鄭惠文,張秋云,李文慧,章世奎,席萬鵬,3
(1西南大學(xué)園藝園林學(xué)院,重慶400716;2新疆農(nóng)科院輪臺國家果樹資源圃,新疆輪臺 841600;3南方山地園藝學(xué)教育部重點實驗室,重慶 400715)
新疆杏果實發(fā)育過程中可溶性糖和有機酸的變化
鄭惠文1,張秋云1,李文慧2,章世奎2,席萬鵬1,3
(1西南大學(xué)園藝園林學(xué)院,重慶400716;2新疆農(nóng)科院輪臺國家果樹資源圃,新疆輪臺 841600;3南方山地園藝學(xué)教育部重點實驗室,重慶 400715)
【目的】明確新疆杏果實可溶性糖和有機酸的組成與含量特征,揭示果實發(fā)育過程中糖、酸動態(tài)變化規(guī)律?!痉椒ā恳?個新疆杏品種不同發(fā)育階段的果皮和果肉為試驗材料,使用高效液相色譜法(high performance liquid chromatograph,HPLC)檢測各樣品中可溶性糖和有機酸,對比分析果實發(fā)育過程中其組成與含量的變化情況?!窘Y(jié)果】從新疆杏果實中共檢測到3種可溶性糖(蔗糖、葡萄糖和果糖)。其中,蔗糖和葡萄糖為主要糖。果實成熟時,果皮中兩種主要糖分別占總糖含量的60.7%—79.1%和13.5%—34.7%,果肉中占總糖含量的65.5%—82.4%和8.2%—25.9%,果皮、果肉中果糖的含量相對較低,僅占總糖含量的4.6%—10.6%和6.5%—10.7%。整個果實發(fā)育過程中,3種可溶性糖和總糖的含量均明顯增加,各種糖的比例也發(fā)生明顯變化。葡萄糖占總糖的比例不斷減少,果皮中葡萄糖占總糖比例從79.4%降至13.5%,果肉中從74.1%降至8.2%;而蔗糖的比例不斷增加,果皮中從11.0%增加到79.1%,果肉中從11.0%增加到82.4%,成為成熟果實中最主要的糖。從新疆杏果實中共檢測到6種有機酸,包括蘋果酸、奎寧酸、檸檬酸、酒石酸、草酸和富馬酸。成熟果實中蘋果酸、奎寧酸和檸檬酸是最主要的有機酸,占總酸含量的94.6%—98.3%。果實發(fā)育過程中,蘋果酸和草酸呈下降趨勢,檸檬酸、奎寧酸和富馬酸呈上升趨勢,酒石酸無明顯變化規(guī)律。果實發(fā)育前期(幼果期至膨大期),總酸的含量明顯增加,而在果實成熟過程中(轉(zhuǎn)色期至完熟期)迅速下降。整個果實發(fā)育過程中,盡管蘋果酸占主導(dǎo)地位,但各品種在有機酸的積累模式上有明顯差異,依據(jù)其變化特點可分為2種模式:由蘋果酸和奎寧酸或蘋果酸向蘋果酸、奎寧酸和檸檬酸3種主要有機酸共積累。果實成熟時,3種共積累酸的比例在品種間差異較大:‘庫爾勒托擁’(KE)、‘阿克牙勒克’(AK)和‘克孜佳娜麗’(KZ)中,檸檬酸>蘋果酸>奎寧酸;‘索格佳娜麗’(SG)中,奎寧酸>蘋果酸>檸檬酸;‘蘇聯(lián)2號’(SL)中蘋果酸、奎寧酸和檸檬酸的比例相當(dāng)。果皮和果肉在可溶性糖、有機酸的組成、含量和積累模式上均無明顯差異?!窘Y(jié)論】新疆杏果實發(fā)育過程中,可溶性糖和有機酸積累呈現(xiàn)明顯的變化規(guī)律,糖的積累模式由葡萄糖積累型向蔗糖積累型轉(zhuǎn)變,有機酸由蘋果酸和奎寧酸積累型或蘋果酸積累型向蘋果酸、奎寧酸和檸檬酸3種酸共積累的模式轉(zhuǎn)變,糖、酸積累模式的轉(zhuǎn)變在新疆杏果實甜度和酸度以及風(fēng)味品質(zhì)決定中都具有十分重要的作用。
杏;糖;有機酸;高效液相色譜;果實發(fā)育;果實成熟
【研究意義】杏是重要的核果類果樹[1],由于其獨特的風(fēng)味和較高的營養(yǎng)價值而深受消費者喜愛[2-6]。新疆是世界杏的重要起源和栽培中心,擁有豐富的品種資源,已經(jīng)成為中國杏資源保存中心和優(yōu)質(zhì)特色杏的主要產(chǎn)區(qū)[7-9]。截至2014年底,新疆杏的種植面積已經(jīng)達(dá)到13.6×104hm2,總產(chǎn)量1.40×106t[10]。新疆杏以其獨特的風(fēng)味品質(zhì)著稱,在消費市場上頗受歡迎。而可溶性糖和有機酸是構(gòu)成果實風(fēng)味的重要因子,在果實風(fēng)味決定中具有基礎(chǔ)性作用,多年來一直是果實品質(zhì)研究領(lǐng)域的重要主題[11-14]。【前人研究進展】近年來,前人已經(jīng)開展了有關(guān)杏果實糖、酸的相關(guān)工作。陳美霞等[15]比較了華北生態(tài)型和歐洲生態(tài)型杏果實的可溶性糖,結(jié)果表明各品種在糖組分及總糖含量間都存在較大差異,但蔗糖含量均最高,果實發(fā)育過程中果糖和葡萄糖變化不大,成熟期蔗糖含量急劇增加。而對華北杏有機酸的研究認(rèn)為,杏品種可分為蘋果酸型和檸檬酸型,蘋果酸型的蘋果酸和總酸含量均在硬核前逐漸上升,硬核后開始降解,而檸檬酸的含量始終很低,檸檬酸型的檸檬酸呈現(xiàn)“S”型變化曲線,在果實發(fā)育前期含量很低,硬核期結(jié)束時急劇上升,而蘋果酸的變化規(guī)律正好與檸檬酸相反[16]。孫家正[17]檢測了30個杏品種成熟期的糖和有機酸,同樣得出蔗糖含量最高的結(jié)論,同時發(fā)現(xiàn),南疆杏有機酸和華北杏總酸含量相近,但組分差異很大,南疆杏蘋果酸含量高于檸檬酸近2倍,而華北杏檸檬酸含量高于蘋果酸4倍。另據(jù)報道[18],南疆杏總糖含量是華北杏的2.23倍,果糖含量是華北杏品種的7.85倍,新疆杏的酸度低,對果實風(fēng)味差異有顯著貢獻(xiàn)?!颈狙芯壳腥朦c】截至目前,大部分研究主要比較了成熟期杏果實糖、酸組成差異,對新疆杏的糖、酸動態(tài)變化仍然缺乏系統(tǒng)認(rèn)識,果皮和果肉在糖酸積累上是否有差異也未見報道?!緮M解決的關(guān)鍵問題】本研究以5個主栽的新疆杏品種不同發(fā)育階段的果皮和果肉為試驗材料,使用HPLC技術(shù)鑒定分析各個樣品中可溶性糖和有機酸,對比分析各品種及果實發(fā)育過程中果皮和果肉中糖、酸組分與含量變化情況,初步明確新疆杏果皮和果肉中糖和酸的組成與含量特征,揭示果實發(fā)育過程中糖、酸的動態(tài)變化規(guī)律,研究結(jié)果不僅可以加深對新疆杏果實風(fēng)味品質(zhì)形成的認(rèn)識,還將為杏風(fēng)味品質(zhì)調(diào)控和育種提供理論及實踐依據(jù)。
試驗于2015年在西南大學(xué)南方山地園藝學(xué)教育部重點實驗室進行。
1.1 試驗材料
以新疆農(nóng)業(yè)科學(xué)院輪臺果樹資源圃種植的5個主栽新疆杏品種為材料(表1)。于2015年2月選擇樹齡相同,樹體結(jié)構(gòu)相同(均為三主枝自然開心型),生長情況一致的樹進行標(biāo)記,每個品種標(biāo)記6棵。施肥、修剪和病蟲害防治統(tǒng)一按照資源圃栽培管理技術(shù)流程進行。
于2015年4月24日至7月27日期間,選取大小均勻、果形正常、無病蟲害的果實,分別在幼果期(S1)、膨大期(S2)、轉(zhuǎn)色期(S3)、青熟期(S4)、完熟期(S5)5個發(fā)育階段采摘果實,每個品種采摘180個,采摘當(dāng)天空運至西南大學(xué)南方山地園藝學(xué)教育部重點實驗室。
表1 植物樣品材料及其采樣時間Table1 The plant materials used in the present study and the sampling time
各發(fā)育階段的具體采樣時間見表1。果實運抵實驗室后,去除有機械損傷的果實,每50個果實作為一個重復(fù),每個樣品重復(fù)3次。其中,每個重復(fù)20個果實用于測定單果重、果實大小、可溶性固形物(TSS)和可滴定酸(TA),其余30個果實去核后用刀片將果皮和果肉快速分開,并切成3 mm小塊后加入液氮速凍混勻,保存在-80℃冰箱下備用。由于幼果期和膨大期果實太小果皮和果肉不易分開,因此這兩個時期以整個去核后的果實進行試驗,轉(zhuǎn)色期、青熟期和完熟期3個時期果皮和果肉分別進行(圖1)。
圖1 5個新疆杏品種不同發(fā)育階段的果實Fig. 1 Fruit at diffreent development stages of 5 Xinjiang apricot cultivars
1.2 試劑來源
果糖、葡萄糖、蔗糖、奎寧酸、蘋果酸、檸檬酸和富馬酸標(biāo)準(zhǔn)品均購自美國Sigma公司,草酸和酒石酸購自生工生物工程(上海)股份有限公司。其他試劑均為分析純,購自中國上海國藥化學(xué)試劑有限公司。
1.3 可溶性固形物(TSS)、可滴定酸測定(TA)
TSS使用日本愛宕數(shù)字手持式折射儀AYAGO PAL-1測定。TA測定使用滴定法進行。將果肉勻漿后,用紗布過濾。10 mL果汁用蒸餾水稀釋10倍后轉(zhuǎn)移到250 mL燒杯中,用磁力棒持續(xù)攪動。pH計浸入到果汁中,用0.1 mol·L-1NaOH滴定,加入酚酞指示劑,滴定至pH達(dá)到8.1時計算可滴定酸含量,結(jié)果用mmol·L-1H+來表示。
1.4 可溶性糖和有機酸的高效液相色譜檢測
1.4.1 糖、酸的提取 提取方法參照Xi等[19]的方法進行。稱取3 g果皮或果肉凍樣,加液氮使用冷凍磨樣機研磨成均勻的粉末,加入5 mL 80%乙醇,渦旋混勻。35℃水浴提取20 min,在4℃下10 000 r/min離心15 min,吸取上清液,重復(fù)提取3次,合并上清液,用80%乙醇定容至20 mL。取4 mL提取液,在4℃下,10 000 r/min離心5 min,取3 mL上清液,并在氮吹儀上吹干,用1.5 mL雙蒸水溶解壁上的果渣,經(jīng)過0.22 μm的水膜過濾純化移入進樣品,待高效液相色譜進行檢測。
1.4.2 色譜條件 可溶性糖和有機酸色譜條件參考ZHANG等[20]的方法進行。糖檢測使用的色譜柱為島津(4.6 mm×250 mm),0.5 μm的NH2柱,以乙腈∶水=7∶3為流動相,流速為1.2 mL·min-1,等度洗脫,柱溫為40℃,載氣流速為40 P,漂移管溫度為65℃。
有機酸檢測使用的色譜柱為ODS(4.6 mm×250 mm),0.5 μm的C18柱子,50 mmol·L-1(NH2)2HPO4,以H2PO3為緩沖液調(diào)節(jié)至pH=2.7為流動相,流速為0.5 mL·min-1,等度洗脫,柱溫為25℃,檢測波長210 nm。
果糖、葡萄糖、蔗糖均能在10 min內(nèi)被完全分離,6種待檢測的有機酸包括草酸、酒石酸、奎寧酸、蘋果酸、檸檬酸和富馬酸,均能在25 min內(nèi)被完全分離,分離效果良好。根據(jù)樣品與標(biāo)準(zhǔn)品的保留時間進行定性分析,運用外標(biāo)法制作標(biāo)準(zhǔn)曲線法進行定量,標(biāo)準(zhǔn)曲線的線性范圍均能覆蓋樣品中可溶性糖和有機酸的含量,回歸方程的R2均在0.99以上,最終含量以mg·g-1FW表示。
1.5 數(shù)據(jù)分析
采用OriginPro 8.0(Microcal Software,Inc.,Northampton,MA,USA)軟件作圖。所有樣品均設(shè)3個重復(fù),測定結(jié)果以平均值(means)±標(biāo)準(zhǔn)差(standard deviation)表示。樣品間的差異顯著性采用單因素方差分析(One Way ANOVA)鄧肯氏檢驗法測驗。
2.1 果實基本品質(zhì)指標(biāo)分析
從圖2-A、2-B可以看出,果實縱徑和重量在各品種果實發(fā)育過程中變化趨勢一致,在幼果期至轉(zhuǎn)色期緩慢增加,轉(zhuǎn)色期至青熟期迅速增加,完熟期略有增加或保持不變,形成了明顯的“S”型增長曲線。從果實大小和單果重來看,‘庫爾勒托擁’是大果型品種,‘阿克牙勒克’是中果型品種,‘克孜佳娜麗’‘索格佳娜麗’和‘蘇聯(lián)2號’是小果型品種。從果實形狀來看,‘索格佳娜麗’果實屬于圓形,‘庫爾勒托擁’‘阿克牙勒克’‘克孜佳娜麗’和‘蘇聯(lián)2號’屬于橢圓形果實的品種。
由圖2-C可以看出,果實TSS在果實發(fā)育前期即幼果期、膨大期和轉(zhuǎn)色期基本趨于穩(wěn)定,在6.1%—10.9%,而后迅速上升,在完熟期達(dá)到峰值。果實發(fā)育過程中,‘克孜佳娜麗’和‘蘇聯(lián)2號’的TSS含量變化最大,分別在8.2%—16.4%和8.9%—18.1%。成熟期‘蘇聯(lián)2號’的TSS含量最高為18.1%,‘索格佳娜麗’TSS含量最低為10.6%。與TSS的變化趨勢相反,供試品種的TA在果實膨大期較高,在2.0 mmol·L-1H+以上,轉(zhuǎn)色期后迅速下降,果實成熟時達(dá)到最低(圖2-D)。果實成熟中,全部供試品種的TA在0.4—3.2 mmol·L-1H+,‘索格佳娜麗’的TA最低,‘克孜佳娜麗’的TA最高。
2.2 新疆杏果實發(fā)育過程中可溶性糖的變化
從圖3-A可以看出,果實發(fā)育過程中,供試品種可溶性糖的組分和含量呈現(xiàn)明顯的變化規(guī)律。共檢測到果糖、葡萄糖和蔗糖3種可溶性糖,未檢測到山梨醇糖。果實發(fā)育期間,總糖、果糖、葡萄糖和蔗糖的含量總體上都呈上升趨勢。果實發(fā)育前期,主要是幼果期至膨大期,總糖、果糖、葡萄糖和蔗糖的含量盡管都有增加,但仍然保持在較低水平,果實發(fā)育后期,即轉(zhuǎn)色期至完熟期迅速增加,在青熟期或者完熟期達(dá)到峰值?!⒖搜览湛恕坠诠麑?,‘蘇聯(lián)2號’膨大期和轉(zhuǎn)色期果肉、青果期果肉,‘蘇聯(lián)2號’完熟期果肉總糖含量為對應(yīng)時期的最高值?!俗渭涯塞悺坠诠麑崱ⅰ鞲窦涯塞悺虼笃诠?、‘阿克牙勒克’轉(zhuǎn)色期果肉、‘索格佳娜麗’青熟期果肉和‘阿克牙勒克’完熟期果肉總糖含量為對應(yīng)時期的最低值。果實發(fā)育前期,‘蘇聯(lián)2號’果皮蔗糖含量明顯高于其他品種,‘庫爾勒托擁’的蔗糖和葡萄糖的含量明顯高于其他品種,果實發(fā)育后期,‘庫爾勒托擁’和‘蘇聯(lián)2號’的總糖、蔗糖和葡萄糖的含量均明顯高于其他品種。果實發(fā)育前期各品種果皮和果肉中果糖含量無明顯差異,果實發(fā)育后期即果實成熟過程中,‘庫爾勒托擁’‘阿克牙勒克’和‘蘇聯(lián)2號’果肉中果糖含量均高于‘索格佳娜麗’。整體上,各品種果皮中果糖含量差異不明顯。
圖2 新疆杏果實發(fā)育過程中基本指標(biāo)的變化Fig. 2 Changes of basic indexes in Xinjiang apricot fruit during development and ripening
圖3 新疆杏果實發(fā)育過程中可溶性糖含量與比例的變化Fig. 3 Changes of soluble sugars contents and ratio in Xinjiang apricot fruit during development and ripening
從圖3-B、C可以看出,整個發(fā)育過程中,供試品種中各種糖的比例發(fā)生明顯變化。供試品種發(fā)育過程中,葡萄糖的比例明顯降低,果皮中葡萄糖占總糖比例從79.4%降至13.5%,果肉從83.4%降至8.2%。幼果期至轉(zhuǎn)色期,果皮中葡萄糖占總糖的比例在48.5%—79.4%,果肉在37.7%—83.4%,葡萄糖是前3個發(fā)育時期果實中主要的可溶性糖。果糖的變化與葡萄糖相似,在果實發(fā)育的整個過程中,其比例總體上是降低的,果皮中果糖占總糖比例從22.8%降至4.6%,果肉從27.4%降至6.5%。果實發(fā)育前期,果皮中果糖所占總糖的比例在10.3%—22.8%,果肉在12.4%—27.4%,是果實發(fā)育前期第二大糖。與葡萄糖和果糖不同,果實發(fā)育過程中,蔗糖占總糖的比例不斷增加,在果皮中從10.2%增加到79.1%,果肉中從10.9%增加到82.4%,果實發(fā)育后期,特別是青熟期至完熟期,果皮中蔗糖占總糖的比例在52.5%—79.1%,果肉中在62.4%—82.4%,成為果實發(fā)育后期的第一大可溶性糖。與果實發(fā)育前期相比,果實發(fā)育后兩個時期,葡萄糖占總糖比例有所降低,果皮中在13.5%—42.1%,果肉在8.2%—29.1%,葡萄糖由第一主要可溶性糖成為第二大可溶性糖。果實發(fā)育后期,果糖占總糖的比例最低,果皮中果糖占總糖比例在4.6%—11.5%,果肉中在5.8%—11.6%。
2.3 新疆杏果實發(fā)育過程中有機酸的變化
從圖4-A可以看出,供試品種果實發(fā)育過程中有機酸組分和含量均呈現(xiàn)明顯的變化規(guī)律。草酸、酒石酸、奎寧酸、蘋果酸、檸檬酸和富馬酸是新疆杏果實中檢測到的有機酸。整個果實發(fā)育期間,草酸、酒石酸和蘋果酸呈下降趨勢,檸檬酸和富馬酸呈上升趨勢,奎寧酸沒有固定的變化規(guī)律。在果實發(fā)育前3個時期,總酸的含量明顯增加,后兩個發(fā)育時期迅速下降。整個果實發(fā)育過程中,草酸、酒石酸、奎寧酸、蘋果酸、檸檬酸和富馬酸的變化范圍依次為:果皮中在0—1.9、0—5.8、0—20.1、8.9—23.8、0—12.9和0.01—0.03 mg·g-1FW;果肉中分別在0.1—2.3、0—2.4、0—18.3、8.37—22.7、0—9.45和0—0.04 mg·g-1FW。果實發(fā)育過程中,奎寧酸、蘋果酸和檸檬酸是新疆杏果實的主要有機酸,富馬酸含量最低,草酸和酒石酸介于它們之間。同一個發(fā)育時期,奎寧酸在‘索格佳娜麗’果肉幼果期、‘阿克牙勒克’果肉膨大期、‘索格佳娜麗’果肉轉(zhuǎn)色期、‘阿克牙勒克’果皮青熟期和‘索格佳娜麗’果皮完熟期的積累量最高,而在‘庫爾勒托擁’‘索格佳娜麗’及‘蘇聯(lián)2號’幼果期,‘庫爾勒托擁’和‘蘇聯(lián)2號’膨大期、轉(zhuǎn)色期,‘庫爾勒托擁’果皮青熟期和‘庫爾勒托擁’果肉完熟期的積累量最低。整個果實發(fā)育過程中,除‘阿克牙勒克’果肉外,奎寧酸的含量在其他樣品中均呈增加趨勢。各供試品種的果皮和果肉中,蘋果酸在整個果實發(fā)育過程中均呈下降趨勢。同一個發(fā)育時期,蘋果酸在‘索格佳娜麗’果皮幼果期,‘克孜佳娜麗’果肉膨大期、轉(zhuǎn)色期、青熟期和‘阿克牙勒克’果皮完熟期的積累量最高,‘蘇聯(lián)2號’果肉幼果期、‘庫爾勒托擁’果肉膨大期、‘索格佳娜麗’果肉轉(zhuǎn)色期、‘庫爾勒托擁’果肉青熟期和‘庫爾勒托擁’果肉完熟期的積累量最低。對大多數(shù)品種而言,檸檬酸多在轉(zhuǎn)色期才能檢測到,只有‘克孜佳娜麗’在膨大期就能檢測到檸檬酸。整個果實發(fā)育過程中,檸檬酸的含量呈明顯的上升趨勢。同一發(fā)育時期,檸檬酸在‘克孜佳娜麗’果肉膨大期、‘蘇聯(lián)2號’果皮轉(zhuǎn)色期、‘索格佳娜麗’果皮青熟期和‘阿克牙勒克’果皮完熟期積累量最高,而在‘庫爾勒托擁’果肉青熟期和完熟期積累量最低。整個發(fā)育過程中,草酸含量整體趨于下降。草酸在所有參試品種的果肉中含量均高于果皮。富馬酸的含量在整個果實發(fā)育過程中趨于上升,而酒石酸無明顯變化趨勢。總酸含量在果實發(fā)育前期趨于增加,而在過程成熟過程中下降。供試品種中,‘庫爾勒托擁’的總酸含量最低。
從圖4-B、C可以看出,整個發(fā)育過程中,果實中有機酸的比例發(fā)生明顯變化。整個發(fā)育過程中,奎寧酸、蘋果酸和檸檬酸在果皮和果肉中分別占總酸比例的72.7%—98.7%和79.6%—97.6%,是新疆杏果實的主要有機酸。蘋果酸是新疆杏果實中第一大有機酸,果實發(fā)育過程中,果皮、果肉中占總酸的比例分別為98.4%—26.7%和94.6%—29.2%,檸檬酸占總酸比例分別在0—50.0%和0—37.0%,奎寧酸分別為0—56.9%和0—50.3%,草酸分別為0—9.0%和0.2%—9.0%,酒石酸分別為0.1%—26.3%和0—11.4%,果皮和果肉中富馬酸占總酸的比例最低,為0.1%—0.2%。
果實發(fā)育過程中,不同品種中,3種主要有機酸蘋果酸、奎寧酸和檸檬酸占總酸比例呈現(xiàn)不同的變化模式?!⒖搜览湛恕俗渭涯塞悺鞲窦涯塞悺诠麑嵃l(fā)育前期,主要以積累蘋果酸和奎寧酸為主,兩種酸占總酸的比例在果皮中為84.3%—98.5%,果肉中為78.6%—97.6%。果實發(fā)育前期,蘋果酸和酒石酸的含量比例在‘庫爾勒托擁’中占據(jù)主導(dǎo)地位,兩種酸在果皮和果肉中也有明顯差異:幼果期至轉(zhuǎn)色期,果皮中酒石酸比例迅速從11.4%增加到26.3%,蘋果酸和酒石酸占總酸含量的90.3%—99.0%;果肉中酒石酸的含量明顯降低,從11.4%降低到2.3%,而奎寧酸從0增加到15.2%,蘋果酸和酒石酸的含量占總酸含量的65.8%—91.0%。果實發(fā)育前期,‘蘇聯(lián)2號’為蘋果酸主導(dǎo)型,蘋果酸在果皮和果肉中占總有機酸的比例分別為94.0%—98.4%和94.0%—94.6%。果實成熟期,隨著蘋果酸含量的迅速下降和檸檬酸含量的不斷增加,蘋果酸、奎寧酸和檸檬酸成為果實中積累的主要有機酸,但3種酸在不同品種的比例明顯不同?!畮鞝柪胀袚怼⒖搜览湛恕汀俗渭涯塞悺?種有機酸占總有機酸的比例大小依次為:檸檬酸>蘋果酸>奎寧酸?!鞲窦涯塞悺袨椋嚎鼘幩幔咎O果酸>檸檬酸,‘蘇聯(lián)2號’中蘋果酸、奎寧酸和檸檬酸的比例相當(dāng)。
果實糖、酸組成與含量不僅受基因型的控制[21],也受果實發(fā)育的調(diào)控,其積累和變化模式各異。蘋果果實在發(fā)育前期蔗糖和果糖含量極低,但葡萄糖含量較高,隨著果實發(fā)育果糖含量明顯上升,葡萄糖含量下降,后期果糖成為主要的可溶性糖[22]。桃果實發(fā)育前期果糖和葡萄糖為主要的可溶性糖,后期蔗糖含量明顯上升并成為主要的可溶性糖[23-24]。華北杏在果實發(fā)育過程中總糖變化趨勢與蔗糖變化趨勢一致,果實發(fā)育前期果糖和葡萄糖含量較高,后期蔗糖含量明顯上升,成熟期蔗糖含量最高[15]。本研究結(jié)果發(fā)現(xiàn),果實發(fā)育過程中葡萄糖和蔗糖是杏果實主要的可溶性糖,發(fā)育后期含量迅速上升,這與前人研究結(jié)果一致。葡萄糖、蔗糖、果糖和總糖在整個發(fā)育過程中都明顯增加,其中蔗糖的增加最為迅速。果實發(fā)育前期,葡萄糖在總糖中所占比例最高,是果實發(fā)育前期最主要的可溶性糖,隨著蔗糖含量明顯升高,蔗糖是果實發(fā)育后期的主要可溶性糖。本研究還發(fā)現(xiàn),果實發(fā)育早期果皮中果糖∶葡萄糖∶蔗糖為1.7∶7∶1.6,轉(zhuǎn)色期為1.2∶4.9∶3.9,成熟期為0.7∶2.8∶6.5,在果實發(fā)育早期果肉中果糖∶葡萄糖∶蔗糖為1.7∶6.9∶1.4,轉(zhuǎn)色期為1.4∶4.2∶4.4,成熟期為0.9∶1.9∶7.2。果實發(fā)育過程中,果皮、果肉中糖的組成、含量以及各種糖的比例相對一致,成熟期果皮、果肉中糖的含量依次為:蔗糖>葡萄糖>果糖。
前人研究結(jié)果顯示,桃、杏、葡萄果實發(fā)育過程中有機酸含量逐漸升高,果實成熟期迅速下降。桃果實發(fā)育初期有機酸含量最高,后迅速下降至最低,成熟時有機酸含量最低[25-27]。與杏果實相似,蘋果酸和檸檬酸是蘋果果實的主要有機酸,果實發(fā)育過程中,兩種酸都逐漸降低,但檸檬酸降低的幅度遠(yuǎn)遠(yuǎn)大于蘋果酸,導(dǎo)致成熟時蘋果果實以積累蘋果酸為主[28]。葡萄果實坐果后,琥珀酸含量最高,果實成熟時含量急劇下降,其中酒石酸、檸檬酸在生長發(fā)育過程中含量不斷下降,但蘋果酸隨果實發(fā)育含量逐漸上升[29],葡萄果實生長發(fā)育過程中總有機酸含量先上升到最高值,成熟期含量下降[30-31]。檸檬酸和奎寧酸是柑橘果實發(fā)育前期的主要有機酸,果實成熟后在酸性品種中檸檬酸占主導(dǎo)地位,而低酸品種中蘋果酸占主導(dǎo)地位,其含量明顯高于檸檬酸[32]。陳美霞等[16]對華北杏的研究發(fā)現(xiàn),不同杏品種的果實中蘋果酸和檸檬酸含量的變化存在較大的差異,‘新世紀(jì)’杏在果實發(fā)育過程中總酸和蘋果酸含量變化趨勢完全一致,為蘋果酸型,發(fā)育過程中檸檬酸含量始終很低;‘凱特’杏在果實發(fā)育過程中檸檬酸含量呈現(xiàn)“S”型變化曲線,蘋果酸變化呈反“S”型,總酸含量變化呈單峰型。認(rèn)為杏品種分為蘋果酸型和檸檬酸型兩大類。本研究結(jié)果表明,蘋果酸、奎寧酸和檸檬酸是新疆杏的主要有機酸,整個果實發(fā)育期間,蘋果酸和草酸呈下降趨勢,檸檬酸、奎寧酸和富馬酸呈上升趨勢,酒石酸無明顯變化規(guī)律。在果實發(fā)育前3個時期,總酸含量明顯增加,果實成熟過程中迅速下降。
本研究還發(fā)現(xiàn),果實發(fā)育過程中有機酸的比例有明顯變化。果實發(fā)育早期,果皮和果肉中奎寧酸和蘋果酸是主要的有機酸,在果皮和果肉中分別占72.7%—98.5%和74.9%—97.6%,果實發(fā)育后期由于檸檬酸含量上升,蘋果酸,檸檬酸和奎寧酸成為主要的有機酸,在果皮和果肉中分別占占95.9%—98.4%和93.3%—97.4%,果實中有機酸積累模式由兩種酸或者一種酸積累轉(zhuǎn)變?yōu)樘O果酸、檸檬酸和奎寧酸3種酸共積累的模式。同一品種中,果皮和果肉在有機酸積累上有一定差異。成熟期果皮中草酸含量低于果肉,在果實發(fā)育過程中,果皮中酒石酸含量高于果肉,成熟期果皮和果肉中各組分有機酸含量依次為:蘋果酸>奎寧酸>檸檬酸>酒石酸>草酸>富馬酸。
蔗糖和葡萄糖為新疆杏的主要糖,整個果實發(fā)育過程中,葡萄糖、果糖、蔗糖和總糖的含量均明顯增加,果實成熟時,糖的積累模式由葡萄糖積累型向蔗糖積累型轉(zhuǎn)變。蘋果酸、奎寧酸和檸檬酸是新疆杏果實最主要的有機酸,果實發(fā)育過程中,蘋果酸和草酸呈下降趨勢,檸檬酸、奎寧酸和富馬酸呈上升趨勢,酒石酸無明顯變化規(guī)律,在果實發(fā)育前期,總酸含量明顯增加,果實成熟過程中迅速下降。果實發(fā)育過程中,各品種在有機酸的積累模式上有明顯差異,依據(jù)其模式特點可分為2種類型:由蘋果酸和奎寧酸積累型或蘋果酸積累型向蘋果酸、奎寧酸和檸檬酸3種酸共積累的模式轉(zhuǎn)變。果實成熟過程中,蘋果酸、奎寧酸和檸檬酸3種共積累酸的比例在品種間差異較大。因此,杏果實成熟過程中可溶性糖和有機酸積累模式的轉(zhuǎn)變在其風(fēng)味決定中有重要作用。整體上,果實發(fā)育過程中,果皮、果肉在可溶性糖和有機酸的含量、組成及積累模式上均無明顯差異。
[1] 張加延, 張釗. 中國果樹志: 杏卷. 北京: 中國林業(yè)出版社, 2003.
ZHANG J Y, ZHANG Z. China Fruit Records: Apricot Volume. Beijing: China Forestry Press, 2003. (in Chinese)
[2] ERDOGAN-ORHAN I, KARTAL M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L.(apricot). Food Research International, 2011, 44(5): 1238-1243.
[3] ENGEL R, ABRANKó L, BALOGH E, BLáZOVICS A, HERMáN R, HALáSZ J, ERCISLI S, PEDRYC A, STEFANOVITS-BáNYAI é. Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.)fruits: variations from genotypes, years, and analytical methods. Journal of Food Science, 2010, 75(9): C722-C730.
[4] RUIZ D, EGEA J, TOMáS-BARBERáN FA, GIL MI. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agricultural and Food Chemistry, 2005, 53(16): 6368-6374.
[5] BUREAU S, RENARD C M, REICH M, GINIES C, AUDERGON J M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Science and Technology, 2009, 42(1): 372-377.
[6] TURAN S, TOPCU A, KARABULUT I, VURAL H, HAYALOGLU A A. Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. Journal of Agricultural and Food Chemistry, 2007, 55(26): 10787-10794.
[7] 陳學(xué)森, 李憲利, 張艷敏, 吳樹敬, 沈洪波, 束懷瑞. 杏種質(zhì)資源評價及遺傳育種研究進展. 果樹學(xué)報, 2001, 18(3): 178-181.
CHEN X S, LI X L, ZHANG Y M, WU S J, SHEN H B, SHU HU R. Advances in apricot germplasm resources evaluation and genetic breeding. Journal of Fruit Science, 2001, 18(3): 178-181. (in Chinese)
[8] 林培鈞, 崔乃然. 天山野果林資源-伊犁野果林綜合研究. 北京:中國林業(yè)出版社, 2000.
LIN P J, CUI N R. Wild Fruit Tree in Tianshan-A Comprehensive Study on Wild Fruit Tree in Yili. Beijing: China Forestry Press, 2007.(in Chinese)
[9] RAI I, BACHHETI R, SAINI C, JOSHI A, SATYAN R. A review on phytochemical, biological screening and importance of wild apricot(Prunus armeniaca L.). Oriental Pharmacy and Experimental Medicine, 2016, 16(1): 1-15.
[10] 新疆維吾爾自治區(qū)統(tǒng)計局. 新疆統(tǒng)計年鑒. 北京: 中國統(tǒng)計出版社,2014: 249-260.
Statistics Bureau of the Xinjiang Autonomous Region. Xinjiang Statistical Yearbook. Beijing: China Statistics Press, 2014: 249-260.(in Chinese)
[11] 張上隆, 陳昆松. 果實品質(zhì)形成與調(diào)控的分子生理. 北京: 中國農(nóng)業(yè)出版社, 2007.
ZHANG S L, CHEN K S. Molecular Physiology of Fruit Quality Development and Regulation. Beijing: China Agriculture Press, 2007.(in Chinese)
[12] KADER A A. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 2008, 88(11): 1863-1868.
[13] 張永平, 喬永旭, 喻景權(quán), 趙智中. 園藝植物果實糖代謝的研究進展. 中國農(nóng)業(yè)科學(xué), 2008, 41(4): 1151-1157.
ZHANG Y P, QIAO Y X, YU J Q, ZHAO Z Z. Progress of researches of sugar accumulation mechanism of horticultural plant fruits. Scientia Agricultura Sinica, 2008, 41(4): 1151-1157. (in Chinese)
[14] 李金龍. 果實內(nèi)糖的積累與糖代謝相關(guān)酶. 中國林副特產(chǎn), 2015(3): 92-93.
LI J L. Sugar accumulation in fruit and enzymes related sugar metabolism. Forest By-Product and Speciality in China, 2015(3): 92-93. (in Chinese)
[15] 陳美霞, 趙從凱, 陳學(xué)森, 房師梅, 張憲省. 杏果實發(fā)育過程中糖積累與蔗糖代謝相關(guān)酶的關(guān)系. 果樹學(xué)報, 2009, 26(3): 320-324.
CHEN M X, ZHAO C K, CHEN X S, FANG S M, ZHANG X S. Sugar accumulation and changes in activities of sugar-metabolizing enzymes of apricot. Journal of Fruit Science, 2009, 26(3): 320-324.(in Chinese)
[16] 陳美霞, 趙從凱, 陳學(xué)森,郝會軍, 張憲省. 杏果實發(fā)育過程中有機酸積累與相關(guān)代謝酶的關(guān)系. 果樹學(xué)報, 2009, 26(4): 471-474.
CHEN M X, ZHAO C K, CHEN X S, HAO H J, ZHANG X S. Sugar accumulation and changes in activities of organic acid-metabolizing enzymes of apricot. Journal of Fruit Science, 2009, 26(4): 471-474.(in Chinese)
[17] 孫家正. 南疆栽培杏部分表現(xiàn)型性狀遺傳多樣性研究[D]. 山東農(nóng)業(yè)大學(xué), 2010.
SUN J Z. 2010. Study on genetic diversity of phenotypic traits in apricot (Prunus Armeniaca L.) cultivars in Southern Xinjiang, China.[D]. Tai’an: Shandong Agricltural University, 2010. (in Chinese)
[18] 張君萍, 高疆生, 李疆, 何天明, 張衛(wèi)芳, 徐林, 樊國權(quán). 新疆杏與華北杏果實主要營養(yǎng)成分比較分析. 新疆農(nóng)業(yè)科學(xué), 2006, 43(2): 140-144.
ZHANG J P, GAO J S, LI J, HE T M, ZHANG W F, XU L, FAN G Q. Comparison analysis on main nutritive component of Xinjiang apricot and North China apricot. Xinjiang Agricultural Sciences, 2006, 43(2): 140-144. (in Chinese)
[19] XI W P, ZHANG Q Y, LU X Y, WEI C Q, YU S L, ZHOU Z Q. Improvement of flavor quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chemistry, 2014, 164: 219-227.
[20] ZHANG W S, CHEN K S, ZHANG B, SUN C D, CAI C, ZHOU C H,XU W P, ZHANG W Q, FERGUSON I B. Postharvest responses of Chinese bayberry fruit. Postharvest Biology and Technology, 2005,37(3): 241-251.
[21] BUREAU S, RUIZ D, REICH M, GOUBLE B, BERTRAND D,AUDERGON J M, RENARD CMGC. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry 2009, 115(3): 1133-1140.
[22] 王海波, 陳學(xué)森, 辛培剛, 張小燕, 慈志娟, 石俊, 張紅. 幾個早熟蘋果品種果實糖酸組分及風(fēng)味品質(zhì)的評價. 果樹學(xué)報, 2007, 24(4): 513-516.
WANG H B, CHEN X S, XIN P G, ZHANG X Y, CI Z J, SHI J,ZHANG H. Study on sugar and acid constituents in several early apple cultivars and evaluation of their flavor quality, Journal of Fruit Science, 2007, 24(4): 513-516. (in Chinese)
[23] 鄧月娥, 張傳來, 牛立元, 蘇成軍, 韓紅萍. 桃果實發(fā)育過程中主要營養(yǎng)成分的動態(tài)變化及系統(tǒng)分析方法研究. 果樹科學(xué), 1998,15(1): 48-52.
DENG Y E, ZHANG C L, NIU L Y, SU C J, HAN H P. Studies on the changes of some main nutritional components in peach fruits during maturation and the method of systematic analysis. Journal of Fruit Science, 1998, 15(1): 48-52. (in Chinese)
[24] 金錫鳳. 桃果實發(fā)育期間幾種成分的變化. 落葉果樹, 1993(2): 27-29.
JIN X F. Several components change during development. Deciduous Fruits, 1993(2): 27-29. (in Chinese)
[25] ETIENNE C, MOING A, DIRLEWANGER E. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and soolute accumulation: involvement in regulating peach fruit acidity. Physiology Plantarum, 2002, 114: 259-270.
[26] MOING A, SVANELLA L, ROLIN D, GAUDILLèRE M,GAUDILLèRE J P, MONET R. Compositional changes during the fruit development of two peach cultivars differing in juice acidity. Journal of the American Society for Horticultural Science, 1998,123(5): 770-775.
[27] WU B, QUILOT B, GéNARD M, KERVELLA J, LI S. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Scientia Horticulturae, 2005, 103(4): 429-439.
[28] ACKERMANN J, FISCHER M, AMADO R. Changes in sugars, acids,and amino acids during ripening and storage of apples (cv. Glockenapfel). Journal of Agricultural and Food Chemistry, 1992,40(7): 1131-1134.
[29] ZHANG Y, LI P, CHENG L. Developmental changes of carbohydrates,organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’apple flesh. Food Chemistry, 2010, 123(4): 1013-1018.
[30] ALI K, MALTESE F, FORTES A M, PAIS M S, CHOI Y H,VERPOORTE R. Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chemistry, 2011, 124(4): 1760-1769.
[31] DOKOOZLIAN N, KLIEWER W. Influence of light on grape berry growth and composition varies during fruit development. Journal of the American Society for Horticultural Science, 1996, 121(5): 869-874.
[32] ALBERTINI M V, CARCOUET E, PAILLY O, GAMBOTTI C,LURO F, BERTI L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. Journal of Agricultural and Food Chemistry, 2006, 54(21): 8335-8339.
(責(zé)任編輯 趙伶俐)
Changes in Soluble Sugars and Organic Acids of Xinjiang Apricot During Fruit Development and Ripening
ZHENG Hui-wen1, ZHANG Qiu-yun1, LI Wen-hui2, ZHANG Shi-kui2, XI Wan-peng1,3
(1College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716;2Luntai National Germplasm Garden of Fruit Trees, Xinjiang Academy of Agricultural Sciences, Luntai 841600, Xinjiang;3Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715)
【Objective】The aim of this study was to characterize the content and composition of soluble sugars and organicacids in Xinjiang apricot fruit and to reveal the change rule.【Method】In this study, the soluble sugars and organic acids in peels and pulps of five Xinjiang apricot cultivars were determined by high performance liquid chromatography (HPLC) during fruit development and ripening. 【Results】 Three sugars were identified from Xinjiang apricot fruit, including sucrose, glucose and fructose. Sucrose and glucose are the predominant soluble sugars in Xinjiang apricot fruit. At the full-ripe stage, the ratio of sucrose to total sugar was 60.7%-79.1% in peels and 65.5%-82.4% in pulps, whereas glucose occupied 13.5%-34.7% of total sugar in peels and 8.2%-25.9% in pulps, respectively. Fructose only made up 4.6%-10.6% and 6.5%-10.7% of total sugar in peels and pulps respectively. Three individual sugars identified and total sugar increased significantly throughout the whole development period. The ratio of glucose to total sugar decreased from 79.4% to 13.5% in peels and 74.1% to 8.2% in pulps, respectively. Conversely, the ratio of sucrose to total sugar increased from 11.0% to 79.1% in peels and 11.0% to 82.4% in pulps. A total of six organic acids, including malic acid, quinic acid, citric acid, tartaric acid, oxalic acid and fumaric acid, were identified from Xinjiang apricot. Malic acid,quinic acid and citric acid were the dominant organic acids in ripe fruit, occupying 94.6%-98.3% of total organic acid. During fruit development and ripening, the contents of malic acid and oxalic acid decreased dramatically, while the contents of citric acid, quinic acid and fumaric acid increased significantly, no clearly consistent trend was observed for tartaric acid. The content of total acid in fruit increased during early development (from fruitlet to enlargement stage), but decreased rapidly during fruit ripening (from turning to full-ripe stage). Though malic acid predominated in fruit throughout the whole development period, different accumulation patterns for organic acids were observed in all cultivars studied. The patterns were divided into two types: malic acid and quinic acid dominated, malic acid and citric acid dominated, or only malic acid dominated during early development period, yet all types changed to malic acid, quinic acid and citric acid dominated during ripening. However, the ratio of malic acid, quinic acid or citric acid to total organic acid differed significantly in cultivars tested during fruit ripening. The ratio order in ‘Kuerletuoyong’ (KE),‘Akeyaleke’ (AK) and ‘Kezijianali’ (KZ) was citric acid > malic acid > quinic acid, the ratio in ‘Suogejianali’ (SG) was quinic acid >malic acid > citric acid, the ratio in ‘Sulian No. 2’ (SL) was that all three organic acids appeared to be largely equal. No significant differences were found in soluble sugars and organic acid content, composition or accumulation pattern between peels and pulps.【Conclusion】Xinjiang apricot presented an obvious chemical changing trend of soluble sugars and organic acids accumulation during fruit development and ripening. The sugar accumulation pattern changed from glucose dominated to sucrose dominated, while the organic acids accumulation pattern changed from two or one of malic acid, quinic acid and citric acid to the accumulation of the three organic acids all together. Thus, this pattern may play an important role in sweetness, acidity and flavor determination for Xinjiang apricot fruit.
apricot; sugars; organic acids; HPLC; fruit development; fruit ripening
2016-04-06;接受日期:2016-08-12
國家自然科學(xué)基金(31471855)
聯(lián)系方式:鄭惠文,E-mail:zhenghuiwen553@foxmail.com。通信作者席萬鵬,E-mail:xwp1999@zju.edu.cn