李文斌,孟昭福,2*,吳瓊,趙云飛,任爽,余璐,郭惠,周春艷
(1.西北農(nóng)林科技大學資源環(huán)境學院,陜西楊凌 712100;2.農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,陜西楊凌 712100)
李文斌1,孟昭福1,2*,吳瓊1,趙云飛1,任爽1,余璐1,郭惠1,周春艷1
(1.西北農(nóng)林科技大學資源環(huán)境學院,陜西楊凌712100;2.農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,陜西楊凌712100)
為了研究不同修飾模式高嶺土對的吸附效果,并分析外界入件對吸附效果的影響,采用DTAB(十二烷基三甲基溴化銨,簡寫為DT)分別對15%、30%和60%BS-12(十二烷基二甲基甜菜堿,簡寫為BS)高嶺土進行復配修飾,探索不同BS-12和BS+DT復配修飾模式高嶺土的表面特征及其對的吸附特征,并對比不同pH值和溫度入件下的吸附差別。結(jié)果表明:高嶺土經(jīng)BS-12和BS+DT修飾后,TOC含量均表現(xiàn)為疏水修飾模式>疏水修飾和離子交換共存模式>離子交換模式;不同修飾模式高嶺土層間距d001無顯著變化,但相比原土(CK)均增大;不同修飾模式高嶺土的比表面積SBET隨疏水修飾的增強而減小。BS+DT修飾高嶺土對的吸附量均比CK和BS-12修飾的土高,Henry模型擬合證明疏水修飾模式高嶺土對保持著良好的吸附能力,且隨著疏水修飾比例的增強,土樣對于的結(jié)合能力增強。溫度范圍10~30益內(nèi),CK對吸附量增加5%以上,不同BS-12修飾土的吸附量增加了1.4%~3.7%。15%、30%和60%BS+DT復配修飾土對吸附量降低了5.4%~7.2%。pH值在4~10范圍內(nèi),隨著pH值增大,各修飾土樣對的吸附量均逐漸減小。
修飾模式;高嶺土;表征;;吸附量
LI Wen-bin,MENG Zhao-fu,WU Qiong,et al.Surface characteristics andadsorption of kaolin with different modification[J].Journal of Agro-Environment Science,2016,35(4):677-683.
隨著工業(yè)技術(shù)的高速發(fā)展,“三廢”的排放日益嚴重,致使土壤環(huán)境遭到嚴重的重金屬污染,而含氧陰離子是土壤污染的關(guān)注重點之一[1]。天然黏土礦物表面大量的負電荷使其對幾乎不吸附,污染治理研究迫在眉睫[2]。目前國內(nèi)外許多學者采用表面修飾的方法增強天然土壤對的吸附能力[3-5],研究顯示陽離子修飾黏土礦物相比未修飾黏土對的吸附能力有很大提升[6-9],且修飾比例越高吸附效果越佳,靜電吸附是其主要吸附方式[6]。還有學者發(fā)現(xiàn)[10]修飾黏土礦物吸附經(jīng)7 h就可達平衡,且在pH為4時修飾土對吸附量達到最高,吸附率超過98%。
1.1實驗材料
供試陽離子型表面修飾劑采用DTAB(簡寫為DT,AR,天津致遠化學試劑有限公司);兩性表面修飾劑采用BS-12(簡寫為BS,AR,天津興光助劑廠)。兩種修飾劑結(jié)構(gòu)式如圖1所示。
圖1 BS-12與DTAB的結(jié)構(gòu)式Figure 1 Structural formula of BS-12 and DTAB
供試黏土礦物為高嶺土(3000目),購自阿里巴巴網(wǎng)廣州拓億貿(mào)易有限公司,基本理化性質(zhì)見表1。
表1 高嶺土的基本理化性質(zhì)Table 1 Basic physical and chemical properties of kaolin
1.2修飾土樣的制備
修飾高嶺土采用濕法[17]制備:稱取一定質(zhì)量高嶺土,按土水比1頤10加入預先準備好的BS-12溶液中,在不斷攪拌下40益水浴恒溫反應(yīng)3 h,然后4800 r· min-1離心分離10 min,棄去上清液,得到BS-12修飾土樣。再用去離子水以離心分離的方式洗滌3次,然后按土水比1頤10加入到預先配制好的DTAB水溶液中,在不斷攪拌下40益水浴恒溫反應(yīng)3 h,離心(4800 r·min-1,10 min)分離,棄去上清液,得到BS+DT復配修飾土樣,再用去離子水洗滌3遍,60益烘干,研磨過60目尼龍篩,備用。
表面修飾劑的用量通過以下公式計算:
W=m×CEC×M×10-6×R/b
式中:W為修飾劑質(zhì)量,g;m為土樣質(zhì)量,g;CEC為修飾土樣的陽離子交換量,mmol·kg-1;M為修飾劑的摩爾質(zhì)量,g·mol-1;R為修飾比例;b為修飾劑產(chǎn)品的含量(質(zhì)量分數(shù))。
1.3實驗設(shè)計
1.3.1高嶺土修飾比例
根據(jù)本課題組BS-12修飾高嶺土、DTAB復配修飾BS-12高嶺土修飾機制研究結(jié)果(高嶺土在BS-12修飾比例30%開始出現(xiàn)疏水結(jié)合模式;15%、30%和60%BS-12修飾高嶺土分別在DTAB復配修飾比例20%、10%和0時開始出現(xiàn)疏水結(jié)合),分別以1/2疏水轉(zhuǎn)折點(離子交換修飾模式)、轉(zhuǎn)折點(離子交換和疏水共存修飾模式)和2倍轉(zhuǎn)折點(疏水結(jié)合修飾模式)作為修飾比例。分別設(shè)計:原土(CK);15%、30%和60%BS-12修飾土;15%BS+10%DT,15%BS+20%DT和15%BS+40%DT;30%BS+5%DT,30%BS+10%DT和30%BS+20%DT;60%BS+15% DT,60%BS+30%DT和60%BS+60%DT復配修飾土。共計13個土樣。
實驗溫度10、20、30益(此時起始溶液pH值設(shè)為7);溶液起始pH值為4、7、10(此時實驗溫度為20益)。以上處理均設(shè)3次重復。
1.4實驗方法
1.4.1表面特征的測定方法
TOC(總有機碳)采用美國LECO CS-344碳硫測定儀進行測定,O2流量3.2~3.4 L·min-1,C池溫度46益,恒溫室溫度45益,催化劑溫度380益,采用非色散紅外吸收檢測,進樣量為0.5 g,進樣時間為5 min。
比表面積(SBET)采用V-Sorb2800P比表面積及孔徑分析儀分析,多點BET方法測試。
XRD分析采用日本理學D/max 2500型X射線衍射儀,Cu靶姿為0.154 nm,K琢輻射源,石墨單色器,管電壓40 kV,管電流80 mA,掃描范圍(2茲)5毅~40毅,步長0.1毅,掃描速度8毅·min-1。根據(jù)入射光波長姿和衍射角茲可以計算實驗各土樣層間距(d001),參照Bragg公式:2dsin茲=姿。
1.5數(shù)據(jù)來理
吸附等溫線的擬合采用Henry模型,該式定義為:
模型擬合通過逐步逼近的方法,采用Curvexpert 1.3非線性擬合軟件進行,用Sigmaplot 10.0軟件繪圖。
2.1不同BS和BS+DT復配修飾模式高嶺土的表征
在25益和50%相對濕度的入件下,測得供試土樣的TOC,層間距、比表面積見表2。高嶺土(CK)的TOC含量很低,僅為0.12%,經(jīng)15%、30%和60%BS-12修飾后的土樣TOC含量較CK有不同程度增加,且隨BS-12修飾比例的增加而提高?;?5%、30%和60%BS的DTAB復配修飾土樣,其TOC含量變化也表現(xiàn)為疏水修飾模式>疏水和離子交換共存模式>離子交換模式,說明疏水修飾對于土樣表面修飾劑的修飾量有較大的促進作用。
表2 各供試土樣的TOC含量、晶層間距(d001)和比表面積(SBET)Table 2 Total organic carbon content,interlayer spacing and specific surface-area of original and amphoteric-cationic modified kaolin
通過Bragg方程計算得到的各供試土樣層間距的結(jié)果顯示,不同BS-12、BS+DT復配修飾模式土樣的層間距與CK層間距0.712 1 nm相比,均有較小幅度增加。但對比各修飾模式高嶺土和CK可以發(fā)現(xiàn),不同修飾模式高嶺土之間層間距無顯著變化,說明修飾的BS-12、DTAB并未通過插層方式進入高嶺土層間,而主要通過靜電作用和疏水作用吸附在高嶺土表面。
BS-12修飾膨潤土樣的比表面積從CK的11.32 m2·g-1下降到10.65(15%BS)、10.12 m2·g-1(30%BS)和8.52 m2·g-1(60%BS);疏水修飾作用越強,比表面積下降幅度越大。不同模式BS+DT復配修飾土樣比表面積均隨BS+DT總修飾比例增大而減小。
以上結(jié)果與李彬[15]關(guān)于CTMAB復配修飾BS-12膨潤土的層間距變化的結(jié)果存在差異,這主要歸因于高嶺土(1頤1)和膨潤土(2頤1)層間結(jié)構(gòu)的差異;以上結(jié)果與OTMA(八烷基三甲基溴化銨)復配修飾BS-12高嶺土的表面特征變化基本一致[18]。
對于BS-12修飾高嶺土來說,不同修飾模式高嶺土相比CK對的吸附均有所提升,但各修飾模式之間無明顯差異。對于15%BS和30%BS基礎(chǔ)上的DTAB復配修飾,均表現(xiàn)為離子交換和疏水結(jié)合共存修飾模式下的吸附量最大。60%BS基礎(chǔ)上的DTAB復配修飾均為疏水模式下吸附量最大,疏水模式越強吸附量越大,與李彬[15]研究兩性-陽離子復配修飾膨潤土吸附的趨勢相似。但因高嶺土的比表面積比膨潤土小,故的吸附量與其研究結(jié)果存在一定差距。
圖2 不同DT+BS復配修飾高嶺土對CrO2-4的吸附等溫線Figure 2 Adsorption isotherm ofon different DT+BS modified kaolin
表3 CrO2-4吸附的Henry模型擬合結(jié)果Table 3 Fitting results of Henry model toadsorption
表3 CrO2-4吸附的Henry模型擬合結(jié)果Table 3 Fitting results of Henry model toadsorption
注:**表示在P=0.01水平上相關(guān)顯著,在自由度f=8,P=0.01時,r=0.765。Note:**indicates significance at P=0.01 level(r=0.765 at P=0.01 when the degree of freedom f=8).
土樣Samples處理Treatment相關(guān)系數(shù)Correlation coefficientKKrCK0.921 3**0.81—BS-1215%BS0.932 9**1.151.42 30%BS0.938 1**1.111.37 60%BS0.951 4**1.171.44 15%BS+DT15%BS+10%DT0.896 7**1.101.36 15%BS+20%DT0.964 7**1.401.73 15%BS+40%DT0.968 5**1.551.91 30%BS+DT30%BS+5%DT0.934 3**1.391.72 30%BS+10%DT0.952 8**1.461.80 30%BS+20%DT0.983 2**1.331.64 60%BS+DT60%BS+15%DT0.950 8**1.321.63 60%BS+30%DT0.962 6**1.632.01 60%BS+60%DT0.930 4**1.782.20
圖3 溫度對不同修飾高嶺土吸附CrO2-4的影響Figure 3 Effect of temperature onadsorption on modified kaolin
表4 pH值對不同修飾高嶺土吸附CrO2-4的影響Table 4 Effect of pH onadsorption on modified kaolin
表4 pH值對不同修飾高嶺土吸附CrO2-4的影響Table 4 Effect of pH onadsorption on modified kaolin
注:不同小寫字母表示處理在0.05水平差異顯著。Note:Different lowercase letters indicate significant difference between treatments at 0.05 level.
處理Treatment吸附量Adsorption capacity/mmol·kg-1CK15%BS30%BS60%BS15%BS+20%DT30%BS+10%DT60%BS+30%DT pH42.47依0.04a4.11依0.06a4.25依0.09a4.44依0.02a5.34依0.08a5.71依0.05a6.20依0.06a pH72.37依0.03a3.97依0.04a4.14依0.02a4.34依0.02ab5.19依0.05a5.44依0.02ab5.98依0.05b pH102.30依0.12a3.88依0.10a4.12依0.06a4.20依0.06b5.15依0.06a5.34依0.12b5.67依0.04c
DTAB與BS-12修飾土樣復配后,DTAB的正電荷端可以與BS-12的負電荷基團和未被BS-12覆蓋的高嶺土表面的負電荷結(jié)合,同時DTAB的疏水長碳鏈通過疏水作用在高嶺土表面形成有機相,使得正電荷端向外,進一步增強了復配修飾土樣對陰離子的靜電吸附[15,22]。因此,BS+DT復配修飾高嶺土樣對的吸附能力高于CK和BS-12修飾土樣,從而說明了DTAB對BS-12修飾土樣吸附的促進作用。
各修飾土樣的TOC含量均隨著BS-12和DTAB修飾比例的增加而增大,比表面積隨疏水修飾的增強而減小,層間距d001相比CK均有不同程度增加,但在各修飾土之間無顯著變化;BS-12修飾高嶺土對的吸附量分別為CK的1.73~2.38倍;BS+DT(除15%BS+10%DT)復配修飾土對的吸附量較相應(yīng)BS修飾土有1.17~1.37倍的提升,且60%BS+ DT復配修飾土對的吸附量較大;CK和BS-12修飾土對的吸附呈增溫正效應(yīng),BS+DT復配修飾土對的吸附為增溫負效應(yīng);隨溶液pH值的升高,各供試土樣對的吸附量均逐漸降低。
[1]閆旭,李亞峰.含鉻廢水的處理方法[J].遼寧化工,2010,39(2):143-146.
YAN Xu,LI Ya-feng.Treatment methods of chromic wastewater[J]. LiaoningChemical Industry,2010,39(2):143-146.
[2]范樹景,王春梅,封孝信.天然及改性沸石對水中Cr6+的吸附研究[J].非金屬礦,2006,29(2):56-57.
FAN Shu-jing,WANG Chun-mei,F(xiàn)ENG Xiao-xin.Study on adsorption of Cr6+in water by natural zeolite and modified zeolite[J].Non-Metallic Mines,2006,29(2):56-57.
[3]高歡,高湘.改性膨潤土的制備及其對Cr6+的吸附研究[J].環(huán)??萍?,2011,17(1):32-36.
GAO Huan,GAO Xiang.Preparation of modified bentonite and its adsorption on Cr6+[J].Environmental Technology,2011,17(1):32-36.
[4]張宏華,林建偉.HDTMA改性沸石對鉻酸鹽的吸附作用研究[J].浙江工業(yè)大學學報,2010,38(5):494-498.
ZHANG Hong-hua,LIN Jian-wei.Adsorption of Cr(遇)on hexadecyltrimethyl-ammonium modified zeolite[J].Journal of Zhejiang University of Technology,2010,38(5):494-498.
[5]Haggerty G M,Bownmn R S.Sorption of chromate and other inorganicanions by organo-zeolite[J].Environmental Science&Technology,1994,28(3):452-458.
[6]Krishna B S,Murty D S R,Prakash B S J.Thennodynamies of chromium(遇)anionic species sorption onto surfactant-modified montmorillonite clay[J].Journal of Colloid and Interface Science,2000,229(1):230-236.
[7]盧曉巖,朱琨,梁瑩,等.改性沸石對水中鉻酸鹽的吸附和解吸性能研究[J].蘭州交通大學學報,2005,24(4):72-74.
LU Xiao-yan,ZHU Kun,LIANG Ying,et al.Study of sorption and desorption of chromate in solutions with modified zeolite[J].Journal of Lanzhou JiaotongUniversity,2005,24(4):72-74.
[8]Li Z H,Bowman R S.Sorption of chromate and PCE by surfactant-modified clay minerals[J].Environmental Engineering Science,1998,15(3):237-245.
[9]Li Z H,Bowman R S.Retention of inorganic oxyanions by organo-kaolinite[J].Water Research,2001,35(16):3771-3776.
[10]Akar S T,Yetimoglu Y,Gedikbey T.Removal of chromium(遇)ions from aqueous solutions by using Turkish montmorillonite clay:Effect of activation and modification[J].Desalination,2009,244(1):97-108.
[11]孟昭福,張一平,龔寧.有機修飾塿土對吸附特征的初步研究[J].土壤學報,2006,43(1):104-110.
MENG Zhao-fu,ZHANG Yi-ping,GONG Ning.adsorption characteristic of Lou soils modified with organic substances[J].Acta PedologicaSinica,2006,43(1):104-110.
[12]李靜,岳欽艷,李倩,等.陽離子聚合物改性膨潤土對六價鉻的吸附特性研究[J].環(huán)境科學,2009,30(6):1738-1743.
LI Jing,YUE Qin-yan,LI Qian,et al.Adsorption of chromium(遇)from aqueous solution on bentonite modified by cationic polymers[J]. Environment Science,2009,30(6):1738-1743.
[13]王紹梅,李惠云,郭金福.有機膨潤土制備及其對鉻酸根離子吸附性能研究[J].非金屬礦,2006,29(5):56-58.
WANG Shao-mei,LI Hui-yun,GUO Jin-fu.Study on preparation of organo bentonite and its adsorption property of chromate[J].Non-Metalllic Mines,2006,29(5):56-58.
[14]Meng Z F,Zhang Y P,Zhang Z Q.Simultaneous adsorption of phenol and cadmium on amphoteric modified soil[J].Journal of Hazardous Materials,2008,159(2/3):492-498.
[15]李彬.BS-12和CTMAB復配修飾膨潤土對苯酚、Cd2+和平衡吸附的研究[D].楊凌:西北農(nóng)林科技大學,2014:39-45.
LI Bin.Studies on the equilibrium adsorption of amphoteric-cationic modified bentonites to Cd2+,and phenol[D].Yangling:Northwest A&F University of China,2014:39-45.
[16]王建濤.BS-SDS復配修飾膨潤土對Cd(域)、苯酚和Cr(遇)的吸附特征[D].楊凌:西北農(nóng)林科技大學,2014:37-40.
WANG Jian-tao.Adsorption characteristics of Cd(域),Cr(遇)and phenol on complex modified bentonites with BS-12 and SDS[D].Yangling:Northwest A&F University of China,2014:37-40.
[17]孟昭福,李榮華,張一平,等.有機修飾塿土對苯胺的吸附[J].土壤通報,2008,39(1):143-149.
MENG Zhao-fu,LI Rong-hua,ZHANG Yi-ping,et al.Adsorption of aniline on an organic modified Lou soil[J].Chinese Journal of Soil Science,2008,39(1):143-149.
[18]楊亞莉.BS-12與OTMA復配修飾膨潤土和高嶺土的性能表征及其對Cd2+、苯酚的吸附[D].楊凌:西北農(nóng)林科技大學,2015:10-20.
YANG Ya-li.Characterization of bentonites and kaolinite complex modified with BS-12 and OTMA and its adsorption of Cd2+and phenol[D].Yangling:Northwest A&F University of China,2015:10-20.
[19]孟昭福,張一平.有機修飾塿土中鉻酸根吸附熱力學特征及機理[J].中國環(huán)境科學,2006,26(增刊):68-72.
MENG Zhao-fu,ZHANG Yi-ping.Adsorption thermodynamic characteristics and mechanism of chromate in organic modified Lou soil[J]. ChinaEnvironmental Science,2006,26(Suppl):68-72.
[20]曹福,劉瑾.有機改性膨潤土對鉻的吸附特性研究[J].江蘇科技大學學報(自然科學版),2011,25(4):387-389.
CAO Fu,LIU Jin.Study on adsorption characteristic of chromium by organic modified bentonite[J].J Jiangsu Universiy Sci Technol(Natural Science Edition),2011,25(4):387-389.
[21]Sarkar B,Xi Y F,Megharaj M,et al.Remediation of hexavalent chromium through adsorption by bentonite based Arquad2HT-75 organoclays[J].Journal of Hazardous Materials,2010,183(1/2/3):87-97.
[22]李文斌,楊淑英,孟昭福,等.DTAB對兩性膨潤土的復配修飾機制和吸附菲的影響[J].農(nóng)業(yè)環(huán)境科學學報,2015,34(9):1722-1729.
LI Wen-bin,YANG Shu-ying,MENG Zhao-fu,et al.Composite modification mechanism of different BS-12 bentonite with DTAB and thier adsorption for phenanthrene[J].Journal of Agro-Environment Science,2015,34(9):1722-1729.
Surface characteristics and CrO2+4adsorption of kaolin with different modification
LI Wen-bin1,MENG Zhao-fu1,2*,WU Qiong1,ZHAO Yun-fei1,REN Shuang1,YU Lu1,GUO Hui1,ZHOU Chun-yan1
(1.Department of Natural Resource and Environment,Northwest A&F University,Yangling 712100,China;2.Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China,Ministry of Agriculture,Yangling 712100,China)
Modified minerals have enhanced surface and thus adsorption.In this study,surface characteristics andadsorption of kaolin under different modification were examined at various pH and temperature.Dodecyl trimethyl ammonium bromide(DTAB)was used to modify 15%,30%and 60%BS-12(Dodecyl dimethyl betaine)pre-modified kaolin.Results showed that:TOC content was hydrophobic>hydrophobic and ion exchange>ion exchange modifications for BS-12 and BS+DTAB modified samples.The interlayer spacing in different modified kaolin had no significant variation,but was all greater to different extent than that of the original(CK).The specific surface area of different modified kaolin decreased with increasing hydrophobic modification.Adsorption ofon BS-12 kaolin was greatly improved after co-modification with DTAB.Henry model fitting proved that kaolin modified with hydrophobic substance had enhanced adsorption capacity for,which increased with increasing hydrophobic ratios.When temperature increased from 10 to 30益,the adsorption capacity forwas increased by more than 5%on CK and by 1.4%~3.7%on BS-12 modified kaolin,but was reduced by 5.4%~7.2%on 15%,30%and 60%BS+DTAB modified kaolin.Increasing pH from 4 to 10 decreased the adsorption capacity foron all modified kaolin.
modified mode;kaolin;surface characteristics;;adsorption capacity
X53
A
1672-2043(2016)04-0677-07
10.11654/jaes.2016.04.010
2015-11-15
國家自然科學基金項目(41271244);陜西省社會發(fā)展攻關(guān)項目(2013K13-01-05)
李文斌(1985—),男,陜西蒲城人,博士研究生,從事土壤污染修復研究。E-mail:lwb062@163.com
孟昭福E-mail:zfmeng@hotmail.com