占霞飛, 唐建設(shè), 吳 軍
(安徽建筑大學(xué) 環(huán)境與能源工程學(xué)院, 安徽 合肥 230601)
?
基于Schiff堿反應(yīng)的新型碳量子點(diǎn)制備及其影響因素研究
占霞飛, 唐建設(shè)*, 吳 軍
(安徽建筑大學(xué) 環(huán)境與能源工程學(xué)院, 安徽 合肥 230601)
通過簡便水熱合成方法,以戊二醛(GA)與3-氨丙基三甲氧基硅烷(APTMS)的Schiff堿反應(yīng)制備了新型碳量子點(diǎn)。該碳量子點(diǎn)為直徑2~7 nm的球體,激發(fā)波長為350 nm時(shí),最大發(fā)射峰位于400 nm,量子產(chǎn)率為13.6%。實(shí)驗(yàn)表明,碳量子點(diǎn)的最佳制備條件是APTMS與 GA的量比為1∶2,在180 ℃下加熱8 h。碳量子點(diǎn)在pH=6.0磷酸緩沖液中的熒光強(qiáng)度最大,且熒光強(qiáng)度隨測定溫度(273~303 K)的升高而降低。
碳量子點(diǎn); Schiff堿反應(yīng); GA; APTMS; 光學(xué)性質(zhì)
碳量子點(diǎn)是一類尺寸小于10 nm、以碳元素為骨架結(jié)構(gòu)的新型碳納米材料,具有連續(xù)激發(fā)波光譜、光學(xué)穩(wěn)定及發(fā)射波長可調(diào)等特性[1-2]。與傳統(tǒng)熒光材料和半導(dǎo)體量子點(diǎn)相比,碳量子點(diǎn)因具有低毒、綠色環(huán)保、生物相容性、抗光漂白性及易于生物偶聯(lián)等優(yōu)勢[3-6]而得到廣泛關(guān)注。制備碳量子點(diǎn)的前驅(qū)體選擇范圍廣,且對(duì)純度要求不高。Barati等[7]以檸檬酸為碳前驅(qū)體合成了碳量子點(diǎn),選擇性檢測了血清中的血紅蛋白。Qian等[8]用活性炭合成碳量子點(diǎn),實(shí)現(xiàn)了熒光法實(shí)時(shí)檢測堿性磷酸酶活性。Wei等[9]以廢紙為碳源,合成了高熒光量子產(chǎn)率的水溶性碳量子點(diǎn)。
近年來,研究者發(fā)現(xiàn)表面官能團(tuán)對(duì)碳量子點(diǎn)發(fā)光等特性有重要影響[10]。李偉峰等[11]以帶有醛基官能團(tuán)的單糖為碳源,制備了水溶性碳量子點(diǎn),熒光強(qiáng)度增大且波長具有可調(diào)性。王子儒等[12]合成了量子產(chǎn)率為21.2%的N摻雜碳量子點(diǎn)光穩(wěn)定劑,提高了紙張耐光性。Hu等[13]以乙二醇為碳源,水熱合成了O-CDs,用乙二胺為修飾劑合成NH2-CDs,再與DMF混合,制備了Schiff堿反應(yīng)自組裝碳量子點(diǎn)。Schiff堿基團(tuán)的引入,增強(qiáng)了碳量子點(diǎn)的穩(wěn)定性與表面活性,有望用于新納米材料和光器件的制造,但關(guān)于溫度、反應(yīng)時(shí)間、溶劑種類、pH值等對(duì)碳量子點(diǎn)熒光強(qiáng)度的影響尚待進(jìn)一步研究。
本實(shí)驗(yàn)通過簡便的水熱合成方法,以GA與APTMS的Schiff堿反應(yīng)制備了新型碳量子點(diǎn)。通過改變反應(yīng)溫度與時(shí)間、GA與APTMS的量比、溶劑種類、pH值及測定溫度,系統(tǒng)地研究了Schiff堿反應(yīng)過程中影響碳量子點(diǎn)熒光強(qiáng)度的因素,確定了帶有Schiff堿基團(tuán)碳量子點(diǎn)的最佳制備條件。該新型碳量子點(diǎn)有望在光催化、發(fā)光器件、生物標(biāo)記和檢測等領(lǐng)域獲得應(yīng)用。
2.1 試劑與儀器
實(shí)驗(yàn)中使用的儀器主要有NICOLET 330(FW-4A) 型傅里葉紅外光譜儀(天津市拓普儀器有限公司)、ESCALAB 250高性能電子能譜儀(Thermo-VG Scientific)、UV759紫外可見分光光度計(jì)(上海菁華科技儀器有限公司)、F-7000熒光光譜儀(日本日立公司)、JEM -ARM200F高分辨透射電子顯微鏡(日本電子株式會(huì)社)等。
3-氨丙基三甲氧基硅烷(APTMS,98%)和戊二醛溶液25%(GA)均購于國藥集團(tuán)化學(xué)試劑有限公司,N,N-二甲基甲酰胺(DMF)購于江蘇強(qiáng)盛功能化學(xué)股份有限公司,二甲基亞砜(DMSO)購于上海蘇懿化學(xué)試劑有限公司。實(shí)驗(yàn)用水為蒸餾水,試劑均為分析純。
2.2 碳量子點(diǎn)的制備
取211 μL濃度為0.1 mol/L的GA溶液于20 mL燒杯中,緩慢滴加175 μL濃度為0.05 mol/L的APTMS,用0.1 mol/L的H2SO4調(diào)至pH=5.5,補(bǔ)水至20 mL。轉(zhuǎn)入聚四氟乙烯內(nèi)襯反應(yīng)釜,180 ℃下持續(xù)加熱8 h,冷卻,離心,取上清液,得到碳量子點(diǎn)。合成示意圖見圖1。
Fig.1 Schematic illustration of the synthesized carbon quantum dots (CDs)
3.1 光學(xué)性質(zhì)
碳量子點(diǎn)的歸一化紫外吸收光譜和熒光發(fā)射光譜見圖3。碳量子點(diǎn)有兩個(gè)吸收峰,分別位于258.2 nm和318.6 nm,在230~340 nm有較明顯的吸收,顆粒尺寸分布較均勻。激發(fā)波長 350 nm處的熒光強(qiáng)度約為245 nm處的5.6倍,因此我們將激發(fā)波長設(shè)定為350 nm,其最大發(fā)射峰位于400 nm處,發(fā)射峰峰形對(duì)稱,半峰寬為53 nm。碳量子點(diǎn)的Stokes位移大(141.8 nm或 8.77 eV),能消除自發(fā)熒光背景干擾,提高熒光信號(hào)的輸出檢測水平,優(yōu)于有機(jī)染料[15]。氮摻雜碳量子點(diǎn)能夠明顯提高熒光強(qiáng)度,實(shí)現(xiàn)熒光顏色可調(diào),如Hu等[10]研究表明,氮含量分別為3.69%、7.32%、15.57%的碳量子點(diǎn)對(duì)應(yīng)熒光顏色分別為藍(lán)色、綠色和紅色,而本文中氮含量為2.60%的碳量子點(diǎn)在365 nm紫外燈照射下發(fā)出明亮的藍(lán)色熒光。
與相關(guān)文獻(xiàn)報(bào)道[16-17]類似,該碳量子點(diǎn)熒光發(fā)射波長有激發(fā)波長依賴性(圖4)。由圖4 可知,當(dāng)激發(fā)波長從260 nm增至480 nm時(shí),碳量子點(diǎn)的熒光發(fā)射峰峰值先增大后減小,在350 nm處熒光發(fā)射峰峰值最大(λmax=400 nm);在260~350 nm激發(fā)波長之間,熒光發(fā)射峰未發(fā)生紅移;而在350~480 nm之間,熒光發(fā)射峰發(fā)生了不同程度的紅移。目前,碳量子點(diǎn)的發(fā)光主要是將表面缺陷作為激發(fā)能量阱,產(chǎn)生輻射復(fù)合引起的[18-19]。
圖2 以APTMS、GA和APTMS/GA為原料制備的量子點(diǎn)的熒光發(fā)射光譜。
Fig.2 Fluorescence spectra of CDs synthesized by APTMS, GA and APTMS/GA as materials.
圖3 碳量子點(diǎn)的歸一化紫外-可見吸收光譜與熒光發(fā)射光譜,以及其在自然光(左)與紫外燈(右)照射下的光學(xué)照片。
Fig.3 Normalized UV-Vis absorption spectra and emission spectra of CDs. Inset is the optical photographs of CDs under ambient visible light (left) and UV light (right).
3.2 制備因素
3.2.1 APTMS/GA的量比
APTMS/GA的量比對(duì)碳量子點(diǎn)熒光強(qiáng)度的影響見圖5。當(dāng)APTMS/GA的量比為2∶1時(shí), GA量相對(duì)較少,生成碳量子點(diǎn)同時(shí)伴隨著少許副反應(yīng)的發(fā)生,導(dǎo)致碳量子點(diǎn)熒光強(qiáng)度較低[20]。當(dāng)APTMS/GA的量比為1∶1時(shí),會(huì)導(dǎo)致副反應(yīng)加劇,抑制碳量子點(diǎn)形成,熒光強(qiáng)度降低。當(dāng)APTMS/GA的量比為1∶2時(shí), GA量繼續(xù)增大,可能導(dǎo)致副反應(yīng)發(fā)生徹底,此時(shí)APTMS的氨基與GA的醛基合成Schiff堿,穩(wěn)定性較高,熒光增強(qiáng)。因此,實(shí)驗(yàn)選擇APTMS/GA的量比為1∶2。
Fig.5 Influence of the molar ratio of APTMS/GA on fluorescence intensity
3.2.2 反應(yīng)溫度與反應(yīng)時(shí)間
不同反應(yīng)溫度和反應(yīng)時(shí)間下制備的碳量子點(diǎn)熒光發(fā)射光譜見圖6。不同反應(yīng)溫度下,碳量子點(diǎn)熒光發(fā)射峰均在400 nm附近,而熒光強(qiáng)度隨著反應(yīng)溫度的升高而增大。固定反應(yīng)時(shí)間,隨著反應(yīng)溫度從60 ℃升高至120 ℃,碳量子點(diǎn)熒光強(qiáng)度逐漸增大;當(dāng)反應(yīng)溫度為180 ℃時(shí),熒光強(qiáng)度顯著增大。由圖7可知,隨著反應(yīng)溫度的升高,碳量子點(diǎn)的含氧量減少,非輻射復(fù)合減少,從而使碳量子點(diǎn)發(fā)光增強(qiáng)。然而,過高溫度會(huì)使碳量子點(diǎn)表面部分被氧化,造成非輻射復(fù)合中心增多,反而會(huì)降低碳量子點(diǎn)的熒光強(qiáng)度[14,21],所以實(shí)驗(yàn)選擇反應(yīng)溫度為180 ℃。由圖6插圖可知,180 ℃時(shí),碳量子點(diǎn)熒光強(qiáng)度隨著時(shí)間的延長先增大后減小,反應(yīng)時(shí)間為8 h時(shí)最大,故反應(yīng)時(shí)間選為8 h較為合適。碳量子點(diǎn)的合成經(jīng)歷了由成核到長大的脫水碳化過程。
Fig.6 Effects of the reaction temperature and time on fluorescence intensity
Fig.7 O1sregion of CDs under different reaction temperatures
3.3 形貌特征與表面組成元素
取1.0 mL碳量子點(diǎn)水溶液經(jīng)離心、超聲處理后,進(jìn)行高分辨透射電鏡(HRTEM)測試。圖8為碳量子點(diǎn)的HRTEM圖,表明碳量子點(diǎn)近似球形,直徑約2~7 nm;高分辨晶格條紋圖說明碳量子點(diǎn)晶面間距為0.243 nm(圖8內(nèi)插圖)。Zhang等[22]以抗壞血酸為碳源,水熱法合成的氨基功能化熒光碳量子點(diǎn)的粒徑為2 nm。
Fig.10 XPS spectrum of as-prepared CDs (a), C1sregion of CDs (b), Si2pregion of CDs (c), N1sregion of CDs (d), respectively.
3.4 熒光量子產(chǎn)率
以羅丹明6G乙醇溶液(QY為97%)為標(biāo)準(zhǔn)物質(zhì),采用比較法測定碳量子點(diǎn)的熒光量子產(chǎn)率[9]。根據(jù)公式計(jì)算量子產(chǎn)率[32]:Qx=Qs(Kx/Ks)(ηx/ηs),式中,x和s分別表示待測物和標(biāo)準(zhǔn)物質(zhì),η表示溶液中溶劑折射率,K值為標(biāo)準(zhǔn)曲線斜率。羅丹明6G和碳量子點(diǎn)的吸光度與熒光強(qiáng)度關(guān)系曲線見圖11,計(jì)算碳量子點(diǎn)量子產(chǎn)率為13.6%。Yang等[33]采用殼聚糖為碳前驅(qū)體,水熱法制備碳量子點(diǎn)的熒光量子點(diǎn)產(chǎn)率僅為7.8%。
圖11 羅丹明6G與碳量子點(diǎn)的吸光度和熒光強(qiáng)度關(guān)系曲線
Fig.11 Values of absorption against the values of integrated areas of the emission fluorescence spectra
3.5 環(huán)境因素
3.5.1 溶劑種類
3.5.2 pH值
pH(6.0~8.0)對(duì)碳量子點(diǎn)熒光強(qiáng)度的影響見圖13。結(jié)果表明,碳量子點(diǎn)熒光強(qiáng)度隨著pH的增加而逐漸降低,因此,本實(shí)驗(yàn)選擇pH=6.0磷酸鹽緩沖液。酸性條件有利于醛基與氨基合成Schiff堿,起到鈍化碳量子點(diǎn)的作用,減少碳量子點(diǎn)表面缺陷,提高熒光強(qiáng)度;反之,堿性條件促使Schiff堿分解成醛基和氨基,增加碳量子點(diǎn)表面缺陷,降低熒光強(qiáng)度[35]。
Fig.13 Influence of pH on the fluorescence intensity of CDs
3.5.3 測定溫度
Fig.14 (a) Fluorescence emission spectra of CDs at different temperatures from 273 to 303 K. (b) Fluorescence intensity of CDs as a function of 1/KBT.
通過簡便水熱合成方法,以GA與APTMS的Schiff堿反應(yīng)制備了新型碳量子點(diǎn),其熒光強(qiáng)度是APTMS或GA合成碳量子點(diǎn)的16.8倍。FTIR和XPS譜圖分析表明,碳量子點(diǎn)富含甲亞胺特性基團(tuán)和硅氧鍵。碳量子點(diǎn)為直徑2~7 nm的球體,晶格間距為0.243 nm。激發(fā)波長為350 nm時(shí),最大發(fā)射峰位于400 nm,熒光量子產(chǎn)率可達(dá)13.6%。碳量子點(diǎn)的最佳制備條件是APTMS與GA的量比為1∶2,在180 ℃下持續(xù)加熱8 h。碳量子點(diǎn)在pH=6.0磷酸緩沖液中的熒光強(qiáng)度最大,熒光強(qiáng)度隨測定溫度的增加而降低?;罨蹺=0.997 eV并保持不變,表明碳量子點(diǎn)發(fā)光過程歸因于輻射復(fù)合。
[1] LI H, HE X, LIU Y,etal.. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment [J].Mater.Res.Bull., 2011, 46(1):147-151.
[2] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights [J].Angew.Chem.Int.Ed., 2010, 49(38):6726-6744.
[3] YIN J Y, LIU H J, JIANG S,etal.. Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property [J].ACSMacro.Lett., 2013, 2(11):1033-1037.
[4] 史燕妮,李敏,陳師,等. 碳量子點(diǎn)及其性能研究進(jìn)展 [J]. 高分子通報(bào), 2016(1):39-46.
SHI Y N, LI M, CHEN S,etal.. Research progress of carbon quantum dots and their properties [J].Polym.Bull, 2016(1):39-46. (in Chinese)
[5] 袁鳴,鐘睿博,張景偉,等. 熒光碳點(diǎn)在生物醫(yī)學(xué)領(lǐng)域中的應(yīng)用研究進(jìn)展 [J]. 基因組學(xué)與應(yīng)用生物學(xué), 2015, 34(1):1-11.
YUAN M, ZHONG R B, ZHANG J W,etal.. Research progress of fluorescent carbon dots in biomedical applications [J].Genom.Appl.Biol., 2015, 34(1):1-11. (in Chinese)
[6] 婁慶,曲松楠. 基于超級(jí)碳點(diǎn)的水致熒光“納米炸彈” [J].中國光學(xué), 2015, 8(1):91-98.
LOU Q, QU S N. Water triggered luminescent “nano-bombs” based on supra-carbon-nanodpts [J].Chin.Opt., 2015, 8(1):91-98. (in Chinese)
[7] BARATI A, SHAMAIPUR M, ABDOLLAHI H. Hemoglobin detection using carbon dots as a fluorescence probe [J].Biosens.Bioelectron., 2015, 71:470-475.
[8] QIAN Z S, CHAI L J, HUANG Y Y,etal.. A real-time fluorescent assay for the alkaline phosphatase activity based on carbon quantum dots [J].Biosens.Bioelectron., 2015, 68:675-680.
[9] WEI J M, ZHANG X, SHENG Y Z,etal.. Simple one-step synthesis of water- soluble fluorescent carbon dots from waste paper [J].NewJ.Chem., 2014, 35(3):906-909.
[10] HU S L. Tuning optical properties and photocatalytic activities of carbon-based “quantum dots” through their surface groups [J].Chem.Rec., 2016, 16(1):219-230.
[11] 蘇州大學(xué). 一種水溶性碳量子點(diǎn)及其制備方法:中國,CN103172051A [P]. 2013.
SoochowUniversity. A water soluble carbon quantum dots and preparation method: China, CN10317205A [P]. 2013. (in Chinese)
[12] 王子儒,張光華,郭明媛. N摻雜碳量子點(diǎn)光穩(wěn)定劑的制備及光學(xué)性能 [J].發(fā)光學(xué)報(bào), 2016, 37(6):655-661.
WANG Z R, ZHANG G F, GUO M Y. Synthesis and optical properties of N doped carbon quantum dot light stabilizer system [J].Chin.J.Lumin., 2016, 37(6):655-661. (in Chinese)
[13] HU S L, DING Y, CHANG Q,etal.. Self-assembly of fluorescent carbon dots in a N,N-dimethylmethanamide solutionviaSchiff base reaction [J].Nanoscale, 2015, 7(10):4372-4376.
[14] ZHU S J, ZHANG J H, TANG S J,etal.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications [J].Adv.Funct.Mater., 2012, 22(22):4732-4740.
[15] 華曉鋒. 量子點(diǎn)與生物分子的偶聯(lián)及其應(yīng)用 [D]. 武漢:華中科技大學(xué), 2006.
HUA X F.CouplingBio-moleculeswithQuantumDotsandItsApplication[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese)
[16] SHI B F, ZHANG L L, LAN C Q,etal.. One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(Ⅱ) ions [J].Talanta, 2015, 142:131-139.
[17] WANG S S, MI W Q, ZHU H,etal.. Study on the fluorescence properties of carbon dots prepared by one step microwave method [J].Spectrosc.Spect.Anal., 2013, 32(10):2710-2713.
[18] YANG Y H, CUI J H, ZHENG M T,etal.. One-step synthesis of amino-functionalized fluorescent carbon nanaoparticles by hydrothermal carbonization of chitosan [J].Chem.Commun., 2012, 48:380-382.
[19] ZHU H, WANG X L, LI Y L,etal.. Microve synthesis of fluorescent carbon nanoparticles with electrochemiluminescene properties [J].Chem.Commun., 2009, 45:5118-5120.
[20] 宋連香,吳亮,胡育,等. La摻雜ZnS量子點(diǎn)的制備及其表征 [J]. 化學(xué)研究與應(yīng)用, 2015, 27(2):157-160.
SONG L X, WU L, HU Y,etal.. Synthesis and characterization of La doped ZnS quantum dots [J].Chem.Res.Appl., 2015, 27(2):157-160. (in Chinese)
[21] 田瑞雪,武玲玲,趙清,等. 碳量子點(diǎn)的氨基化及其對(duì)發(fā)光性能的影響 [J]. 化工新型材料, 2014, 42(1):90-92.
TIAN R X, WU L L, ZHAO Q,etal.. Amino groups of carbon quantum dots and their effect on the luminescence properties [J].NewChem.Mater., 2014, 42(1):90-92. (in Chinese)
[22] ZHANG B, LIU C Y, LIU Y. A novel one-step approach to synthesize fluorescent carbon nanopartiales [J].Eur.J.Inorg.Chem., 2010, 2010(28):4411-4414.
[23] MEI Q S, ZHANG K, GUAN G J,etal.. Highly efficient photoluminescent graphene oxide with tunable surface properties [J].Chem.Commun., 2010, 46(39):7319-7321.
[24] LIU L Q, LI Y F, ZHAN L,etal.. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions [J].Sci.ChinaChem., 2011, 54(8):1342-1347.
[25] WANG Y, KIM S H, FENG L. Highly luminescent N, S-co-doped carbon dots and their direct use as mercury(Ⅱ) sensor [J].Anal.Chim.Acta, 2015, 890:134-142.
[26] XUE M, ZHANG L, ZOU M,etal.. Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine [J].Sens.ActuatorsB, 2015, 219:50-56.
[27] ZHANG H, CHEN J, LI Y,etal.. Nitrogen-doped carbon nanodots@nanospheres as an efficient electrocatalyst for oxygen reduction reaction [J].Electrochim.Acta, 2015, 165:7-13.
[28] ZHANG R, CHEN W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ions [J].Biosens.Bioelectron., 2014, 55:83-90.
[29] WU Y, ZHOU Y, LI J,etal.. Influence of fillers dispersion on friction and wear performance of solution styrene butadiene rubber composites [J].J.Appl.Polym.Sci., 2016, 133(26):43589-43600.
[30] ZHANG Y C, ZHANG J, SHENG C D,etal.. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2and O2/Ar atmospheres [J].Energ.Fuel., 2011, 25(1):240-245.
[31] 李梅,楊俊和,張啟鋒,等. 用XPS研究新西蘭高硫煤熱解過程中氮、硫官能團(tuán)的轉(zhuǎn)變規(guī)律 [J]. 燃料化學(xué)學(xué)報(bào),2013, 41(11):1287-1293.
LI M, YANG J H, ZHANG Q F,etal.. The transformation regularity of nitrogen, sulfur, functional groups of high sulphur coal pyrolysis process in New Zealand was studied with XPS [J].J.FuelChem.Technol., 2013, 41(11):1287-1293. (in Chinese)
[32] WANG Y, KIM S H, FENG L. Highly luminescent N, S-co-doped carbon dots and their direct use as mercury (Ⅱ) sensor [J].Anal.Chim.Acta, 2015, 890:134-142.
[33] YANG Y H, CUI J H, ZHENG M T,etal.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan [J].Chem.Commun., 2012, 48(3):380-382.
[34] XU Q, PU P, ZHAO J G,etal.. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (Ⅲ) detection [J].J.Mater.Chem. A, 2015, 3(2):542-546.
[35] QIN W, LONG S, PANUMZIO M,etal.. Schiff bases: a short survey on an evergreen chemistry tool [J].Molecules, 2013, 18(10):12264-12289.
[36] WANG T, JIE W, ZENG D,etal.. Temperature dependence of photoluminescence properties of in-doped cadmium zinc telluride [J].J.Mater.Res., 2008, 23(5):1389-1392.
占霞飛(1990-),女,安徽安慶人,碩士研究生,2013年于安徽建筑大學(xué)獲得學(xué)士學(xué)位,主要從事環(huán)境分析檢測技術(shù)的研究。
E-mail: 576117283@qq.com唐建設(shè)(1979-),男,安徽銅陵人,博士,副教授,2009年于上海交通大學(xué)獲得博士學(xué)位,主要從事環(huán)境分析檢測技術(shù)的研究。
E-mail: tjs28@ahjzu.edu.cn
Synthesis and Factors of A Novel Carbon Quantum Dot Based on Schiff’s Base Reaction
ZHAN Xia-fei, TANG Jian-she*, WU Jun
(SchoolofEnvironmentalandEnergyEngineering,AnhuiJianzhuUniversity,Hefei230601,China)
*CorrespondingAuthor,E-mail:tjs28@ahjzu.edu.cn
A novel carbon quantum dot was synthesized from (3-aminopropyl)-trimethoxysilane (APTMS) and glutaraldehyde (GA) by facile hydrothermal method based on Schiff’s base reaction. The carbon quantum dot was spherical with a diameter of about 2-7 nm, and the excitation wavelength and maximum emission peak were 350 and 400 nm, respectively. The fluorescence quantum yield was up to 13.6%. The experiment results show that the optimal prepared condition of carbon quantum dots is APTMS and GA molar ratio of 1∶2, heated at 180 ℃ for 8 h. The fluorescence intensity of carbon quantum dots is the maximum in pH 6.0 phosphate buffer solution. In addition, the fluorescence intensity decreases with the increase of the measuring temperature from 273 to 303 K.
carbon quantum dots; Schiff’s base reaction; glutaraldehyde; (3-aminopropyl)trimethoxysilane; optical properties
1000-7032(2016)10-1195-08
2016-05-05;
2016-06-29
國家自然科學(xué)基金(21205001); 國家科技支撐計(jì)劃(2012BAJ08B03)資助項(xiàng)目
O482.31
A
10.3788/fgxb20163710.1195