亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        遼西地區(qū)坡耕地壟膜溝種對(duì)土壤侵蝕和作物產(chǎn)量的影響

        2016-11-17 08:13:20肖繼兵孫占祥蔣春光鄭家明馮良山
        關(guān)鍵詞:坡耕地土壤侵蝕土壤水分

        肖繼兵,孫占祥,蔣春光,鄭家明,劉 洋,楊 寧,馮良山,白 偉

        (1遼寧省水土保持研究所,遼寧朝陽(yáng) 122000;2遼寧省農(nóng)業(yè)科學(xué)院,沈陽(yáng) 110161)

        遼西地區(qū)坡耕地壟膜溝種對(duì)土壤侵蝕和作物產(chǎn)量的影響

        肖繼兵1,孫占祥2,蔣春光1,鄭家明2,劉 洋2,楊 寧2,馮良山2,白 偉2

        (1遼寧省水土保持研究所,遼寧朝陽(yáng) 122000;2遼寧省農(nóng)業(yè)科學(xué)院,沈陽(yáng) 110161)

        【目的】為了充分有效地利用遼西地區(qū)有限的自然降雨,減少坡耕地水土流失,提高水土資源利用率,促進(jìn)作物穩(wěn)產(chǎn)高產(chǎn),在遼西地區(qū)坡耕地進(jìn)行了不同耕種模式研究?!痉椒ā?012—2015年在遼寧省農(nóng)業(yè)科學(xué)院阜新旱農(nóng)試驗(yàn)區(qū)進(jìn)行,試驗(yàn)采用徑流小區(qū)定位觀測(cè)的方法,研究天然降雨條件下坡耕地不同耕種模式對(duì)土壤侵蝕、土壤水分和作物產(chǎn)量的影響。徑流小區(qū)長(zhǎng)15 m,寬4 m。試驗(yàn)為雙因素裂區(qū)設(shè)計(jì),主區(qū)為坡度,設(shè)5°和10°兩個(gè)坡度,副區(qū)為種植模式,分設(shè)傳統(tǒng)種植(CK,等高土溝土壟)、等高壟膜溝秸稈種植(T1)、等高壟膜溝種(T2)3種處理,3次重復(fù)。壟膜溝種溝寬60 cm,壟寬40 cm,壟高10—12 cm。供試作物為谷子和玉米,輪作種植?!窘Y(jié)果】壟膜溝秸稈和壟膜溝種可有效減少和防止水土流失。4年間,5°坡對(duì)照總徑流量為512.7 m3·hm-2,總侵蝕量為4 561.3 kg·hm-2,T1處理和T2處理未發(fā)生土壤侵蝕;10°坡T1處理總徑流量和總侵蝕量較10°坡對(duì)照分別減少81.71%和96.17%,T2處理較對(duì)照分別減少56.92%和95.15%,10°坡T1處理總徑流量和總侵蝕量較T2處理分別減少57.54%和21.05%。壟膜溝秸稈和壟膜溝種較對(duì)照減少侵蝕量的同時(shí)可明顯減少侵蝕泥沙中的養(yǎng)分流失量。隨著坡度的增大,徑流量和侵蝕量都隨之增加,同時(shí)壟膜溝秸稈和壟膜溝種防蝕效果相對(duì)減弱。4年平均土壤水分,坡度間由5°坡到10°坡呈降低的趨勢(shì),但差異不顯著;種植方式間壟膜溝秸稈和壟膜溝種與對(duì)照差異極顯著,較對(duì)照分別高出1.68和1.45個(gè)百分點(diǎn)。對(duì)谷子而言,無(wú)論豐水年(2012年)或干旱年(2014年),壟膜溝秸稈和壟膜溝種較對(duì)照都表現(xiàn)出極顯著的增墑效果;對(duì)玉米而言,平水年(2013年)壟膜溝秸稈和壟膜溝種較對(duì)照未表現(xiàn)出顯著的增墑效果,干旱年(2015年)增墑效果極顯著。4年平均產(chǎn)量,坡度間由5°坡到10°坡呈降低的趨勢(shì),但差異不顯著。種植方式間壟膜溝秸稈與對(duì)照及壟膜溝種差異極顯著,分別增產(chǎn)25.59%和10.68%,同時(shí)壟膜溝種與對(duì)照產(chǎn)量差異極顯著,比對(duì)照增產(chǎn)13.47%。其中2012年和2014年,谷子壟膜溝種較對(duì)照增產(chǎn)不顯著,壟膜溝秸稈較對(duì)照增產(chǎn)顯著,分別增產(chǎn)24.75%和74.58%;2013年和2015年,玉米壟膜溝秸稈和壟膜溝種較對(duì)照增產(chǎn)極顯著,壟膜溝秸稈較對(duì)照分別增產(chǎn)11.29%和54.39%,壟膜溝種較對(duì)照分別增產(chǎn)5.05%和51.81%。干旱年份,壟膜溝秸稈(谷子,玉米)和壟膜溝種(玉米)增產(chǎn)效果尤為顯著。【結(jié)論】通過(guò)連續(xù)4年的旱坡耕地壟膜溝種試驗(yàn),明晰了該技術(shù)模式在遼西半干旱地區(qū)的防蝕、集雨、增墑、增產(chǎn)效果,有效減輕干旱缺水和水土流失對(duì)坡耕地作物生長(zhǎng)所造成的不利影響,豐富了遼西半干旱地區(qū)旱作集水農(nóng)業(yè)的理論基礎(chǔ)。通過(guò)該項(xiàng)技術(shù)的推廣應(yīng)用,可有效提高該區(qū)水土資源利用率,保護(hù)坡耕地質(zhì)量,提升坡耕地糧食綜合生產(chǎn)能力,使作物高產(chǎn),促進(jìn)該區(qū)旱作農(nóng)業(yè)健康、可持續(xù)發(fā)展。從防蝕、集水、增墑、增產(chǎn)等角度考慮,壟膜溝秸稈耕種模式比較適宜于遼西半干旱區(qū)坡耕地。

        遼西地區(qū);坡耕地;壟膜溝種;土壤侵蝕;產(chǎn)量

        0 引言

        【研究意義】土壤侵蝕直接或間接導(dǎo)致土壤肥力下降,造成土質(zhì)惡化、生態(tài)破壞,土壤侵蝕已成為中國(guó)重要的環(huán)境問(wèn)題之一[1]。坡耕地是中國(guó)重要的耕地資源,其面積占全國(guó)耕地總面積的17.5%,然而坡耕地是水土流失的重要策源地,是大量江河泥沙的主要來(lái)源,其年土壤流失量占全國(guó)流失總量的30.0%[2]。遼西地區(qū)是遼寧省土壤侵蝕最嚴(yán)重的地區(qū),5°以上坡耕地面積約占耕地總面積的32.1%,坡耕地的水土流失是桎梏農(nóng)業(yè)生產(chǎn)和經(jīng)濟(jì)發(fā)展的一個(gè)主要原因。因此,研究不同耕種模式對(duì)坡耕地土壤侵蝕的影響,對(duì)于提升坡耕地糧食綜合生產(chǎn)能力,改善脆弱的生態(tài)環(huán)境,促進(jìn)該區(qū)旱地農(nóng)業(yè)可持續(xù)發(fā)展意義重大?!厩叭搜芯窟M(jìn)展】已有研究表明,凡是改變微地形(等高耕作、溝壟種植等)、增加地面覆蓋(秸稈覆蓋、地膜覆蓋等)、改變土壤物理性狀(少、免耕等)的耕作措施及采用輪間作和套種等栽培技術(shù)均有減少和防止水土流失發(fā)生的作用并能提高產(chǎn)量[3-10]。壟溝種植有利于改善田間小氣候,可有效提高土壤溫度,減小風(fēng)速,攔截徑流,減少土壤流失,增加土壤蓄水,達(dá)到集水、保墑、增溫的效果。在壟背上覆蓋地膜,不僅有增溫保墑和減輕風(fēng)蝕、水蝕的作用,而且使自然降雨特別是<10 mm的無(wú)效或微效降雨能很快形成徑流貯存到膜下作物根部,集水功能明顯提高,顯著提高水、肥利用率,增加作物產(chǎn)量[11-18]。同時(shí)土壤水、溫條件的改善可促進(jìn)微生物的大量繁殖,提高土壤微生物含量,利于土壤養(yǎng)分的有效化[19]。在壟覆膜的基礎(chǔ)上,溝覆蓋秸稈,可進(jìn)一步減少土壤蒸發(fā),增加地表粗糙度,減緩徑流的發(fā)生,提高天然降水的生產(chǎn)效率[20-21]。【本研究切入點(diǎn)】干旱缺水和水土流失嚴(yán)重威脅著遼西地區(qū)農(nóng)業(yè)生產(chǎn)的可持續(xù)發(fā)展,如何有效攔蓄徑流、促進(jìn)降水入滲,提高自然降水利用率是該區(qū)生態(tài)環(huán)境建設(shè)和農(nóng)業(yè)可持續(xù)發(fā)展的關(guān)鍵。壟膜溝種可使有限的降水集中使用,減少和防止水土流失的發(fā)生。目前壟膜溝種集雨種植研究主要在平地,研究?jī)?nèi)容主要集中在水肥利用效率、土壤特性、作物生理和產(chǎn)量等方面,而壟膜溝種長(zhǎng)期定位種植對(duì)坡耕地“防蝕-集雨-增產(chǎn)”的效果研究很少。【擬解決的關(guān)鍵問(wèn)題】通過(guò)進(jìn)行坡耕地壟膜溝種防蝕、集雨、增墑、增產(chǎn)試驗(yàn)研究,有效解決干旱缺水和水土流失對(duì)該區(qū)坡耕地作物生長(zhǎng)造成的不利影響,提高水土資源利用率,提升坡耕地糧食綜合生產(chǎn)能力,發(fā)展旱區(qū)節(jié)水型生態(tài)農(nóng)業(yè),為半干旱地區(qū)坡耕地壟膜溝種集水種植,控制區(qū)域土壤侵蝕、保護(hù)環(huán)境提供一定的技術(shù)支撐。

        1 材料與方法

        1.1 試驗(yàn)區(qū)概況

        遼西地區(qū)包括阜新、朝陽(yáng)、葫蘆島和錦州部分區(qū)域,屬溫帶大陸性季風(fēng)氣候區(qū),年平均氣溫7—8℃,10℃以上積溫為2 900—3 400℃,無(wú)霜期為135—165 d,5—9月份日照時(shí)數(shù)為1 200—1 300 h,全區(qū)土地面積約為3×104km2,耕地面積約為68.97×104hm2,土地和光熱資源十分豐富。年降水量?jī)H為300—500 mm,雨量偏少且集中,降水變率較大,水土流失嚴(yán)重,旱災(zāi)頻繁,“十年九旱”是其基本氣候特征,區(qū)域內(nèi)年降水量的總分布趨勢(shì)為從東部到西部逐漸遞減。

        試驗(yàn)于2012—2015年在遼寧省農(nóng)業(yè)科學(xué)院阜新旱農(nóng)試驗(yàn)區(qū)進(jìn)行,該區(qū)地處東經(jīng)121°01′-122°25′,北緯40°44′-42°34′之間。年平均氣溫7.2℃,≥10℃的活動(dòng)積溫年平均為3 324℃,無(wú)霜期年平均為144 d,光照充足,晝夜溫差大。植被覆蓋度差,年均降水量423 mm,降水季節(jié)分布不均,冬季降水最少,春、秋季降水居中,夏季降水最多,占全年降水總量的70%以上,且多以大雨、暴雨形式出現(xiàn),降雨強(qiáng)度大,易超滲產(chǎn)流導(dǎo)致坡耕地水土流失加劇。除大小春旱年年發(fā)生外,常形成伏旱、秋旱,屬典型的半干旱雨養(yǎng)農(nóng)業(yè)區(qū)。阜新地區(qū)坡耕地多分布在淺山丘陵漫崗區(qū),地塊面積較小,土地貧瘠。該區(qū)坡耕地總面積為21.65 ×104hm2,占耕地總面積的41.69%,其中5°-15°的坡耕地占坡耕地總面積的78.26%,是水土流失綜合治理的主要區(qū)域。

        試驗(yàn)區(qū)降雨分布情況見圖1。2012—2015年作物生育期降雨量分別為471.0 mm、409.0 mm、293.7 mm、210.9 mm,4年平均降雨量為346.2 mm,各年最大次降雨量分別為61.0 mm、185.0 mm、30.2 mm、29.9 mm,。4年間作物生育期總計(jì)降雨95次,其中小于10 mm的降雨占總降雨次數(shù)的62.1%,80.2%的降雨為大于10 mm的降雨。4年間,5月份平均降雨量?jī)H占生育期平均降雨量的11.3%,并且5月份次降雨量<10 mm的降雨達(dá)73.7%,春旱極易發(fā)生,7月份降雨量較大。由此可見,該區(qū)作物生育期間無(wú)效或微效降雨次數(shù)居多,降雨總量取決于次數(shù)較少的中到大雨。該區(qū)同期多年平均降雨量為374.0 mm,若根據(jù)降水距平±15%作為干旱年和豐水年的劃分界限,2012年屬豐水年,2013年屬平水年,2014年屬干旱年,2015年屬嚴(yán)重干旱年。降水季節(jié)分布不均和年際間降水變率較大限制了農(nóng)業(yè)生產(chǎn),同時(shí)較多次數(shù)的無(wú)效或微效降水使有限的降水資源不能得以充分利用。

        圖1 2012—2015年作物生育期次降雨量分布Fig. 1 Rainfall distribution during growing periods of crop in 2012-2015

        1.2 試驗(yàn)設(shè)計(jì)

        采用徑流小區(qū)定位觀測(cè),徑流小區(qū)長(zhǎng)15 m,寬4 m,面積為60 m2。建筑材料用磚作邊埂,并用水泥抹砌,邊埂上緣向外傾斜60°。小區(qū)下方接蓄水池,池壁附有標(biāo)尺,用于測(cè)量次降雨徑流小區(qū)產(chǎn)生的徑流量。試驗(yàn)采用裂區(qū)設(shè)計(jì),主區(qū)為坡度,設(shè)5°和10°兩個(gè)坡度,副區(qū)為種植方式,分別為傳統(tǒng)種植(CK,等高溝壟種植)、等高壟膜溝秸稈種植(T1)、等高壟膜溝種(T2),3次重復(fù)。壟膜溝種溝寬60 cm,壟寬40 cm,壟高10-12 cm,壟上覆膜為集水區(qū),溝內(nèi)膜側(cè)種植兩行作物,先起壟覆膜,然后播種,地膜厚度為0.014 mm。試驗(yàn)地前茬作物為花生。傳統(tǒng)種植等行距種植,行距50 cm。壟膜溝秸稈種植結(jié)合中耕在6月中旬(拔節(jié)初期)溝內(nèi)種植區(qū)覆蓋風(fēng)干玉米秸稈,秸稈長(zhǎng)度5 cm左右,覆蓋量為7 500 kg·hm-2,覆蓋至作物收獲,秋后所覆秸稈翻耕入土,翻耕深度為20-25 cm。溝壟覆蓋方式每年收獲后保留原壟,人工刨除根茬,翌年適當(dāng)修理重新覆膜。玉米和谷子是遼西地區(qū)的主栽作物,因此選取玉米(鐵研58)和谷子(朝谷14)為供試作物,輪作種植。2012年種植谷子,2013年種植玉米,谷子和玉米每年5月上旬播種,9月下旬收獲。谷子種植密度為37.5×104株/hm2,株距5 cm,播種方式為條播。玉米種植密度為5.25 ×104株/hm2,株距38 cm,播種方式為穴播。種肥為磷酸二銨(谷子:225 kg·hm-2,玉米:375 kg·hm-2),施種肥方式為條施,拔節(jié)初期結(jié)合中耕追施尿素(谷子:150 kg·hm-2,玉米:375 kg·hm-2),試驗(yàn)小區(qū)土壤為壤質(zhì)褐土,播前各小區(qū)0-20 cm耕層土壤養(yǎng)分含量見表1。

        1.3 測(cè)定項(xiàng)目與方法

        1.3.1 降雨因子 在徑流場(chǎng)中設(shè)置SJ1型虹吸式自計(jì)雨量計(jì),記錄降雨過(guò)程,據(jù)此計(jì)算每次降雨的降雨量、降雨歷時(shí)等。

        1.3.2 次渾水徑流量 Q=A·h (1)

        式中,Q為蓄水池內(nèi)容納的徑流量(m3);A為蓄水池面積(m2);h為蓄水池內(nèi)徑流泥沙混合溶液的深度(m)。

        1.3.3 次土壤侵蝕量 S=Q·λ (2)

        式中,S為小區(qū)泥沙侵蝕量(kg);Q為蓄水池內(nèi)容納的渾水徑流量(m3);λ為徑流含沙量(kg·m-3),λ測(cè)定方法為在水池內(nèi)混勻泥水,用取樣器采集1L泥水樣用濾紙過(guò)濾、烘干,測(cè)定侵蝕泥沙量,同時(shí)可取樣測(cè)侵蝕泥沙的養(yǎng)分含量。

        1.3.4 土壤含水量(θm)和養(yǎng)分含量 土壤含水量用經(jīng)典烘干法測(cè)定,測(cè)定數(shù)值為質(zhì)量含水量。先在田間選取代表性取樣點(diǎn),按所需深度分層取土樣,將土樣放入鋁盒并立即蓋好稱重(濕土加鋁盒重,W1),然后打開蓋,置于烘箱,在105—110℃下烘至恒重,再稱重(干土加鋁盒重,W2),空鋁盒重(W3),則該土壤質(zhì)量含水量按下式求出:

        θm=(W1-W2)/(W2-W3)×100% (3)

        取樣部位為作物行間和株間,每小區(qū)在坡上、坡中和坡下部各取一點(diǎn)測(cè)土壤水分,取樣深度為100 cm,分6個(gè)層次,分別為0—10、10—20、20-40、40—60、60-80、80-100 cm。

        各小區(qū)播前土壤養(yǎng)分測(cè)定取樣深度為20 cm,采用“S”形法在每個(gè)小區(qū)上、中、下坡位取0—10、10—20 cm 2個(gè)層次混合樣品。各小區(qū)耕層及侵蝕泥沙中養(yǎng)分測(cè)定指標(biāo)包括有機(jī)質(zhì)、全氮、堿解氮、有效磷、速效鉀,所有測(cè)定項(xiàng)目根據(jù)《土壤理化分析》用常規(guī)方法進(jìn)行測(cè)定。

        1.3.5 作物產(chǎn)量 作物成熟后,在坡上部、坡中部和坡下部各取4 m2樣方測(cè)產(chǎn)。

        1.4 數(shù)據(jù)處理

        采用Excel 2003進(jìn)行數(shù)據(jù)處理及圖表制作,DPS 8.50軟件進(jìn)行LSD多重比較。

        表1 供試土壤播前基礎(chǔ)養(yǎng)分含量Table1 The basic nutrient contents in the tested soils before sowing

        表2 2012—2015年不同處理水土流失情況Table2 Soil and water loss of different treatments in 2012-2015

        2 結(jié)果

        2.1 壟膜溝種對(duì)土壤侵蝕的影響

        2.1.1 不同處理對(duì)土壤侵蝕的影響 由表2可見,4年間5°坡T1(壟膜溝秸稈)和T2(壟膜溝種)2種集水種植模式未發(fā)生土壤侵蝕,CK總徑流量為512.7 m3·hm-2,總侵蝕量為4 561.3 kg·hm-2;10°坡T1總徑流量和總侵蝕量較對(duì)照分別減少81.71%和96.17%,10°坡T2總徑流量和總侵蝕量較對(duì)照分別減少56.92%和95.15%,同時(shí)10°坡T1總徑流量和總侵蝕量比T2分別減少57.54%和21.05%。壟膜溝種較對(duì)照有較好的防蝕效果,在壟覆膜的基礎(chǔ)上溝覆秸稈可進(jìn)一步強(qiáng)化防蝕效果。坡度由5°到10°,隨著坡度的加大,壟膜溝秸稈和壟膜溝種防蝕效果相對(duì)減弱。T1和T2減沙效應(yīng)較削減徑流作用更為明顯。同一處理,隨著坡度的增大,徑流量和侵蝕量增加,但侵蝕量的增加幅度遠(yuǎn)大于徑流量的增加幅度。如對(duì)照由5°坡到10°坡,徑流量增加了24.66%,侵蝕量卻增加了322.88%。

        2.1.2 不同處理對(duì)侵蝕泥沙養(yǎng)分濃度和養(yǎng)分流失量的影響 以2014年6月18日次典型暴雨事件為例分析不同處理對(duì)坡耕地侵蝕泥沙養(yǎng)分流失的影響。從表3可以看出,由5°坡到10°坡,對(duì)照侵蝕泥沙中養(yǎng)分濃度呈下降趨勢(shì),這可能與2014年播前對(duì)照耕層土壤基礎(chǔ)養(yǎng)分含量有關(guān);10°坡T1、T2侵蝕泥沙中養(yǎng)分濃度均不同程度高于對(duì)照(T2有效磷除外),這可能與不同處理播前耕層土壤基礎(chǔ)養(yǎng)分含量和種植方式等有關(guān)。

        表3 不同處理播前耕層養(yǎng)分含量及不同處理對(duì)侵蝕泥沙養(yǎng)分濃度的影響Table3 Topsoil nutrient contents before sowing and influence of different treatments on nutrient concentrations in sediment

        表4 不同處理養(yǎng)分流失量Table4 Nutrient loss quantity of different treatments (kg·hm-2)

        從表4可以看出,各處理以有機(jī)質(zhì)流失量最大,其次是全氮。對(duì)照由5°坡到10°坡,有機(jī)質(zhì)、全氮、堿解氮、有效磷、速效鉀流失量分別增加714.53%、676.99%、415.38%、737.50%、539.29%。10°坡T1各養(yǎng)分流失量較10°坡對(duì)照分別減少96.31%、96.24%、97.01%、97.01%、94.41%,T2各養(yǎng)分流失量較對(duì)照分別減少95.44%、95.56%、95.52%、97.01%、92.74%。10°坡T2除有效磷流失量與T1相同外,有機(jī)質(zhì)、全氮、堿解氮、速效鉀流失量較T1分別增加23.56%、18.18%、50.00%、30.00%。

        2.2 壟膜溝種對(duì)土壤水分的影響

        2.2.1 不同處理集雨增墑效果 表5所測(cè)雨前土壤水分為長(zhǎng)時(shí)間無(wú)有效降雨情況下2014年8月7日測(cè)定結(jié)果,8月8日降雨,8月9日測(cè)不同處理土壤水分。結(jié)果表明,5°坡和10°坡雨前不同處理0—100 cm平均土壤水分差異不顯著。雨后,5°坡T1、T2土壤水分與對(duì)照差異極顯著,比對(duì)照分別高出1.67和1.26個(gè)百分點(diǎn);10°坡3個(gè)處理土壤水分差異極顯著,T2土壤水分比T1和對(duì)照分別高出1.69和3.49個(gè)百分點(diǎn),T1土壤水分比對(duì)照高出1.80個(gè)百分點(diǎn),充分體現(xiàn)了壟膜溝種及壟膜溝秸稈集雨增墑效果。通過(guò)比較雨前雨后土壤水分來(lái)分析不同處理降水入滲深度可知,5°坡對(duì)照降水入滲深度可能只有20 cm,而T1和T2降水入滲深度可達(dá)20-40 cm;10°坡對(duì)照和T1降水入滲深度為20 cm,而T2降水入滲深度可達(dá)20-40 cm,降水入滲越深,則保墑效果越好,這也充分體現(xiàn)了壟膜溝種的蓄水保墑功能。

        表5 不同處理雨前和雨后土壤含水量Table5 Soil water content of different treatments before and after rain (%)

        2.2.2 不同處理對(duì)作物生育期土壤水分的影響表6所示數(shù)據(jù)為不同年份在作物苗期、拔節(jié)期、抽穗期、灌漿期和成熟期所測(cè)土壤水分平均值。2012-2015年隨著作物生育期降雨量的遞減,作物生育期平均土壤水分也呈現(xiàn)出逐年減少的趨勢(shì),與降雨量的變化一致。2012年,坡度間土壤水分差異顯著,種植方式間土壤水分差異極顯著,其中T1比對(duì)照高出1.52個(gè)百分點(diǎn),T2比對(duì)照高出0.89個(gè)百分點(diǎn),T1比T2高出0.63個(gè)百分點(diǎn);2013年,坡度及種植方式間土壤水分差異不顯著,但10°坡T1和T2土壤水分與對(duì)照差異顯著,比對(duì)照分別高出0.57和0.55個(gè)百分點(diǎn);2014年,坡度間土壤水分差異不顯著,種植方式間T1和T2土壤水分與對(duì)照差異極顯著,比對(duì)照分別高出2.14和2.60個(gè)百分點(diǎn);2015年,坡度間土壤水分差異顯著,種植方式間T1和T2土壤水分與對(duì)照差異極顯著,比對(duì)照分別高出2.73和1.95個(gè)百分點(diǎn),T1比T2高出0.78個(gè)百分點(diǎn),差異顯著。

        4 年間,不同坡度處理平均土壤水分差異不顯著,種植方式間T1與T2平均土壤水分差異不顯著,但二者與對(duì)照差異極顯著,比對(duì)照分別高出1.68和1.45個(gè)百分點(diǎn)。同一坡度下,T1和T2平均土壤水分與對(duì)照差異極顯著,其中5°坡T1和T2平均土壤水分比對(duì)照分別高出1.40和1.47個(gè)百分點(diǎn),10°坡T1和T2平均土壤水分比對(duì)照分別高出1.96和1.45個(gè)百分點(diǎn)。由5°坡到10°坡,對(duì)照、壟膜溝秸稈、壟膜溝種平均土壤水分分別下降了0.75、0.19和0.77個(gè)百分點(diǎn)。由以上分析可以看出,壟膜溝秸稈或壟膜溝種較對(duì)照表現(xiàn)出一定的增墑效果,且隨坡度的增大,2種集水種植模式增墑效果呈增大趨勢(shì)。同時(shí)隨著坡度的增大,同一處理徑流量增加,降水入滲量減少,土壤水分呈降低趨勢(shì)。

        表6 作物生育期土壤含水量Table6 Soil water content in growing period of crop (%)

        2.3 壟膜溝種對(duì)作物產(chǎn)量的影響

        從表7可以看出,2012年,坡度間產(chǎn)量差異顯著,種植方式間T1與對(duì)照和T2產(chǎn)量差異顯著,較二者分別增產(chǎn)24.75%和25.07%,T2和對(duì)照產(chǎn)量差異不顯著;2013年,坡度間產(chǎn)量差異不顯著,種植方式間產(chǎn)量差異極顯著,其中T1比對(duì)照和T2分別增產(chǎn)11.29%和5.95%,T2比對(duì)照增產(chǎn)5.05%;2014年,坡度間產(chǎn)量差異不顯著,種植方式間T1與對(duì)照產(chǎn)量差異顯著,較對(duì)照增產(chǎn)74.58%,T2與對(duì)照產(chǎn)量差異不顯著;2015年,坡度間產(chǎn)量差異不顯著,種植方式間T1和T2與對(duì)照產(chǎn)量差異極顯著,較對(duì)照分別增產(chǎn)54.39%和51.81%,T1和T2產(chǎn)量差異不顯著。

        4 年間,谷子玉米輪作體系坡度間產(chǎn)量差異不顯著。種植方式間產(chǎn)量差異極顯著,T1比對(duì)照和T2分別增產(chǎn)25.59%和10.68%,T2比對(duì)照增產(chǎn)13.47%。同一坡度下,5°坡T1比對(duì)照和T2分別增產(chǎn)18.68%和8.17%,T2比對(duì)照增產(chǎn)9.71%;10°坡T1比對(duì)照和T2分別增產(chǎn)33.63%和13.40%,T2比對(duì)照增產(chǎn)17.84%??傮w上,隨著坡度的增大,作物子粒產(chǎn)量呈降低趨勢(shì),但T1、T2較對(duì)照增產(chǎn)幅度及T1較T2增產(chǎn)幅度呈上升趨勢(shì)。在坡度較大的情況下,更能體現(xiàn)出壟膜溝種及壟膜溝秸稈種植的增產(chǎn)效果。

        表7 不同處理對(duì)作物子粒產(chǎn)量的影響Table7 Influence of different treatments on yield of crop

        3 討論

        3.1 坡耕地壟膜溝種及壟膜溝秸稈防蝕、集水、增墑效應(yīng)

        已有研究表明,坡耕地采取等高溝壟耕作[3-5,22-23]及秸稈或地膜覆蓋可減少水土流失,蓄水保土[6-8,24-30]。本研究表明,在傳統(tǒng)種植(CK,等高溝壟耕作)的基礎(chǔ)上采取壟膜溝種及壟膜溝秸稈集水種植,可有效減少和防止水土流失的發(fā)生,與前人研究基本一致。坡耕地水蝕主要以雨滴擊濺開始,而后形成面狀水流,進(jìn)而發(fā)展成細(xì)溝、淺溝侵蝕,雨滴的濺蝕和地表徑流的沖刷是造成坡耕地土壤流失的直接原因。對(duì)照通過(guò)等高溝壟耕作改變了地面微地貌,增加了地表粗糙度,一定程度上可以攔蓄地表徑流,減少土壤侵蝕,但已有研究表明該耕作措施在小于5°的低坡度坡耕地上防蝕效果較好,而且對(duì)長(zhǎng)降雨的持續(xù)沖刷不能有效減少?gòu)搅髁魇В?2,31]。這是由于對(duì)照壟無(wú)地膜溝無(wú)秸稈覆蓋,降雨直接打擊土壤表面,致使濺蝕量增大,而且濺散的土粒堵塞土壤孔隙,易使表土結(jié)皮,使降雨入滲能力減弱,為坡面徑流提供了更多處于分散狀態(tài)的土粒。同時(shí)雨滴直接打擊裸露地面也減小了地面粗糙率,增加了徑流流速,并使土壤侵蝕量進(jìn)一步增大,而且對(duì)照當(dāng)雨水蓄滿壟溝時(shí),壟壁頂部開始產(chǎn)生層狀侵蝕,繼而產(chǎn)生細(xì)溝侵蝕,導(dǎo)致壟壁毀壞,產(chǎn)生水土流失,此時(shí)等高溝壟反而增大了水土流失量。在等高溝壟耕作的基礎(chǔ)上,土壟覆蓋地膜則可有效防止雨滴濺蝕,避免壟壁破壞,防止細(xì)溝侵蝕的產(chǎn)生,一定程度防止和減少水土流失。在壟覆膜的基礎(chǔ)上,溝覆秸稈可進(jìn)一步避免降雨對(duì)土壤表面的直接打擊,防止土壤結(jié)皮的形成,降低雨滴濺蝕作用,減少可供侵蝕的物質(zhì),同時(shí)溝覆秸稈還可以降低地表徑流的流速,增加降水入滲,從而減少水土流失的發(fā)生[24-25,27,32]。隨著坡度的加大,徑流流速增大,沖刷作用增強(qiáng),壟膜溝秸稈和壟膜溝種對(duì)水土流失的防治效果相對(duì)減弱。

        坡耕地嚴(yán)重的土壤侵蝕不僅造成水、土資源的大量流失,而且造成表層土壤大量肥沃養(yǎng)分的流失。大量研究表明,坡耕地土壤養(yǎng)分流失主要通過(guò)侵蝕泥沙流失[33-35]。由表3和表4可以看出,10°坡壟膜溝種侵蝕泥沙除有效磷外,其余養(yǎng)分含量都不同程度高于對(duì)照,壟膜溝秸稈侵蝕泥沙各養(yǎng)分含量都不同程度高于對(duì)照,這與盧嘉[36]和BABALOLA等[37]研究結(jié)果類似,但與GóMEZ等[7]的研究結(jié)果相反。出現(xiàn)上述現(xiàn)象,首先可能與產(chǎn)流前不同處理耕層土壤基礎(chǔ)養(yǎng)分含量以及集水種植利于土壤養(yǎng)分有效化[19]有關(guān);其次,由于發(fā)生土壤侵蝕時(shí)土體細(xì)顆粒最易被徑流沖刷和運(yùn)移,對(duì)照水土流失嚴(yán)重,因此可能導(dǎo)致壟膜溝種和壟膜溝秸稈表層土壤細(xì)顆粒較對(duì)照多,而細(xì)顆粒對(duì)流失的土壤養(yǎng)分吸附作用強(qiáng)烈[38],由此可能導(dǎo)致兩種集水種植模式侵蝕泥沙中養(yǎng)分含量高于對(duì)照;再次,壟膜溝秸稈條件下,秸稈覆蓋延緩了產(chǎn)流時(shí)間,增加了表層土壤養(yǎng)分與地表徑流的作用強(qiáng)度,使得溶解和解吸于單位徑流中的養(yǎng)分濃度增加,同時(shí)也可能受到秸稈中養(yǎng)分含量的影響,進(jìn)而導(dǎo)致壟膜溝秸稈侵蝕泥沙中的養(yǎng)分含量高于對(duì)照。雖然壟膜溝種及壟膜溝秸稈增大了侵蝕泥沙中的養(yǎng)分濃度,但由于二者沖刷量遠(yuǎn)低于對(duì)照,所以侵蝕泥沙的養(yǎng)分流失量遠(yuǎn)小于對(duì)照。隨著土壤不斷被侵蝕,各處理土壤質(zhì)地(尤其是對(duì)照)越來(lái)越差,從而保水能力不高而易損失水分。

        坡耕地土壤水分變化主要受降水、作物蒸散和地表徑流3因素決定。山侖等[39]認(rèn)為,中國(guó)干旱半干旱農(nóng)區(qū)多數(shù)情況下有限降水由于徑流損失及土壤表層蒸發(fā)強(qiáng)烈等原因而得不到有效利用。已有研究表明,壟膜溝種集水種植能有效匯集自然降水,明顯改善作物根際水分狀況,是旱作區(qū)進(jìn)一步挖掘降水潛力的有效途徑[11,20-21,40-42]。本研究表明,壟膜溝種及壟膜溝秸稈4年平均土壤水分都不同程度高于對(duì)照,差異極顯著,與上述研究基本一致。這是由于對(duì)照(等高土溝土壟)雖有一定集水作用,但土質(zhì)的溝壟對(duì)降水尤其是小雨資源利用效果較差。壟膜溝種及壟膜溝秸稈集雨種植較對(duì)照可有效減少地表徑流,使降水集中于溝內(nèi)種植區(qū),增加降水入滲深度,同時(shí)壟覆膜及溝覆秸稈可減少土壤無(wú)效蒸發(fā),而且對(duì)照土壤侵蝕嚴(yán)重,土壤保水能力相對(duì)較差,從而壟膜溝種和壟膜溝秸稈可明顯改善旱作農(nóng)田土壤水分狀況。關(guān)于壟膜溝種及壟膜溝秸稈間土壤水分的關(guān)系,研究表明,二者4年間平均土壤水分差異不顯著,但不同年際間二者土壤水分差異顯著性不盡相同。2012年和2015年壟膜溝秸稈土壤水分高于壟膜溝種,差異極顯著和顯著,這2年二者地表徑流差異不明顯,但由于壟膜溝秸稈較壟膜溝種可進(jìn)一步抑制土壤蒸發(fā),同時(shí)可減輕降水對(duì)土壤的直接沖擊,維持良好的土壤結(jié)構(gòu),更利于雨水入滲,增加蓄水量[43-44]。但也有研究表明覆蓋的秸稈在降雨過(guò)程中會(huì)吸收截留部分降雨,尤其微效降雨可能會(huì)變?yōu)闊o(wú)效降雨[45],因此秸稈覆蓋整體對(duì)土壤水分的影響將會(huì)隨實(shí)際情況而變。2013年和2014年,壟膜溝秸稈地表徑流量低于壟膜溝種,但二者土壤水分差異不顯著,可能與作物生育期降雨量、降雨分布和作物種類有關(guān)。

        3.2 坡耕地壟膜溝種及壟膜溝秸稈增產(chǎn)效應(yīng)

        對(duì)于坡耕地而言,嚴(yán)重的水土流失及無(wú)效蒸發(fā)是糧食產(chǎn)量低而不穩(wěn),土地生產(chǎn)潛力得不到有效發(fā)揮的關(guān)鍵所在[38,46]。壟膜溝種及壟膜溝秸稈可有效減少和防止土壤侵蝕,減少養(yǎng)分流失,匯集天然降雨,抑制土壤無(wú)效蒸發(fā),增加降雨入滲,改善了作物生長(zhǎng)所需的水肥狀況??傮w上,谷子玉米輪作種植體系下壟膜溝種和壟膜溝秸稈較對(duì)照表現(xiàn)出極顯著的增產(chǎn)效果。然而不同年份,由于降雨量、降雨分布、土壤侵蝕及作物種類等不同,2種集雨種植模式較對(duì)照增產(chǎn)顯著性也不盡相同。對(duì)谷子而言,豐水年(2012年)和干旱年(2014年),5°坡和10°坡壟膜溝種較對(duì)照沒(méi)有表現(xiàn)出顯著的增產(chǎn)效果,壟膜溝秸稈較對(duì)照增產(chǎn)顯著;對(duì)玉米而言,平水年(2013年)及干旱年(2015年),壟膜溝種和壟膜溝秸稈較對(duì)照都表現(xiàn)出極顯著的增產(chǎn)效果。干旱年份,壟膜溝種(玉米)及壟膜溝秸稈(谷子,玉米)較對(duì)照增產(chǎn)效果尤為顯著,這是由于干旱年份,水分是限制作物生長(zhǎng)的關(guān)鍵因子,集水種植不但減少水土流失,同時(shí)可以有效匯集天然降水,改善種植區(qū)作物對(duì)水分的需求,同時(shí)也促進(jìn)了肥料效益的發(fā)揮,因此增產(chǎn)效果非常明顯;豐水年或平水年,水分相對(duì)不再是限制作物生長(zhǎng)的關(guān)鍵因子,集水種植較對(duì)照增產(chǎn)幅度相對(duì)較低,與相關(guān)研究結(jié)果基本一致[47]。壟膜溝秸稈較壟膜溝種由于溝覆秸稈具有更好的防蝕保墑效果,因此,該種植模式4年平均產(chǎn)量較壟膜溝種極顯著增產(chǎn)。坡耕地不同種植模式每年都會(huì)發(fā)生不同程度的土壤侵蝕,造成耕層土壤養(yǎng)分流失,因此,不同種植方式的產(chǎn)量差異也與播前耕層土壤基礎(chǔ)養(yǎng)分含量有關(guān)。

        4 結(jié)論

        4.1 農(nóng)田起壟覆膜及溝覆秸稈,集雨保墑的同時(shí),改變了地表微地形,增加地表粗糙度和覆蓋度,可有效減少和防止土壤侵蝕的發(fā)生,減少養(yǎng)分流失,提高土壤水分,增加作物產(chǎn)量。該模式將集水技術(shù)與水保措施有機(jī)結(jié)合,明顯提高了水土資源利用率。從防蝕、集水、增墑、增產(chǎn)等角度考慮,壟膜溝秸稈耕種模式比較適宜于遼西半干旱區(qū)坡耕地。

        4.2 通過(guò)連續(xù)4年進(jìn)行旱坡地農(nóng)田壟膜溝種集雨種植試驗(yàn),明晰了該技術(shù)模式在遼西半干旱區(qū)坡耕地“防蝕-集雨-增墑-增產(chǎn)”效果,填補(bǔ)了該項(xiàng)研究在遼西地區(qū)的空白。通過(guò)該項(xiàng)技術(shù)的推廣應(yīng)用,可有效減少坡耕地土壤侵蝕,提高作物產(chǎn)量,促進(jìn)該區(qū)旱作農(nóng)業(yè)健康、可持續(xù)發(fā)展。

        [1] LIU Y, FU B J, LU Y H, WANG Z, GAO G. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau,China. Geomorphology, 2012, 138(1): 404-414.

        [2] 陳強(qiáng). 人工模擬降雨條件下重慶市黃壤坡耕地降雨侵蝕研究. 重慶: 西南大學(xué), 2012.

        CHEN Q. Study of rainfall erosion on the condition of artificial simulation of rainfall on sloping farmland of yellow soils in Chongqing. Chongqing: Southwest University, 2012. (in Chinese)

        [3] 辛艷, 王瑄, 邱野, 李德利, 趙倩. 遼寧省不同耕作方式對(duì)坡耕地水土及氮磷養(yǎng)分流失的影響效果. 水土保持學(xué)報(bào), 2013, 27(1): 27-30.

        XIN Y, WANG X, QIU Y, LI D L, ZHAO Q. Effects of different tillage modes on soil, water and N, P nutrient loss on sloping croplands in Liaoning province. Journal of Soil and Water Conservation, 2013, 27(1): 27-30. (in Chinese)

        [4] STEVENS C J, QUINTON J N, BAILEY A P, DEASY C, SILGRAM M. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil & Tillage Research, 2009, 106(1): 145-151.

        [5] LIU Q J, ZHANG H Y, AN J, WU Y Z. Soil erosion processes on row sideslopes within contour ridging systems. Catena, 2014, 115(4): 11-18.

        [6] 王育紅, 姚宇卿, 呂軍杰. 殘茬和秸稈覆蓋對(duì)黃土坡耕地水土流失的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2002, 20(4): 109-111.

        WANG Y H, YAO Y Q, LU J J. Effect of stubble and straw mulch on soil and water erosion on loess slope land. Agricultural Research in the Arid Areas, 2002, 20(4): 109-111. (in Chinese)

        [7] GóMEZ J A, GUZMáN M G, GIRáLDEZ J V, FERERES E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil & Tillage Research, 2009, 106(1): 137-144.

        [8] 林超文, 羅春燕, 龐良玉, 黃晶晶, 付登偉, 涂仕華, 蒲波. 不同耕作和覆蓋方式對(duì)紫色丘陵區(qū)坡耕地水土及養(yǎng)分流失的影響. 生態(tài)學(xué)報(bào), 2010, 30(22): 6091-6101.

        LIN C W, LUO C Y, PANG L Y, HUANG J J, FU D W, TU S H, PU B. Effects of different cultivation and mulching methods on soil erosion and nutrient losses from a purple soil of sloping land. Acta Ecologica Sinica, 2010, 30(22): 6091-6101. (in Chinese)

        [9] 郭賢仕, 楊如萍, 馬一凡, 郭天文, 張緒成. 保護(hù)性耕作對(duì)坡耕地土壤水分特性和水土流失的影響. 水土保持通報(bào), 2010, 30(4): 1-5.

        GUO X S, YANG R P, MA Y F, GUO T W, ZHANG X C. Effects of conservation tillage on soil water characteristics and soil erosion in slope farmland. Bulletin of Soil and Water Conservation, 2010, 30(4): 1-5. (in Chinese)

        [10] OGINDO H O, WALKER S. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa. Physics & Chemistry of the Earth Parts, 2005, 30(11/16): 799-808.

        [11] 宋秉海. 旱地地膜玉米“貧水富集”種植模式研究. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2006, 14(3): 93-95.

        SONG B H. Study on planting models of rainwater harvesting technique of mulched maize in arid areas. Chinese Journal of Eco-Agriculture, 2006, 14(3): 93-95. (in Chinese)

        [12] 呂殿青, 邵明安, 王全九. 壟溝耕作條件下的土壤水分分布試驗(yàn)研究. 土壤學(xué)報(bào), 2003, 40(1): 147-150.

        Lü D Q, SHAO M A, WANG Q J. Experimental study on soil water distribution under ridge and furrow cultivation. Acta Pedologica Sinica, 2003, 40(1): 147-150. (in Chinese)

        [13] RAMAKRISHNA A, TAM H M, WANI S P, LONG T D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 2006, 95(2/3): 115-125.

        [14] ROMIC D, ROMIC M, BOROSIC J, POLJAK M. Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.)cultivation. Agricultural Water Management, 2003, 60(2): 87-97.

        [15] TIWARI K N, SINGH A, MAL P K. Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata)under mulch and non-mulch conditions. Agricultural Water Management, 2003, 58(1): 19-28.

        [16] CARTER D C, MILLER S. Three years experience with an on-farm macro-catchment water harvesting system in Botswana. Agricultural Water Management, 1991, 19(3): 191-203.

        [17] LI F R, ZHAO S L, GEBALLE G T. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of Northwest China. Agriculture, Ecosystems & Environment, 2000, 79(2/3): 129-142.

        [18] LI X Y, SHI P J, SUN Y L, TANG J, YANG Z P. Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China. Forest Ecology & Management, 2006, 233(1): 143-148.

        [19] LI F M, SONG Q H, JJEMBA P K, SHI Y C. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology & Biochemistry, 2004,36(11): 1893-1902.

        [20] 李小雁, 張瑞鈴. 旱作農(nóng)田溝壟微型集雨結(jié)合覆蓋玉米種植試驗(yàn)研究. 水土保持學(xué)報(bào), 2005, 19(2): 45-47.

        LI X Y, ZHANG R L. On-field ridge and furrow rainwater harvesting and mulching combination for corn production in dry areas of Northwest China. Journal of Soil and Water Conservation, 2005,19(2): 45-47. (in Chinese)

        [21] 樊向陽(yáng), 齊學(xué)斌, 郎旭東, 王景雷, 高勝國(guó), 趙輝. 晉中地區(qū)春玉米田集雨覆蓋試驗(yàn)研究. 灌溉排水, 2001, 20(2): 29-32.

        FAN X Y, QI X B, LANG X D, WANG J L, GAO S G, ZHAO H. Effects of water-collecting mulch on moisture situation in root zone in spring maize. Irrigation and Drainage, 2001, 20(2): 29-32. (in Chinese)

        [22] 王學(xué)強(qiáng), 蔡強(qiáng)國(guó), 和繼軍. 紅壤丘陵區(qū)水保措施在不同坡度坡耕地上優(yōu)化配置的探討. 資源科學(xué), 2007, 29(6): 68-74.

        WANG X Q, CAI Q G, HE J J. Water and soil conservation measures for different slope land in red-earth hilly region. Resources Science,2007, 29(6): 68-74. (in Chinese)

        [23] 林超文, 陳一兵, 黃晶晶, 涂仕華, 龐良玉. 不同耕作方式和雨強(qiáng)對(duì)紫色土養(yǎng)分流失的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(10): 2241-2249.

        LIN C W, CHENG Y B, HUANG J J, TU S H, PANG L Y. Effect of different cultivation methods and rain intensity on soil nutrient loss from a purple soil. Scientia Agricultura Sinica, 2007, 40(10): 2241-2249. (in Chinese)

        [24] 唐濤, 郝明德, 單鳳霞. 人工降雨條件下秸稈覆蓋減少水土流失的效應(yīng)研究. 水土保持研究, 2008, 15(1): 9-12.

        TANG T, HAO M D, SHAN F X. Effects of straw mulch application on water loss and soil erosion under simulated rainfall. Research of Soil and Water Conservation, 2008, 15(1): 9-12. (in Chinese)

        [25] 溫磊磊, 鄭粉莉, 沈海鷗, 高燕. 溝頭秸稈覆蓋對(duì)東北黑土區(qū)坡耕地溝蝕發(fā)育影響的試驗(yàn)研究. 泥沙研究, 2014(6): 73-80.

        WEN L L, ZHENG F L, SHEN H O, GAO Y. Effects of corn straw mulch buffer in the gully head on gully erosion of sloping cropland in the black soil region of Northeast China. Journal of Sediment Research, 2014(6): 73-80. (in Chinese)

        [26] 和壽甲, 潘艷華, 劉恩科, 嚴(yán)昌榮, 郭玉蓉, 何文清, 劉勤, 劉爽.不同農(nóng)藝措施對(duì)洱海坡耕地水土流失的影響. 西南農(nóng)業(yè)學(xué)報(bào), 2010,23(6): 1939-1943.

        HE S J, PAN Y H, LIU E K, YAN C R, GUO Y R, HE W Q, LIU Q,LIU S. Effect of different agronomic measures on soil erosion in sloping farmland of erhai area. Southwest China Journal of Agricultural Sciences, 2010, 23(6): 1939-1943. (in Chinese)

        [27] 劉曉君, 李占斌, 宋曉強(qiáng), 同新奇, 張鐵鋼, 龍菲菲. 土石山區(qū)不同農(nóng)作方式下坡面徑流氮素流失過(guò)程. 水土保持學(xué)報(bào), 2015, 29(1): 80-85.

        LIU X J, LI Z B, SONG X Q, TONG X Q, ZHANG T G, LONG F F.Characteristics of nitrogen loss under different farming practices of slope in mountain areas. Journal of Soil and Water Conservation,2015, 29(1): 80-85. (in Chinese)

        [28] 張雷, 金勝利, 張光全, 郭正昆. 雙壟全膜覆蓋溝播栽培對(duì)甘肅中部坡耕地水土流失和作物產(chǎn)量的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2012,30(1): 113-118.

        ZHANG L, JIN S L, ZHANG G Q, GUO Z K. Effect of double ridges mulched with plastic film on soil erosion and crop yield of sloping field in the central part of Gansu. Agricultural Research in the Arid Areas, 2012, 30(1): 113-118. (in Chinese)

        [29] 羅付香, 林超文, 涂仕華, 龐良玉, 張建華, 羅春燕, 黃晶晶, 朱永群. 氮肥形態(tài)和地膜覆蓋對(duì)坡耕地玉米產(chǎn)量和土壤氮素流失的影響. 水土保持學(xué)報(bào), 2012, 26(6): 11-16.

        LUO F X, LIN C W, TU S H, PANG L Y, ZHANG J H, LUO C Y,HUANG J J, ZHU Y Q. Effects of different nitrogenous fertilizer modality and film mulching on corn yield and soil nitrogen loss of slope land. Journal of Soil and Water Conservation, 2012, 26(6): 11-16. (in Chinese)

        [30] 周麗娜, 雷金銀. 覆膜方式對(duì)坡耕地春玉米產(chǎn)量、土壤水分和養(yǎng)分的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2014, 30(33): 20-25.

        ZHOU L N, LEI J Y. Effect of plastic film mulching methods on spring maize yield, soil water and nutrients in slope farmland. Chinese Agricultural Science Bulletin, 2014, 30(33): 20-25. (in Chinese)

        [31] 付斌. 不同農(nóng)作處理對(duì)坡耕地水土流失和養(yǎng)分流失的影響研究—以云南紅壤為例[D]. 重慶: 西南大學(xué), 2009.

        FU B. Research on soil erosion and nutrient loss under different farming measures from slope field-taking Yunnan red soil for example[D]. Chongqing: Southwest University, 2009. (in Chinese)

        [32] 鄭智旗, 王樹東, 何進(jìn), 王慶杰, 李洪文, 路戰(zhàn)遠(yuǎn). 基于自動(dòng)監(jiān)測(cè)徑流場(chǎng)的秸稈覆蓋坡耕地產(chǎn)流產(chǎn)沙過(guò)程. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014,45(12): 160-164, 138.

        ZHENG Z Q, WANG S D, HE J, WANG Q J, LI H W, LU Z Y. Process of runoff and sediment yield in straw-covered sloping fields based on automatic runoff monitoring field. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 160-164,138. (in Chinese)

        [33] 傅濤, 倪九派, 魏朝富, 謝德體. 不同雨強(qiáng)和坡度條件下紫色土養(yǎng)分流失規(guī)律研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2003, 9(1): 71-74.

        FU T, NI J P, WEI C F, XIE D T. Research on the nutrient loss from purple soil under different rainfall intensities and slopes. Plant Nutrition and Fertilizer Science, 2003, 9(1): 71-74. (in Chinese)

        [34] SCHREIBER J D, REBICH R A, COOPER C M. Dynamics of diffuse pollution from US southern watersheds. Water Research, 2001, 35(10): 2534-2542.

        [35] 袁東海, 王兆騫, 陳欣, 郭新波, 張如良. 不同農(nóng)作方式紅壤坡耕地土壤氮素流失特征. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(7): 863-866.

        YUAN D H, WANG Z Q, CHEN X, GUO X B, ZHANG R L. Characteristics of nitrogen loss from sloping field in red soil area under different cultivation practices. Chinese Journal of Applied Ecology, 2002, 13(7): 863-866. (in Chinese)

        [36] 盧嘉. 東北黑土區(qū)坡耕地土壤團(tuán)聚體遷移和養(yǎng)分流失的影響因素研究[D]. 陜西: 西北農(nóng)林科技大學(xué), 2012.

        LU J. A study on affecting factors of sail aggregate movement and nutrient loss on slopping farmlands in the black soil region of Northeast China[D]. Shaanxi: Northwest A&F University, 2012. (in Chinese)

        [37] Babalola O, Oshunsanya S O, Are K. Effects of vetiver grass(Vetiveria nigritana) strips, vetiver grass mulch and an organomineral fertilizer on soil, water and nutrient losses and maize (Zea mays, L.)yields. Soil & Tillage Research, 2007, 96(1/2): 6-18.

        [38] 陳奇伯, 王克勤, 齊實(shí), 孫立達(dá). 黃土丘陵區(qū)坡耕地水土流失與土地生產(chǎn)力的關(guān)系. 生態(tài)學(xué)報(bào), 2003, 23(8): 1463-1469.

        CHEN Q B, WANG K Q, QI S, SUN L D. Soil and water erosion in its relation to slope field productivity in hilly gully areas of the Loess Plateau. Acta Ecologica Sinica, 2003, 23(8): 1463-1469. (in Chinese)

        [39] 山侖, 鄧西平. 黃土高原半干旱地區(qū)的農(nóng)業(yè)發(fā)展與高效用水. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2000, 2(4): 33-38.

        SHAN L, DENG X P. Agricultural development and high efficiency water using in semi-arid region of Loess Plateau. Journal of Agricultural Science and Technology, 2000, 2(4): 33-38. (in Chinese)

        [40] 莫非, 周宏, 王建永, 趙鴻, 張恒嘉, 吳姍, 陳應(yīng)龍, 楊通, 鄧浩亮,Asfa Batool, 王潤(rùn)元, Simon Nzou Nguluu, 李鳳民, 熊友才. 田間微集雨技術(shù)研究及應(yīng)用. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(8): 1-17.

        MO F, ZHOU H, WANG J Y, ZHAO H, ZHANG H J, WU S, CHEN Y L, YANG T, DENG H L, BATOOL A, WANG R Y, NGULUU S N,LI F M, XIONG Y C. Development and application of micro-field rain-harvesting technologies. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 1-17. (in Chinese)

        [41] 張雷, 牛建彪, 趙凡. 旱作玉米提高降水利用率的覆膜模式研究.干旱地區(qū)農(nóng)業(yè)研究, 2006, 24(2): 8-11.

        ZHANG L, NIU J B, ZHAO F. Film mulch modes for increasing rainfall use efficiency of dry-land corn. Agricultural Research in the Arid Areas, 2006, 24(2): 8-11. (in Chinese)

        [42] 王興祥, 張?zhí)伊? 紅壤旱坡地農(nóng)田生態(tài)系統(tǒng)養(yǎng)分循環(huán)和平衡. 生態(tài)學(xué)報(bào), 1999, 19(3): 335-341.

        WANG X X, ZHANG T L. Nutrient cycling and balance of slopingupland ecosystems on red soil. Acta Ecologica Sinica, 1999, 19(3): 335-341. (in Chinese)

        [43] 李榮, 侯賢清, 賈志寬, 韓清芳, 王敏, 楊寶平, 丁瑞霞, 王俊鵬.溝壟全覆蓋種植方式對(duì)旱地玉米生長(zhǎng)及水分利用效率的影響. 生態(tài)學(xué)報(bào), 2013, 33(7): 2282-2291.

        LI R, HOU X Q, JIA Z K, HAN Q F, WANG M, YANG B P, DING R X, WANG J P. Effects of planting with ridge and furrow mulching on maize growth, yield and water use efficiency in dryland farming. Acta Ecologica Sinica, 2013, 33(7): 2282-2291. (in Chinese)

        [44] 蔡太義, 賈志寬, 黃耀威, 黃會(huì)娟, 楊寶平, 張睿, 韓清芳, 聶俊峰.中國(guó)旱作農(nóng)區(qū)不同量秸稈覆蓋綜合效應(yīng)研究進(jìn)展. Ⅰ不同量秸稈覆蓋的農(nóng)田生態(tài)環(huán)境效應(yīng). 干旱地區(qū)農(nóng)業(yè)研究, 2011, 29(5): 63-68.

        CAI T Y, JIA Z K, HUANG Y W, HUANG H J, YANG B P, ZHANG R, HAN Q F, NIE J F. Research progress of comprehensive effect under different rates straw mulch on the rainfed farming areas, China I. Effect of different rates of straw mulch on farmland eco-environment. Agricultural Research in the Arid Areas, 2011, 29(5): 63-68. (in Chinese)

        [45] 王兆偉, 郝衛(wèi)平, 龔道枝, 梅旭榮, 王春堂. 秸稈覆蓋量對(duì)農(nóng)田土壤水分和溫度動(dòng)態(tài)的影響. 中國(guó)農(nóng)業(yè)氣象, 2010, 31(2): 244-250.

        WANG Z W, HAO W P, GONG D Z, MEI X R, WANG C T. Effect of straw mulch amount on dynamic changes of soil moisture and temperature in farmland. Chinese Journal of Agrometeorology, 2010,31(2): 244-250. (in Chinese)

        [46] 韓思明. 黃土高原旱作農(nóng)田降水資源高效利用的技術(shù)途徑. 干旱地區(qū)農(nóng)業(yè)研究, 2002, 20(1): 1-9.

        HAN S M. Technical channels of high-efficient utilization of precipitation resource on dry-farming lands in Loess Plateau. Agricultural Research in the Arid Areas, 2002, 20(1): 1-9. (in Chinese)

        [47] 盧憲菊. 壟作集水和秸稈覆蓋對(duì)東北玉米帶黑土區(qū)玉米生長(zhǎng)和水氮利用的影響[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2014.

        LU X J. Influences of rainfall harvesting and straw mulching on corn growth, water and nitrogen use on black soils of northeast corn belt[D]. Beijing: China Agricultural University, 2014. (in Chinese)

        (責(zé)任編輯 楊鑫浩)

        Effect of Technique of Ridge Film Mulching and Furrow Seeding on Soil Erosion and Crop Yield on Sloping Farmland in Western Liaoning

        XIAO Ji-bing1, SUN Zhan-xiang2, JIANG Chun-guang1, ZHENG Jia-ming2, LIU Yang2,YANG Ning2, FENG Liang-shan2, BAI Wei2
        (1Institute of Water and Soil Conservation in Liaoning, Chaoyang 122000, Liaoning;2Liaoning Academy of Agricultural Sciences,Shenyang 110161)

        【Objective】In order to make full use of the limited natural rainfall, decrease soil loss from sloping farmland,protect water and soil resources of dry farming area and promote high and stable yield of crops, the study of different styles of farming is carried out on sloping farmland in Western Liaoning.【Method】Two factors split plot design was used to examine the effects of different farming types on soil erosion, soil water and yield in sloping farmland and the study was carried out by runoff plots under natural rainfall from 2012 to 2015 in dry farming experimental area in Liaoning Academy of Agricultural Sciences at Fuxin. The runoff plot was 15 m and 6 m in length and width and the area was 60 m2. The main plot was a sloping land with slopes of 5°and 10°, and split plot was crop planting patterns, the designed patterns were traditional cultivation(CK, contour ridge and furrow planting, ridge and furrow were uncovered), ridge film mulching and furrow straw mulching(T1), ridge film mulching and furrow seeding(furrow was uncovered, T2). The study was repeated three times. Ridges and furrows of ridge film mulching and furrow seeding were in opposite arrangement, furrow width was 60 cm and ridge width was 40 cm, ridge height was 10-12 cm. The ridge was a rain collecting area. The furrow, which was planted with two lines of crop,was a planting area. The experimental crops were millet and maize and rotated.【Result】The ridge film mulching and furrow straw mulching and ridge film mulching and furrow seeding could effectively reduce and prevent water and soil erosion. In four years,the total runoff and total erosion amount of the CK were 512.7 m3·hm-2, 4 561.3 kg·hm-2and T1, T2 did not occur soil erosion under five-degree slope. The total runoff and total erosion amount of T1 were reduced by 81.71% and 96.17% and that of T2 were reduced by 56.92% and 95.15% compared with the CK, and that of T1 were reduced by 57.54% and 21.05% compared with T2,T1 and T2 would reduce the amount of lost nutrients in sediment compared with the CK under ten-degree slope. The results showed that runoff and erosion amount increased in accordance with increasing of gradient and the effect of anti-erosion of T1,T2 would weaken along with slope increasing. There was no significant difference between the five-degree slope and ten-degree on four years' average soil water, which had a reducing trend with slope increasing. The effect of T1, T2 on mean soil water reached very significant level as a whole compared with CK and mean soil water of T1, T2 was 1.68 and 1.45 percentage points higher than that of CK. The effect of T1, T2 on increasing moisture reached very significant level compared with CK to millet regardless of high flow year or dry year and that of T1, T2 on increasing moisture to maize was not significant in normal year and very significant in special dry year. There was no significant difference between five-degree slope and ten-degree slope in four years' average yield, which had a reducing trend with slope increasing. The effect of T1 on the average production reached very significant level increasing by 25.59% and 10.68% compared with CK and T2, and there was a significant difference between T2 and CK and the average production of T2 increased by 13.47% compared with CK. The effect of yield increasing of T2 was insignificant compared with CK and that of T1, which increased by 24.75% and 74.58%, was significant compared with CK for millet in 2012, 2014. The effect of T1, which the yield of maize increased by 11.29% and 54.39%, and T2, which increased by 5.05% and 51.81%, on the production reached very significant level compared with CK in 2013 and 2015. The effects of yield increasing of ridge film mulching and furrow straw mulching (millet, maize) and ridge film mulching and furrow seeding (maize)were particularly significant in dry year. 【Conclusion】 The effect of micro-rainwater-collecting planting mode by ridge film mulching and furrow seeding in dry sloping farmland on rainwater harvesting, water storage, soil moisture conservation and anti-erosion was definite after 4 years of study in semi-arid region in Liaoxi area. The technique could mitigate the negative impact of drought and soil erosion on crop growth and enriched the theoretical basis of the rain-harvesting agriculture of dry farming in the area. By application and dissemination of the technique, it could improve soil and water resources utilization,protect quality of cultivated land and promote overall grain production capability on sloping farmland and facilitate stable and high yield of crop and healthy and sustainable development of dry farming in the area. It could be seen that the ridge film mulching and furrow straw mulching would be suitable for dry sloping land in Western Liaoning from the point of anti-erosion,catchment, increasing soil moisture, increasing production. The study has filled the gaps in the study of this subject in western Liaoning and provided important

        for development of the rain-harvesting agriculture of dry farming in the North of China.

        western Liaoning; sloping farmland; ridge film mulching and furrow seeding; soil erosion; yield

        2016-05-03;接受日期:2016-07-28

        十二五國(guó)家科技支撐計(jì)劃(2012BAD09B02)、國(guó)家公益性行業(yè)(農(nóng)業(yè))專項(xiàng)(201303125-01,201503119-06-02)、國(guó)家“萬(wàn)人計(jì)劃”青年拔尖人才項(xiàng)目

        聯(lián)系方式:肖繼兵,E-mail:xiaojb2004@126.com。通信作者孫占祥,E-mail:sunzhanxiang@sohu.com

        猜你喜歡
        坡耕地土壤侵蝕土壤水分
        鄉(xiāng)村聚落土壤侵蝕環(huán)境與水土流失研究綜述
        建平縣實(shí)施國(guó)家坡耕地治理項(xiàng)目成效及經(jīng)驗(yàn)
        海壇島土壤侵蝕問(wèn)題研究
        西藏高原土壤水分遙感監(jiān)測(cè)方法研究
        大別山區(qū)土壤侵蝕動(dòng)態(tài)變化及趨勢(shì)預(yù)測(cè)
        資陽(yáng)市雁江區(qū):防治并重 建管結(jié)合 創(chuàng)建坡耕地水土流失綜合治理示范區(qū)
        南水北調(diào)中線水源地土壤侵蝕經(jīng)濟(jì)損失估算
        種植苧麻對(duì)南方坡耕地土壤抗蝕性的影響
        不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
        河南省坡耕地利用及生態(tài)退耕研究
        河南科技(2014年12期)2014-02-27 14:10:52
        丰满少妇又紧又爽视频| 人妻夜夜爽天天爽三区| 欧产日产国产精品精品| 91精品国产色综合久久不卡蜜| 最新国产av网址大全| 国产精品国产三级野外国产| 国产超碰人人爽人人做人人添| 国产日韩成人内射视频| 亚洲国产视频精品一区二区| 青青草好吊色在线观看| 宅男666在线永久免费观看| 亚洲国产无线乱码在线观看| 国产在线白浆一区二区三区在线| 人妻精品久久一区二区三区| 亚洲视频在线观看| 狠狠久久亚洲欧美专区| 男女在线免费视频网站| 丰满少妇被猛进去高潮| 久久99精品国产麻豆宅宅| 国产精品九九九无码喷水| 亚洲码无人客一区二区三区| 午夜性刺激免费看视频| 少妇性l交大片| 成人在线免费视频亚洲| 日韩一级137片内射视频播放| 伊甸园亚洲av久久精品| 成全视频高清免费| 91久久精品人妻一区二区| 一区二区亚洲精品在线| 黄瓜视频在线观看| 亚洲五月激情综合图片区| 国产另类人妖在线观看| 亚洲精品蜜夜内射| 日韩AV不卡一区二区三区无码| 按摩师玩弄少妇到高潮hd| 一二三区无线乱码中文在线 | 国产性生交xxxxx无码| 精品 无码 国产观看| 国产麻豆国精精品久久毛片| 国产成人av乱码在线观看| 岛国AV一区二区三区在线观看|