張媛華 劉凱華
摘要:利用外源一氧化氮供體硝普鈉(sodium nitroprusside,SNP)處理、表皮條檢測(cè)的方法研究了外源NO(nitric oxide)對(duì)擬南芥(Arabidopsis thaliana)氣孔運(yùn)動(dòng)的影響。結(jié)果表明,隨著外源NO濃度的增大,氣孔關(guān)閉的效應(yīng)也逐漸增大。但該效應(yīng)可被c-PTIO逆轉(zhuǎn)。此外,就內(nèi)源NO在光、暗調(diào)控的氣孔運(yùn)動(dòng)中的作用進(jìn)行了討論。
關(guān)鍵詞:一氧化氮;擬南芥(Arabidopsis thaliana);氣孔運(yùn)動(dòng)
中圖分類(lèi)號(hào):Q945 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2016)04-0835-03
DOI:10.14088/j.cnki.issn0439-8114.2016.04.006
Effects of Nitric Oxide on Stomatal Movement in Arabidopsis thaliana
ZHANG Yuan-hua,LIU Kai-hua
(College of Chemistry and Life Science, Weinan Normal University, Weinan 714099,Shaanxi,China)
Abstract: This article focused on the effect of nitric oxide on dark regulated stomatal movement in Arabidopsis thaliana, with the method of chemical trement by the exogenous donor of nitric oxide, sodium nitroprusside(SNP), and determination of the stomatal aperture of the epidermal stripes in Arabidopsis. The results showed that the stomatal was closed with increasing concentration of exogenous NO in light. Conversely, it has no effect on stripes in darkness with the same treatment. But the darkness regulated stomatal closure can be reversed by c-PTIO and L-NAME. It indicated that NO could be activated by darkness and this high level of NO was responsible for the stomatal closure of Arabidopsis.
Key words: nitric oxide; Arabidopsis thaliana; stomatal movement
氣孔是植物體與外界環(huán)境進(jìn)行CO2、O2和水蒸氣等氣體交換的重要器官,許多生物和非生物因素都可以影響氣孔運(yùn)動(dòng)[1]。一氧化氮(NO,nitric oxide)是一種廣泛存在于植物體內(nèi)且具有水溶性和脂溶性及自由基性質(zhì)的氣體活性分子。作為新型的信號(hào)分子,NO參與調(diào)節(jié)植物多種生理過(guò)程,如根的生長(zhǎng)發(fā)育[2]、光形態(tài)建成[3]、種子萌發(fā)[4]、各種脅迫反應(yīng)及抗病防御反應(yīng)[5]、氣孔運(yùn)動(dòng)[6]、細(xì)胞程序性死亡[7]、果實(shí)等組織的成熟及衰老[8]等。Neill等[9]報(bào)道NO是ABA誘導(dǎo)氣孔關(guān)閉信號(hào)途徑中的一個(gè)信號(hào)分子。NO的合成是ABA誘導(dǎo)氣孔關(guān)閉所必需的,ABA增強(qiáng)了保衛(wèi)細(xì)胞NO的合成,外源NO也可以促進(jìn)氣孔關(guān)閉,ABA以及NO對(duì)氣孔關(guān)閉的誘導(dǎo)作用需要cGMP以及cADPR的合成與參與[10]。此外,大量證據(jù)表明,NO參與暗反應(yīng)[11]及UV-B[12]、水楊酸[13]、茉莉酸[14]、細(xì)胞分裂素和生長(zhǎng)素等物質(zhì)合成,均能誘導(dǎo)氣孔關(guān)閉[15]。然而,關(guān)于NO與光/暗誘導(dǎo)氣孔運(yùn)動(dòng)的關(guān)系相對(duì)較少。因此,本研究以擬南芥葉片下表皮為材料,通過(guò)觀察外源NO供體硝普鈉(sodium nitroprusside, SNP)對(duì)氣孔運(yùn)動(dòng)的影響,初步探索NO在光/暗調(diào)控氣孔運(yùn)動(dòng)中的可能作用,以期為進(jìn)一步探索保衛(wèi)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑積累資料。
1 材料與方法
1.1 材料
選取大小一致、子粒飽滿(mǎn)的擬南芥(Arabidopsis thaliana)種子,均勻播種于營(yíng)養(yǎng)缽中,每缽2~3株,然后在人工氣候箱中培養(yǎng),光/暗周期為14 h/10 h,光周期的光照強(qiáng)度為300 μmol/(m2·s),溫度為25 ℃/18 ℃,相對(duì)濕度75%。幼苗生長(zhǎng)期間每天澆水1次,無(wú)任何水分脅迫。待幼苗長(zhǎng)至4~6周齡時(shí)取上部完全展開(kāi)、光照充分的葉片作為試驗(yàn)材料。
1.2 試劑
SNP(sodium nitroprusside,NO供體),L-NAME(NG-nitro-L-arginine methyl ester, 動(dòng)物NOS抑制劑),c-PTIO(carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline,NO特異的清除劑),MES[2-(N- morpholino) ethanesulfonic acid,2-(N-嗎啡琳)乙烷磺酸]均購(gòu)自Sigma公司,DMSO(Dimethyl sulfoxide,二甲基亞砜)購(gòu)自Amresco公司,其他均為國(guó)產(chǎn)分析純?cè)噭?/p>
1.3 氣孔開(kāi)度的測(cè)定
取4~6周齡擬南芥幼苗頂部生長(zhǎng)良好、完全伸展、光照充分的葉片,用鑷子撕取其下表皮,再用毛刷除去下表皮上黏附的葉肉細(xì)胞,然后將其置于MES-KCl緩沖液(MES 10 mmol/L, KCl 50 mmol/L, pH 6.15)中,制成適度大小的表皮條。然后將新鮮表皮條置于25 ℃、相對(duì)濕度80%的培養(yǎng)箱中進(jìn)行各項(xiàng)處理。光處理光照強(qiáng)度300 mol/(m2·s),于限度時(shí)間在顯微鏡(Nikon TE 300)下用測(cè)微尺測(cè)量氣孔孔徑,測(cè)量時(shí)每次隨機(jī)選取4個(gè)視野,每個(gè)視野隨機(jī)選取5個(gè)氣孔,每處理均重復(fù)3次以上。
所得數(shù)據(jù)計(jì)算平均值和標(biāo)準(zhǔn)誤差并用one-way AVOVA分析(Duncan分析,α=0.05水平)。
2 結(jié)果與分析
2.1 不同濃度SNP對(duì)光下氣孔開(kāi)度的影響
由圖1可知,所示濃度NO均表現(xiàn)出促進(jìn)氣孔關(guān)閉的效應(yīng),且隨濃度的增加促進(jìn)效應(yīng)逐漸增大。10 μmol/L的NO促進(jìn)效應(yīng)最小,100 μmol/L的NO可以使氣孔開(kāi)度減小54.92%,而1 000 μmol/L的NO雖然能有效促進(jìn)氣孔關(guān)閉(與對(duì)照相比,氣孔孔徑減小了60.68%),但已使葉片細(xì)胞受到了一定程度的傷害。因此在后續(xù)試驗(yàn)選擇SNP 100 μmol/L為最適濃度。
2.2 不同濃度SNP對(duì)暗處理中氣孔開(kāi)度的影響
由圖2可知,暗處理能誘導(dǎo)氣孔關(guān)閉,但濃度遞增的SNP處理后表皮條的開(kāi)度并未發(fā)生明顯變化。結(jié)果表明,SNP對(duì)暗誘導(dǎo)的氣孔運(yùn)動(dòng)沒(méi)有影響,或作用很小。
2.3 c-PTIO和L-NAME對(duì)光下SNP誘導(dǎo)氣孔運(yùn)動(dòng)的影響
為了進(jìn)一步研究光下SNP誘導(dǎo)氣孔關(guān)閉的機(jī)制,利用L-NAME和c-PTIO分別與SNP共處理的方法探究NO是否參與誘導(dǎo)光下氣孔關(guān)閉。L-NAME是NOS合成抑制劑,能夠有效抑制植物體內(nèi)NO的生物合成;c-PTIO為NO清除劑,能夠清除植物體內(nèi)生成的NO。試驗(yàn)中采用的L-NAME和c-PTIO的濃度均為100 μmol/L。由圖3可見(jiàn),100 μmol/L的c-PTIO能有效抑制光下SNP誘導(dǎo)的氣孔關(guān)閉(P<0.05),但100 μmol/L的L-NAME卻不能抑制SNP誘導(dǎo)的氣孔關(guān)閉。結(jié)果表明,光下氣孔開(kāi)放可能與表皮條內(nèi)較低的NO水平有關(guān),較高濃度的NO能夠誘導(dǎo)氣孔關(guān)閉。
2.4 c-PTIO和L-NAME對(duì)暗誘導(dǎo)氣孔關(guān)閉的影響
為了探明暗處理與NO水平的關(guān)系,用c-PTIO和L-NAME對(duì)暗環(huán)境中的表皮條進(jìn)行處理,結(jié)果如圖4所示。由圖4可知,暗誘導(dǎo)擬南芥離體表皮條氣孔關(guān)閉,但經(jīng)NOS抑制劑L-NAME與c-PTIO處理后,表皮條的氣孔開(kāi)度分別增大了52.7%和60.1%,差異顯著(P<0.05)。結(jié)果表明,暗環(huán)境中表皮條內(nèi)的NO水平相對(duì)光下較高,暗環(huán)境能夠誘導(dǎo)氣孔保衛(wèi)細(xì)胞產(chǎn)生NO,而產(chǎn)生的NO積累后可能進(jìn)一步誘導(dǎo)氣孔關(guān)閉。但是,通過(guò)NOS合成NO的途徑可被其合成抑制劑所阻斷,因此,暗處理中用L-NAME處理的表皮條氣孔并未關(guān)閉,即阻斷暗誘導(dǎo)的氣孔關(guān)閉。對(duì)于通過(guò)其他途徑已經(jīng)產(chǎn)生或正在產(chǎn)生的NO,經(jīng)c-PTIO的清除作用處理后,同樣能夠阻止暗誘導(dǎo)氣孔關(guān)閉。
3 小結(jié)
前人的研究表明,NO能夠作為植物體內(nèi)重要的信號(hào)分子,參與調(diào)節(jié)植物體的生長(zhǎng)發(fā)育、防御反應(yīng)、基因表達(dá)和細(xì)胞凋亡等生理過(guò)程[16],也有研究發(fā)現(xiàn)NO介導(dǎo)脫落酸(ABA)[9]和水楊酸(SA)[13]促進(jìn)氣孔關(guān)閉的效應(yīng)。通過(guò)對(duì)擬南芥表皮條的研究發(fā)現(xiàn),外源NO能明顯促進(jìn)葉片下表皮氣孔關(guān)閉,這與彭俊玲等[17]的觀點(diǎn)一致。然而,暗能誘導(dǎo)氣孔關(guān)閉,但外源NO對(duì)暗處理下的表皮條氣孔開(kāi)度沒(méi)有影響。因此,為了探明NO在植物氣孔運(yùn)動(dòng)中的作用,又利用NOS的合成抑制劑L-NAME和NO清除劑c-PTIO對(duì)光下擬南芥葉片下表皮進(jìn)行處理,結(jié)果表明,內(nèi)源合成的NO能夠誘導(dǎo)氣孔關(guān)閉,該結(jié)果與李建華等[18]的研究結(jié)果一致。同樣,為了進(jìn)一步證實(shí)NO能夠誘導(dǎo)氣孔關(guān)閉的結(jié)論,通過(guò)暗處理中加入合成抑制劑L-NAME和NO清除劑c-PTIO的方式進(jìn)行了驗(yàn)證。結(jié)果表明,L-NAME和c-PTIO能顯著抑制暗處理中氣孔的關(guān)閉。由研究結(jié)論推斷,暗處理能誘導(dǎo)內(nèi)源NO的產(chǎn)生,并且NO作為重要的信號(hào)分子參與光/暗調(diào)控的氣孔運(yùn)動(dòng),暗誘導(dǎo)的氣孔關(guān)閉是通過(guò)下游NO信號(hào)分子的參與實(shí)現(xiàn)的,與穆娟等[19]的研究結(jié)果一致。
參考文獻(xiàn):
[1] SADDEN W A, BLUM W E. Activation of a plant plasma membrane Ca2+ channel by TGα1, a hetero trimeric G protein-subunit homologue[J]. FEBS Lett,1998,424:17-21.
[2] PAGNUSSAT G C SIMONTACCHI M, PUNTARULO S, et al. Nitric oxide is required for root organogenesis[J]. Plant Physiology,2002,129(3):954-956.
[3] GRAZIANO M, BELIGNI M V, LAMATTINA L. Nitric oxide improves iron availability in plants[J]. Plant Physiology,2002, 130:1852-1859.
[4] 張秀瑋,董元杰,邱現(xiàn)奎,等.外源NO對(duì)不同作物種子萌發(fā)、幼苗生長(zhǎng)及抗氧化酶活性的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(2):397-404.
[5] DELLEDONNE M, XIA Y J,DIXON R A,et al.Nitric oxide functions as a signal in plant disease resistance[J]. Nature,1998,394:585-588.
[6] DESIKAN R,GRIFFITHS R,HANCOCK J, et al. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences USA,2002,99(25):16314-16318.
[7] LESHEM Y Y, WILLS R B H, KU V V. Evidence for the function of the free radical gas nitric oxide(NO) as an endogenous maturation and senescellce regulating factor in higher plants[J]. Plant Physiology and Boichemistry,1998,36(11): 825-833.
[8] GUO F Q, CRAWFORD N M. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence[J]. The Plant Cell, 2005,17(12):3436-3450.
[9] NEILL S J, DESIKAN R, CLARKE A, et al. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells[J]. Plant Physiology,2002,128:13-16.
[10] DURNER J, WENDEHENNE D, KLESSIG D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA,1998,95(17): 10328-10333.
[11] SHE X P, SONG X G, HE J M. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba[J]. Acta Botanica Sinica,2004,46(11):1292-1300.
[12] HE J M, XU H, SHE X P, et al. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean[J]. Functional Plant Biology,2005,32(3):237-247.
[13] LIU X,ZHANG S Q, LOU C H. Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement[J]. Chinese Science Bulletin,2003,48(5):449-452.
[14] LIU X, SHI W L, ZHANG S Q, et al. Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba L.[J].Chinese Science Bulletin,2005,50(6): 520-525.
[15] SHE X P, SONG X G. Cytokinin- and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean[J]. Physiologia Plantarum, 2006, 128:569-579.
[16] LAMOTTE O, COURTOIS C, BARNAVON L, et al. Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule[J]. Plants,2005,221:1-4.
[17] 彭俊玲,馬三梅.外源ABA、NO對(duì)蔥鱗莖上氣孔運(yùn)動(dòng)的影響[J].江蘇農(nóng)業(yè)科學(xué),2011,39(6):262-264.
[18] 李建華,呂 品,劉銀謙,等.一氧化氮可能參與細(xì)胞外鈣調(diào)素誘導(dǎo)蠶豆氣孔關(guān)閉的過(guò)程[J].自然科學(xué)進(jìn)展,2007,17(4):428-434.
[19] 穆 娟,余小平.CO在光/暗調(diào)控蠶豆氣孔運(yùn)動(dòng)中的作用及其與NO、H2O2的相互關(guān)系研究[J].陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,37(5):78-81.