Disordered Travelling Parametric Excitation[J].Probabilistic Engineering Mechanics,1992,7(3):131-134.
[23]劉雯彥,陳忠漢,朱位秋.有界噪聲激勵(lì)下單擺-諧振子系統(tǒng)的混沌運(yùn)動(dòng)[J].力學(xué)學(xué)報(bào),2003,35(5):634-640.
[24]XIEW C.Moment Lyapunov Exponents of a Two-Dimensional System under Bounded Noise Parametric Excitation[J].Journal of Sound and Vibration,2003,263(3):593-616.
[25]ZHU J,XIEW C,SORM C,et al.Parametric Resonance of a T wo Degrees-of-Freedom System Induced by Bounded Noise[J].Journal of Applied Mechanics,2009,76(4):041007-1~13.
[26]QIAN D,HANSEN J S.A Time Domain Substructure Synthesis Method for Viscoelastic Structure s[J].Journal of Applied Mechanics,1995,62(2):407-413.
[27]歸行茂,李重華,柴常智.數(shù)學(xué)手冊(cè)[M].上海:上??茖W(xué)普及出版社,1993.
[28]李桂青,曹宏,李秋勝,等.結(jié)構(gòu)動(dòng)力可靠性理論及其應(yīng)用[M].北京:地震出版社,1993.
(學(xué)科編輯:黎婭)
Analytic solution of random response of energy dissipation structures with five-parameter Maxwell dampers under bounded noise excitation
LI Chuang-di,GAO Shuo,GE Xin-guang,ZOU Wan-jie,LI Tun
(School of Civil Engineering and Architecture,Guangxi University of Science and Technology, Liuzhou 545006,China)
The random response of a single degree of freedom energy dissipation structure with five-parameters Maxwell dampers under bounded noise excitation is studied.Firstly,the integral model of five-parameter Maxwell damper is adopted,the structural non-extended order differential-integral dynamic response equation is established.Then,the non-extended analytic solution of transient displacement,velocity and damper’s force response in time domain for energy dissipation structure are obtained by using transfer function method;Lastly,by using the above exact solutions,analytical solution of the response variance of the displacement,velocity and damper’s force of energy dissipation structure under the bounded noise excitation are obtained.Therefore,a complete set of analytic methods for the stochastic response of the energy dissipation structure under bounded noise excitation is established and a numerical example is given.
five-parameter Maxwell damper;transfer function method;force response of damper;bounded noise; analytic solution
TU311.3
A
2095-7335(2016)03-0001-07
10.16375/j.cnki.cn45-1395/t.2016.03.001
2016-03-17
國(guó)家自然科學(xué)基金項(xiàng)目(51468005,51368008);廣西自然科學(xué)基金項(xiàng)目(2014GXNSFAA118315);廣西科技大學(xué)創(chuàng)新團(tuán)隊(duì)支持計(jì)劃項(xiàng)目(2015)資助.
李創(chuàng)第,博士,教授,研究方向:被動(dòng)控制結(jié)構(gòu)抗風(fēng)抗震,E-mail:lichuangdi1964@163.com.