楊艷芳 武 劍 朱 凱 劉黎卿 陳發(fā)棣 喻德躍*
(1.中國(guó)林業(yè)科學(xué)研究院林業(yè)研究所,林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,國(guó)家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091; 2.南京農(nóng)業(yè)大學(xué)大豆研究所,國(guó)家大豆改良中心,作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210095; 3.南京農(nóng)業(yè)大學(xué)園藝學(xué)院觀賞園藝系,南京 210095; 4.福建省植物生理生化重點(diǎn)公共實(shí)驗(yàn)室,福建省亞熱帶植物研究所,廈門 361009)
過(guò)量表達(dá)菊花DmDREBa基因提高轉(zhuǎn)化煙草耐低溫能力
楊艷芳1武 劍2朱 凱2劉黎卿4陳發(fā)棣3喻德躍2*
(1.中國(guó)林業(yè)科學(xué)研究院林業(yè)研究所,林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,國(guó)家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091;2.南京農(nóng)業(yè)大學(xué)大豆研究所,國(guó)家大豆改良中心,作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210095;3.南京農(nóng)業(yè)大學(xué)園藝學(xué)院觀賞園藝系,南京 210095;4.福建省植物生理生化重點(diǎn)公共實(shí)驗(yàn)室,福建省亞熱帶植物研究所,廈門 361009)
各種環(huán)境因素,如干旱、高鹽、激素和低/高溫等非生物脅迫對(duì)植物的生長(zhǎng)發(fā)育造成很大影響。DREB轉(zhuǎn)錄因子在植物抵抗非生物脅迫中起到關(guān)鍵作用。本研究通過(guò)根癌農(nóng)桿菌介導(dǎo)的葉盤轉(zhuǎn)化法將菊花DmDREBa基因?qū)霟煵葜胁⑦M(jìn)行了耐低溫能力分析。研究利用PCR的方法鑒定出了43株轉(zhuǎn)基因陽(yáng)性植株。隨機(jī)選取其中9株轉(zhuǎn)基因植株,有7株在RNA轉(zhuǎn)錄水平能夠表達(dá)。Southern雜交檢測(cè)表明,DmDREBa基因以1~3個(gè)拷貝形式隨機(jī)插入到煙草基因組中。脅迫處理結(jié)果表明,DmDREBa基因明顯增強(qiáng)了轉(zhuǎn)基因煙草抵抗低溫能力。通過(guò)葉片上下表皮氣孔密度檢測(cè),發(fā)現(xiàn)轉(zhuǎn)基因煙草的蒸騰失水量遠(yuǎn)遠(yuǎn)低于對(duì)照野生型。進(jìn)一步對(duì)低溫脅迫下轉(zhuǎn)基因煙草的丙二醛含量進(jìn)行測(cè)定分析,發(fā)現(xiàn)轉(zhuǎn)基因煙草丙二醛含量比野生型煙草低22.29%。綜上結(jié)果表明,DmDREBa基因能夠提高轉(zhuǎn)基因煙草對(duì)低溫的耐受能力,為菊花DREB轉(zhuǎn)錄因子的深入研究提供理論依據(jù),并為進(jìn)一步解析菊花DREB基因功能奠定基礎(chǔ)。
菊花;DREB;農(nóng)桿菌轉(zhuǎn)化;轉(zhuǎn)基因煙草;耐逆性
干旱、高鹽和低溫等非生物脅迫嚴(yán)重影響植物的生長(zhǎng)和發(fā)育,很多耐逆基因在這些非生物脅迫條件下被誘導(dǎo)表達(dá)[1~2]。目前,研究表明DREB轉(zhuǎn)錄因子能與DRE/CRT順式作用元件特異性結(jié)合,啟動(dòng)調(diào)控大量下游的、在啟動(dòng)子區(qū)域含有靶元件的逆境相關(guān)基因。因此,DREB蛋白在調(diào)控非生物脅迫相關(guān)基因的表達(dá)和提高植株對(duì)非生物脅迫抗性方面有很重要的作用[3~5]。
DREB轉(zhuǎn)錄因子含有一個(gè)典型的高度保守的約60個(gè)氨基酸組成的AP2/ERF結(jié)構(gòu)域,是一個(gè)多基因家族轉(zhuǎn)錄因子,研究者已從多種植物中分離克隆DREB基因,并對(duì)其功能進(jìn)行了研究。Liu等[3]從擬南芥中克隆了兩類共5個(gè)與DRE元件特異結(jié)合的DREB轉(zhuǎn)錄因子,它們所編碼的基因分別命名為DREB1A(CBF3)、DREB1B(CBF1)、DREB1C(CBF2)和DREB2A、DREB2B,其中DREB1A、DREB1B和DREB1C受低溫誘導(dǎo),DREB2A、DREB2B受干旱和高鹽誘導(dǎo)。隨后,Sakuma等[6]用PCR方法從擬南芥基因組中擴(kuò)增出3個(gè)與DREB1同源的DREB1D-DREB1F以及6個(gè)與DREB2同源的DREB2C~DREB2H,DREB1D基因受高鹽誘導(dǎo),DREB2E只在根中受ABA輕微誘導(dǎo)。Haake等[7]也研究報(bào)道了CBFs家族的第4個(gè)成員CBF4(DREB1D)。CBF4基因受ABA和干旱誘導(dǎo),但不受低溫誘導(dǎo)。Knight等[8]發(fā)現(xiàn)CBF1-4基因的表達(dá)都受到ABA的誘導(dǎo),表明DREB1/CBF介導(dǎo)的低溫信號(hào)途徑和ABA途徑也不是完全獨(dú)立的,它們之間是有一定聯(lián)系和相互作用的。Novillo等[9]報(bào)道擬南芥中DREB1C/CBF2是DREB1A和DREB1B基因表達(dá)的負(fù)調(diào)控子。Guo等[10]報(bào)道DREB1s基因受其自身轉(zhuǎn)錄產(chǎn)物和其誘導(dǎo)的下游基因產(chǎn)物的反饋調(diào)節(jié)。此外,也有研究表明DREB2A參與植物熱激脅迫[11~12]。研究發(fā)現(xiàn)擬南芥中的DREB2A中存在負(fù)調(diào)控結(jié)構(gòu)域,將此負(fù)調(diào)控結(jié)構(gòu)域去掉之后,DREB2A表現(xiàn)為組成性激活形式(DREB2A CA)。在擬南芥中過(guò)表達(dá)DREB2ACA基因不僅能夠增強(qiáng)干旱和高鹽脅迫基因的表達(dá),還上調(diào)了熱激反應(yīng)相關(guān)的AtHsfA3和3個(gè)HSPs基因的表達(dá)[12]。此外,研究者還發(fā)現(xiàn)DNA POLYMERASE II SUBUNIT B3-1(DPB3-1)與DREB2A相互作用,過(guò)表達(dá)DPB3-1能夠增強(qiáng)DREB2A在熱脅下的轉(zhuǎn)錄活性[13]。同時(shí),研究表明,過(guò)量表達(dá)DREB基因能夠誘導(dǎo)下游多個(gè)耐逆基因的表達(dá),如RD29A/B等,最終提高了植物耐低溫、干旱和高鹽等脅迫的能力[3,14~17]。
自Stockinger最早從擬南芥中分離到CBF1(DREB1B)基因以來(lái)[18],目前,已經(jīng)在多種植物中均克隆了DREB轉(zhuǎn)錄因子的基因,例如,油菜(Brassicanapus)、番茄(Solanumlycopersicum)、大麥(Hordeumvulgare)、玉米(Zeamays)、水稻(Oryzasativa)和小麥(Triticumturgidumssp.durum)等[14,19~23],涵蓋了單子葉植物和雙子葉植物,充分證實(shí)DREB轉(zhuǎn)錄因子在植物中廣泛存在。菊花(Dendranthema×morifolium)為菊科(Compositae)菊屬(Dendranthema)宿根草本花卉,具有良好的耐寒性和耐旱性。本研究組的前期工作中已從菊花克隆到三個(gè)DREB同源基因,并初步確定DmDREBa和DmDREBb與低溫脅迫的耐受性相關(guān)[24],而DvDREB2A與低溫、干旱、高鹽以及高溫等脅迫相關(guān)[25]。為了進(jìn)一步研究菊花中DREB基因的耐逆功能,本研究通過(guò)根癌農(nóng)桿菌介導(dǎo)法將DmDREBa基因轉(zhuǎn)入煙草,分析了轉(zhuǎn)基因植株在氣孔密度以及低溫脅迫下丙二醛(malondialdehyde,MDA)含量的變化,為利用DmDREBa基因改良植物耐逆性提供理論基礎(chǔ)。
1.1 植物材料
實(shí)驗(yàn)材料為煙草品種‘三生煙’(Nicotianatabacum‘Xantbine’),以培養(yǎng)45 d的煙草的幼嫩葉片作為轉(zhuǎn)化的外植體。
1.2 宿主菌與質(zhì)粒載體
本研究所用大腸桿菌(Escherichiacoli)DH5α和根癌農(nóng)桿菌(Agrobacteriumtumefaciens)EHA105均由國(guó)家大豆改良中心保存,克隆載體pGEM-T購(gòu)自Promega公司,植物雙元表達(dá)載體pBI121-GFP,為國(guó)家大豆改良中心保存。
1.3 表達(dá)載體的構(gòu)建
根據(jù)研究組前期獲得的DmDREBa基因(GenBank登錄號(hào):EF490996)序列設(shè)計(jì)引物,上下游引物中加入XbaⅠ-BamHⅠ酶切位點(diǎn),以已插入DmDREBa基因的T載體質(zhì)粒為模板進(jìn)行PCR擴(kuò)增,將PCR產(chǎn)物連接到克隆載體pGEM-T中。將含有目的基因完整ORF的重組載體pGEM-T和真核表達(dá)載體pBI121-GFP分別用BamHⅠ和XbaⅠ進(jìn)行雙酶切,將酶切后回收的DmDREBa基因片段與酶切的pBI121-GFP得到的大片段連接、轉(zhuǎn)化大腸桿菌DH5α,經(jīng)過(guò)藍(lán)白斑篩選、PCR以及酶切鑒定重組質(zhì)粒,最后對(duì)重組質(zhì)粒35S:DmDREBa進(jìn)行測(cè)序,確保序列正確。
1.4 煙草轉(zhuǎn)化及再生
利用液氮速凍法將植物表達(dá)載體35S:DmDREBa導(dǎo)入根癌農(nóng)桿菌菌株EHA105中。以培養(yǎng)45 d的煙草自上至下第4、5片葉作為轉(zhuǎn)化受體,采用葉盤法[26]轉(zhuǎn)化煙草并再生獲得轉(zhuǎn)基因煙草。
1.5T0代轉(zhuǎn)基因陽(yáng)性植株的鑒定
以CTAB法提取移栽至營(yíng)養(yǎng)缽中抗卡那霉素轉(zhuǎn)基因煙草的基因組DNA作為模板,利用DmDREBa全長(zhǎng)序列為模板設(shè)計(jì)特異性引物DREBa-F:5′-ATCAATTATTCAAAGCTCAA-3′和DREBa-R:5′-GAGTAAAGTGATCTTTGGAA-3′,進(jìn)行PCR擴(kuò)增鑒定。反應(yīng)總體積為20 μL:10×Taq緩沖液2 μL,10 mmol·L-1dNTP 0.4 μL,上下游引物0.4 μL(10 μmol·μL-1),模板1 μL(約50 ng),5 U·μL-1Taq酶0.2 μL,最后用滅菌超純水補(bǔ)足。反應(yīng)條件:95℃預(yù)變性5 min,95℃ 30 s,58℃ 40 s,72℃ 40 s,30個(gè)循環(huán),72℃ 8 min終止反應(yīng)。野生型煙草和滅菌超純水作為陰性對(duì)照。
對(duì)于PCR鑒定的陽(yáng)性的轉(zhuǎn)基因植株,我們隨機(jī)挑取了9株,用Trizol(天根,北京)提取總RNA,經(jīng)過(guò)DNaseI處理后,進(jìn)行反轉(zhuǎn)錄,合成cDNA第一鏈。以cDNA第一鏈為模板,相同的PCR引物和程序,進(jìn)行轉(zhuǎn)基因植株轉(zhuǎn)錄水平的鑒定。
1.6T0代轉(zhuǎn)基因煙草的Southern雜交分析
選取研究確定的陽(yáng)性轉(zhuǎn)基因煙草植株15株,其中包括1.5中鑒定的9株,其他6株為隨機(jī)選取。利用CTAB法提取基因組DNA,選用目的基因序列中不含酶切位點(diǎn)的BamHⅠ內(nèi)切酶進(jìn)行酶切,50 μL體系:DNA 30 μL(約10 μg),ddH2O 11 μL,Buffer 5 μL,BamHⅠ酶5 μL(40 U),37℃保溫16~18 h,65℃ 10 min終止酶切反應(yīng)。酶切的DNA加入loading buffer混勻后上樣到0.8%的TBE瓊脂糖膠,低電壓電泳(1 V·cm-1,12 h)。電泳結(jié)束后,轉(zhuǎn)移至尼龍膜上(Roche)。依照DIG High Prime DNA Labeling and Detection starter KitⅡ(Roche)說(shuō)明書進(jìn)行洗膜、檢測(cè)。
1.7 蒸騰失水速率實(shí)驗(yàn)
分別取PCR鑒定的轉(zhuǎn)DmDREBa基因陽(yáng)性T0代和野生型煙草各三株自上至下的第三片葉,稱取重量,并用描葉法[27]計(jì)算葉面積。將葉子放在濾紙上自然失水,間隔0.5 h稱重,持續(xù)7 h后每隔1 h稱重至失水12 h,最后在失水24 h時(shí)候再稱重一次。統(tǒng)計(jì)數(shù)據(jù),最后計(jì)算單位葉面積的失水量。
1.8 葉片上下表皮的氣孔密度檢測(cè)
用鑷子小心剝?nèi)£?yáng)性轉(zhuǎn)基因植株T0代和野生型煙草自上之下第三、四片葉片上下表皮,在OLYMPUS光電顯微鏡40×鏡下觀察葉片上下表皮氣孔狀況并照相,用SAS9.0軟件進(jìn)行統(tǒng)計(jì)分析,檢驗(yàn)轉(zhuǎn)基因煙草與野生型氣孔密度間的差異顯著性。
1.9T1代轉(zhuǎn)基因煙草的分離比分析
將T0代PCR鑒定的3個(gè)陽(yáng)性轉(zhuǎn)基因株系和野生型煙草的種子播種到含有150 μmol·L-1Kan的1/2MS培養(yǎng)基上,16/8 h光照培養(yǎng)箱25℃培養(yǎng)。萌發(fā)出苗后,卡方測(cè)驗(yàn)計(jì)算分離比例。
1.10T1代轉(zhuǎn)基因煙草MDA含量測(cè)定
取轉(zhuǎn)DmDREBa基因煙草T1代株系L-35和L-39,取自上至下第三、四片葉進(jìn)行。4℃低溫處理,在第0、2和4 d分別取樣,重復(fù)3次。選擇同時(shí)期正常生長(zhǎng)的大小相近野生型煙草作為對(duì)照。參照《植物生理生化實(shí)驗(yàn)原理和技術(shù)》[28]方法進(jìn)行MDA含量測(cè)定。數(shù)據(jù)分析利用SAS軟件(ver.9.0,SAS Institute,Inc)進(jìn)行統(tǒng)計(jì),采用Duncan(P<0.05)多重比較法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析。
2.1 植物表達(dá)載體構(gòu)建
將DmDREBa基因加上BamHⅠ和XbaⅠ酶切位點(diǎn)并克隆到載體pGEM-T中。利用BamHⅠ和XbaⅠ內(nèi)切酶酶切重組質(zhì)粒pDmDREBa和核表達(dá)載體,回收DmDREBa基因片段和pBI121-GFP酶切的大片段(約14 kB),用T4DNA連接酶連接兩個(gè)片段,并轉(zhuǎn)化、提取重組質(zhì)粒DNA,PCR、酶切重組質(zhì)粒,可得到目的基因大小片段,表明DmDREBa基因片段確實(shí)插入到植物表達(dá)載體pBI121-GFP中,重組載體命名為35S:DmDREBa。
2.2 轉(zhuǎn)基因煙草陽(yáng)性檢測(cè)2.2.1 PCR及轉(zhuǎn)錄水平檢測(cè)
利用DmDREBa基因設(shè)計(jì)特異性引物,對(duì)87株轉(zhuǎn)DmDREBa基因的煙草植株進(jìn)行PCR檢測(cè)。結(jié)果有43株轉(zhuǎn)基因植株擴(kuò)增出目的條帶(圖1),陽(yáng)性率為49.43%。
圖1 35S:DmDREBa轉(zhuǎn)基因植株的PCR鑒定(部分結(jié)果)Fig.1 The PCR identification of 35S:DmDREBa transgenic plants(parts)
為了判斷DmDREBa基因是否能夠在轉(zhuǎn)基因陽(yáng)性植株中進(jìn)行轉(zhuǎn)錄,我們從檢測(cè)出的陽(yáng)性植株中選取了9株,以相同的DmDREBa的引物和PCR程序,進(jìn)行轉(zhuǎn)基因植株轉(zhuǎn)錄水平的鑒定。結(jié)果發(fā)現(xiàn),9株中有7株擴(kuò)增出目的條帶,表明DmDREBa能夠在轉(zhuǎn)錄水平表達(dá)(圖2)。
圖2 35S:DmDREBa轉(zhuǎn)基因植株的RT-PCR鑒定Fig.2 The RT-PCR identification of 35S:DmDREBa transgenic plants
2.3 轉(zhuǎn)基因煙草Southern blot分析
提取T0代轉(zhuǎn)基因煙草以及野生型煙草的基因組DNA,以地高辛標(biāo)記的DmDREBa基因全長(zhǎng)作為探針,對(duì)已經(jīng)鑒定的PCR陽(yáng)性植株進(jìn)行Southern雜交分析。以野生型煙草和攜帶DmDREBa基因的重組質(zhì)粒分別作為陰性對(duì)照和陽(yáng)性對(duì)照。結(jié)果如圖3所示,DmDREBa基因已經(jīng)整合到煙草的基因組中,并且可以看出,檢測(cè)植株中DmDREBa基因以1~3個(gè)拷貝形式隨機(jī)插入到煙草基因組中。
圖3 轉(zhuǎn)DmDREBa基因煙草植株的Southern blot鑒定 P. PBI121-GFP質(zhì)粒;WT.野生型煙草Fig.3 Southern blot analysis of the T0 DmDREBa transgenic plants P. PBI121-GFP plasmid;WT.Wild type tobacco plants
2.4 轉(zhuǎn)DmDREBa基因煙草葉片蒸騰失水分析
為更好的了解轉(zhuǎn)DmDREBa基因植株的抗非生物脅迫的生理特性,我們對(duì)轉(zhuǎn)DmDREBa基因T0煙草陽(yáng)性植株和野生型煙草進(jìn)行了葉片蒸騰失水速率的比較。結(jié)果顯示轉(zhuǎn)基因煙草單位時(shí)間內(nèi)每平方厘米面積上比野生型煙草葉片失水量要小(圖4),說(shuō)明由于DmDREBa基因的導(dǎo)入,煙草葉片的保水能力有所增加。
圖4 轉(zhuǎn)DmDREBa基因煙草葉片的蒸騰失水分析Fig.4 Analysis of water-holding capacity of DmDREBa transgenic plants leaves
2.5 葉片上下表皮的氣孔密度檢測(cè)
通過(guò)氣孔密度和大小的觀察,發(fā)現(xiàn)轉(zhuǎn)基因煙草葉片上下表皮氣孔器和氣孔開(kāi)張的長(zhǎng)寬度與野生型煙草葉片并無(wú)大的差異(圖5),表明轉(zhuǎn)基因煙草在氣孔器的開(kāi)張上并未有太大變化。在氣孔的數(shù)目上,野生型煙草和轉(zhuǎn)基因煙草的下表皮氣孔數(shù)都多于上表皮,野生型煙草的上下表皮氣孔數(shù)均多于轉(zhuǎn)基因植株(表1)。經(jīng)t值測(cè)驗(yàn),轉(zhuǎn)基因煙草和野生型煙草的上、下表皮氣孔數(shù)的差異均達(dá)到顯著水平(圖6)。
圖5 轉(zhuǎn)DmDREBa基因煙草和WT煙草葉片表皮氣孔觀察 1~2.WT ;3~4.DmDREBa的轉(zhuǎn)基因煙草Fig.5 Observation of stomas in leave epidermis of DmDREBa transgenic plants and wild type tobacco 1-2.WT; 3~4.DmDREBa transgenic plants
Table1ThestomatalnumberinleaveepidermisofDmDREBatransgenicplantsandwildtypetobacco
視野ViewWT轉(zhuǎn)DmDREBa基因煙草DmDREBatransgenicplants上表皮(個(gè))Upperepidermis下表皮(個(gè))Lowerepidermis上表皮(個(gè))Upperepidermis下表皮(個(gè))Lowerepidermis1782526825369264682656122565122575834839479310331051035平均值Mean5.29.42.55.1
圖6 轉(zhuǎn)DmDREBa基因煙草與野生型煙草氣孔個(gè)數(shù)比較Fig.6 The comparison of the stomatal number between DmDREBa transgenic plants and wild type tobacco
2.6T1代轉(zhuǎn)基因煙草的分離比分析
選取了3個(gè)T1代株系,將種子播種在含有Kan的1/2MS培養(yǎng)基上。種子萌發(fā)兩周后,統(tǒng)計(jì)其分離比率??ǚ綔y(cè)驗(yàn)表明3個(gè)轉(zhuǎn)基因株系的幼苗抗/感卡那霉素比例均不顯著,表明3個(gè)株系均按照3∶1分離。表明這三個(gè)轉(zhuǎn)株系內(nèi)目的基因都是以單拷貝形式插入,與我們前面的所述的Southern雜交結(jié)果相一致。
表2轉(zhuǎn)DmDREBa基因煙草T1代分離比較
Table2ThecomparisonamongtheT1linesofDmDREBatransgenictobaccoplants
株系代號(hào)No.oflines種子萌發(fā)總數(shù)Totalnumberofseedgermination卡那霉素抗/感比Resistance/infectionratioonkanamycin分離比SegregationratioChi?squareP357858/202.900.0170940.895978394435/93.890.4848480.486234767558/173.410.2177780.640738
2.7低溫脅迫對(duì)轉(zhuǎn)DmDREBa基因T1代煙草葉片的MDA含量的影響
當(dāng)植物受到低溫脅迫時(shí),植物體生物膜的脂類會(huì)發(fā)生相變,過(guò)氧化物增多,脂質(zhì)過(guò)氧化物的形成使膜受體、膜蛋白酶和離子通道的脂質(zhì)微環(huán)境改變,從而改變它們功能,由于脂質(zhì)過(guò)氧化反應(yīng)的增強(qiáng),細(xì)胞膜內(nèi)多價(jià)不飽和脂肪酸減少,生物膜不飽和脂肪酸/蛋白質(zhì)比例失常,膜的液態(tài)性、流動(dòng)性改變,通透性增強(qiáng)。含雙鍵脂肪酸過(guò)氧化可生成丙二醛(MDA),它的產(chǎn)生與脂質(zhì)過(guò)氧化相平行,因而測(cè)定丙二醛含量可代表脂質(zhì)過(guò)氧化物的濃度。為了進(jìn)一步了解DmDREBa基因的功能,我們對(duì)低溫脅迫下T1代轉(zhuǎn)基因煙草的丙二醛含量進(jìn)行了分析。結(jié)果如圖7所示,野生型煙草和轉(zhuǎn)基因植株(35S:DmDREBa-35和35S:DmDREBa-39)在低溫脅迫0 d時(shí),轉(zhuǎn)基因植株MDA含量低于WT,處理2 d后,兩者M(jìn)DA含量都稍有增加,轉(zhuǎn)基因植株比WT略低但差異不明顯,然而處理4 d后,轉(zhuǎn)基因植株和WT植株MDA含量都明顯增加,并且轉(zhuǎn)基因煙草MDA含量顯著低于WT煙草,代號(hào)35和代號(hào)39的轉(zhuǎn)基因煙草植株之間差異并不明顯。由此可以說(shuō)明,由于DmDREBa基因的導(dǎo)入,提高了煙草的耐低溫能力。
圖7 低溫脅迫下轉(zhuǎn)DmDREBa基因煙草丙二醛(MDA)含量分析Fig.7 Analysis of MDA in wild type and 35S:DmDREBa transgenic tobacco plants under 4℃ condition
DREB轉(zhuǎn)錄因子能通過(guò)特異結(jié)合DRE/CRT順式作用元件,激活一系列耐逆相關(guān)基因的表達(dá),因此,向植物中導(dǎo)入DREB基因,理論上可以提高植株對(duì)低溫、高鹽和干旱等非生物脅迫的耐逆性[3~4,29]。目前,除擬南芥外,在煙草(Nicotianatabacum)[30]、甘蔗(Saccharumspp.hybrid)[5]、大豆(Glycinemax)[31]、馬鈴薯(Solanumtuberosum)[32]以及百脈根(Lotuscorniculatus)[33]等多種植物中過(guò)表達(dá)DREB基因,大大提升了相應(yīng)轉(zhuǎn)化植物的非生物脅迫耐受能力。在本研究中,在煙草中過(guò)表達(dá)菊花DmDREBa基因,同樣提升了轉(zhuǎn)基因煙草對(duì)低溫的抗性,這些研究都表明DREB基因確實(shí)在植物抵抗低溫、高鹽和干旱等脅迫中起到了非常重要的作用,在植物抗逆育種方面具有巨大的應(yīng)用前景。
氣孔是植物葉片與外界進(jìn)行氣體交換的唯一可調(diào)節(jié)通道,與植物的光合作用、蒸騰作用等生理生態(tài)功能密切相關(guān)。劉衛(wèi)群等[34]將油菜(Brassicanapus)來(lái)源的BnDREB1-5基因轉(zhuǎn)入煙草,發(fā)現(xiàn)轉(zhuǎn)基因煙草葉片單位時(shí)間內(nèi)每平方厘米的失水量是野生型煙草葉片的62%,并發(fā)現(xiàn)轉(zhuǎn)基因煙草葉片上表皮氣孔比野生型大,但氣孔開(kāi)度小于野生型;野生型煙草葉片上的氣孔密度為轉(zhuǎn)基因煙草的1.5倍左右。本研究中對(duì)T0代轉(zhuǎn)35S:DmDREBa基因煙草和野生型煙草葉片的失水速率進(jìn)行了研究,發(fā)現(xiàn)轉(zhuǎn)基因煙草葉片的保水能力大于野生型(圖4)。然而對(duì)轉(zhuǎn)35S:DmDREBa基因煙草和野生型煙草葉片氣孔大小和開(kāi)張度進(jìn)行觀察,發(fā)現(xiàn)兩者并無(wú)太大差異;轉(zhuǎn)基因煙草葉片上、下表皮氣孔密度顯著小于對(duì)照野生型煙草(表1)。這與劉衛(wèi)群等人研究結(jié)果較為一致。由此,可以推斷轉(zhuǎn)基因煙草氣孔密度的減少,導(dǎo)致轉(zhuǎn)基因植株的蒸騰作用下降,是增強(qiáng)轉(zhuǎn)基因煙草的保水能力的原因之一。此外還有其他原因,例如,馬劉峰[35]將棉花中的GhCBF3(DREB1A)基因轉(zhuǎn)化擬南芥,發(fā)現(xiàn)GhCBF3能夠通過(guò)調(diào)控轉(zhuǎn)基因擬南芥中與響應(yīng)ABA信號(hào)的ABRE(ABA responsive element)順式作用元件相結(jié)合的AREB1/ABF2(ABA-responsive element binding protein;ABF)和AREB2/ABF4轉(zhuǎn)錄因子編碼基因的表達(dá),通過(guò)轉(zhuǎn)基因擬南芥葉片氣孔對(duì)ABA的敏感性從而加速氣孔關(guān)閉,進(jìn)而提高了轉(zhuǎn)基因植株的抗旱能力。
植物在遭受不良環(huán)境脅迫時(shí),在細(xì)胞內(nèi)會(huì)形成多種氧化活性物質(zhì),并在這些氧化活性物質(zhì)作用下膜脂發(fā)生過(guò)氧化。丙二醛(MDA)含量是植物細(xì)胞膜脂過(guò)氧化程度的體現(xiàn),丙二醛含量高,表明植物細(xì)胞膜脂過(guò)氧化程度高,細(xì)胞膜受到的傷害嚴(yán)重[36]。目前已經(jīng)有眾多研究報(bào)道DREB基因能夠降低轉(zhuǎn)基因植株中MDA含量[37~39],例如,過(guò)表達(dá)DREB1A基因的馬鈴薯中MDA含量在干旱脅迫前后顯著低于對(duì)照植株[37],過(guò)表達(dá)擬南芥來(lái)源的CBF1/DREB1B基因的煙草中,與對(duì)照相比同樣發(fā)現(xiàn)MDA含量較低[39]。本研究對(duì)低溫脅迫下T1代轉(zhuǎn)基因煙草的丙二醛含量進(jìn)行測(cè)定分析,發(fā)現(xiàn)轉(zhuǎn)基因煙草MDA含量比野生型煙草低22.29%,研究結(jié)果與前人研究結(jié)果一致。由此可見(jiàn)由于DmDREBa基因的導(dǎo)入,提高了轉(zhuǎn)基因煙草的耐低溫能力。鑒于DREB轉(zhuǎn)錄因子在植物生長(zhǎng)發(fā)育中起到多步調(diào)控作用,本研究初步揭示DREB轉(zhuǎn)錄因子在菊花抵抗逆境脅迫過(guò)程中起到重要調(diào)控作用,并有利于今后利用基因工程手段獲得高抗性的菊花品種奠定分子基礎(chǔ)。
很多研究報(bào)道認(rèn)為,DREB轉(zhuǎn)錄因子家族能夠調(diào)控多個(gè)與植物干旱、高鹽和低溫耐性相關(guān)的功能基因的表達(dá),組成型過(guò)量表達(dá)CBF基因還能引起擬南芥和其它植物中脯氨酸生物合成關(guān)鍵酶Δ-1-吡咯琳-5-羧酸合成酶(Δ-1-pyrroline-5-carboxylate synthetase,P5CS)基因的轉(zhuǎn)錄物水平的提高以及脯氨酸的積累[30,32,40]。而將擬南芥來(lái)源的AtDREB1A基因轉(zhuǎn)入地被菊(Dendranthemagrandiflorum)‘Fall Color’,也提高了轉(zhuǎn)基因菊花植株的脯氨酸含量和SOD活性[41]。因此,在提高植物對(duì)非生物脅迫抗性的分子育種中,與導(dǎo)入或改良個(gè)別功能基因來(lái)提高某種抗性的傳統(tǒng)方法相比,改良或增強(qiáng)一個(gè)關(guān)鍵的轉(zhuǎn)錄因子,通過(guò)它促進(jìn)多個(gè)功能基因發(fā)揮作用,獲得綜合改良結(jié)果,也許是改良植物抗性的更為有效的方法和途徑。
1.Thomashow M F.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J].Annual Reviews of Plant Physiology and Plant Molecular Biology,1999,50(1):571-599.
2.Shinozaki K,Yamaguchi-shinozaki K,Seki M.Regulatory network of gene expression in the drought and cold stress responses[J].Current Opinion in Plant Biology,2003,6(5):410-417.
3.Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,inArabidopsis[J].The Plant Cell,1998,10(8):1391-1406.
4.Janiak A,Kwasniewski M,Szarejko I.Gene expression regulation in roots under drought[J].Journal of Experimental Botany,2016,67(4):1003-1014.
5.Augustine S M,Ashwin N J,Syamaladevi D P,et al.Overexpression ofEaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene(PDH45) enhance drought and salinity tolerance in sugarcane(Saccharumspp.hybrid)[J].Plant Cell Reports,2015,34(2):247-263.
6.Sakuma Y,Liu Q,Dubouzet J G,et al.DNA-Binding specificity of the ERF/AP2 domain ofArabidopsisDREBs,transcription factors involved in dehydration- and cold-inducible gene expression[J].Biochemical and Biophysical Research Communications,2002,290(3):998-1009.
7.Haake V,Cook D,Riechmann J L,et al.Transcription factor CBF4 is a regulator of drought adaptation inArabidopsis[J].Plant Physiology,2002,130(2):639-648.
8.Knight H,Zarka D G,Okamoto H,et al.Abscisic acid inducesCBFgene transcription and subsequent induction of cold-regulated genes via the CRT promoter element[J].Plant Physiology,2004,135(3):1710-1717.
9.Novillo F,Alonso J M,Ecker J R,et al.CBF2/DREB1C is a negative regulator ofCBF1/DREB1BandCBF3/DREB1Aexpression and plays a central role in stress tolerance inArabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(11):3985-3990.
10.Guo Y,Xiong L,Ishitani M,et al.AnArabidopsismutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures[J].Proc Natl Acad Sci,2002,99(11):7786-7791.
11.Qin F,Kakimoto M,Sakuma Y,et al.Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses inZeamaysL.[J].Plant J,2007,50(1):54-69.
12.Sakuma Y,Maruyama K,Qin F,et al.Dual function of anArabidopsistranscription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(49):18822-18827.
13.Sato H,Mizoi J,Tanaka H,et al.Arabidopsis DPB3-1,a DREB2A interactor,specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits[J].The Plant Cell,2014,26(12):4954-4973.
15.Jaglo-ottosen K R,Gilmour S J,Zarka D G,et al.ArabidopsisCBF1 overexpression inducesCORgenes and enhances freezing tolerance[J].Science,1998,280(5360):104-106.
16.Zhuang J,Chen J M,Yao Q H,et al.Discovery and expression profile analysis of AP2/ERF family genes fromTriticumaestivum[J].Molecular Biology Reports,2011,38(2):745-753.
17.Wei T,Deng K J,Gao Y H,et al.ArabidopsisDREB1B in transgenicSalviamiltiorrhizaincreased tolerance to drought stress without stunting growth[J].Plant Physiology and Biochemistry,2016,104:17-28.
18.Stockinger E J,Gilmour S J,Thomashow M F.ArabidopsisthalianaCBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(3):1035-1040.
19.Du C F,Hu K N,Xian S S,et al.Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed(BrassicanapusL.)[J].Molecular Genetics and Genomics,2016,doi:10.1007/s00438-015-1161-0.
20.Li J H,Sima W,Ouyang B,et al.TomatoSlDREBgene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis[J].Journal of Experimental Botany,2012,63(18):6407-6420.
21.Xu Z S,Ni Z Y,Li Z Y,et al.Isolation and functional characterization ofHvDREB1-agene encoding a dehydration-responsive element binding protein inHordeumvulgare[J].Journal of Plant Research,2009,122(1):121-130.
22.Liu S X,Wang X L,Wang H W,et al.Genome-wide analysis ofZmDREBgenes and their association with natural variation in drought tolerance at seedling stage ofZeamaysL[J].PLoS Genetics,2013,9(9):e1003790.
23.Challam C,Ghosh T,Rai M,et al.Allele mining acrossDREB1AandDREB1Bin diverse rice genotypes suggest a highly conserved pathway inducible by low temperature[J].Journal of Genetics,2015,94(2):231-238.
24.Yang Y F,Wu J,Zhu K,et al.Identification and characterization of two chrysanthemum(Dendronthema×moriforlium) DREB genes,belonging to the AP2/EREBP Family[J].Molecular Biology Reports,2009,36(1):71-81.
25.Liu L Q,Zhu K,Yang Y F,et al.Molecular cloning,expression profiling and trans-activation property studies of aDREB2-like gene from chrysanthemum(Dendranthemavestitum)[J].Journal of Plant Research,2008,121(2):215-226.
26.高越峰,朱禎,肖桂芳,等.大豆Kunitz型胰蛋白酶抑制劑基因的分離及其在抗蟲(chóng)植物基因工程中的應(yīng)用[J].植物學(xué)報(bào),1998,40(5):405-411.
Gao Y F,Zhu Z,Xiao G F,et al.Isolation of soybean Kuntz trypsin inhibitor gene and its application in plant insect-resistant genetic engineering[J].Acta Botinica Sinica,1998,40(5):405-411.
27.馮冬霞,施生錦.葉面積測(cè)定方法的研究效果初報(bào)[J].中國(guó)農(nóng)學(xué)通報(bào),2005,21(6):150-152,155.
Feng D X,Shi S J.Research on night measurement methods of leaf area[J].Chinese Agricultural Science Bulletin,2005,21(6):150-152,155.
28.李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2000.
Li H S.Principles and techniques of plant physiological biochemical experiment[M].Beijing:Higher Education Press,2000.
29.Nakashima K,Yamaguchi-shinozaki K,Shinozaki K.The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought,cold,and heat[J].Frontiers in Plant Science,2014,5:170.
30.Zhang X,Liu X X,Wu L,et al.The SsDREB transcription factor from the succulent halophyteSuaedasalsaenhances abiotic stress tolerance in transgenic tobacco[J].International Journal of Genomics,2015,2015:875497.
31.Zhang X X,Tang Y J,Ma Q B,et al.OsDREB2A,a rice transcription factor,significantly affects salt tolerance in transgenic soybean[J].PLoS One,2013,8(12):e83011.
32.Bouaziz D,Pirrello J,Charfeddine M,et al.Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants[J].Molecular Biotechnology,2013,54(3):803-817.
33.Zhou M L,Ma J T,Zhao Y M,et al.Improvement of drought and salt tolerance inArabidopsisand Lotus corniculatus by overexpression of a novel DREB transcription factor fromPopuluseuphratica[J].Gene,2012,506(1):10-17.
34.劉衛(wèi)群,石永春,胡亞杰,等.DREB類轉(zhuǎn)錄因子介導(dǎo)的煙草抗非生物脅迫特性研究[J].武漢植物學(xué)研究,2007,25(3):222-225.
Liu W Q,Shi Y C,Hu Y J,et al.The tolerance to abiotic stresses mediated by DREB-like transcription factors inNicotianatabacum[J].Journal of Wuhan Botanical Research,2007,25(3):222-225.
35.馬劉峰.棉花(Gossypiumhirsutum)DREB/CBF基因的篩選鑒定及其在植物抗逆應(yīng)答中的功能研究[D].武漢:華中師范大學(xué),2015.
Ma L F.Screening and fuctional analysis of cottonDREB/CBFgenes that are involved in plant response and defense to abiotic stress[D].Wuhan:Central China Normal University,2015.
36.潘瀾,薛立.植物淹水脅迫的生理學(xué)機(jī)制研究進(jìn)展[J].生態(tài)學(xué)雜志,2012,31(10):2662-2672.
Pan L,Xue L.Plant physiological mechanisms in adapting to waterlogging stress:a review[J].Chinese Journal of Ecology,2012,31(10):2662-2672.
37.賈小霞,齊恩芳,馬勝,等.轉(zhuǎn)DREB1A/Bar雙價(jià)基因馬鈴薯的耐旱性及除草劑抗性分析[J].草業(yè)學(xué)報(bào),2015,24(11):58-64.
Jia X X,Qi E F,Ma S,et al.Analysis of drought tolerance and herbicide resistance in transgenic potato plants over-expressing DREB1A/Bar[J].Acta Prataculturae Sinica,2015,24(11):58-64.
38.Zhang P,Yang P Z,Zhang Z Q,et al.Isolation and characterization of a buffalograss(Buchloedactyloides) dehydration responsive element binding transcription factor,BdDREB2[J].Gene,2014,536(1):123-128.
39.Yang J S,Wang R,Meng J J,et al.Overexpression ofArabidopsisCBF1 gene in transgenic tobacco alleviates photoinhibition of PSⅡ and PSⅠ during chilling stress under low irradiance[J].Journal of Plant Physiology,2010,167(7):534-539.
40.Gilmour S J,Sebolt A M,Salazar M P,et al.Overexpression of theArabidopsisCBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiology,2000,124(4):1854-1865.
41.Hong B,Tong Z,Ma N,et al.Heterologous expression of theAtDREB1Agene in chrysanthemum increases drought and salt stress tolerance[J].Science in China Series C:Life Sciences,2006,49(5):436-445.
Partly supported by National Natural Science Foundation of China(31300567);National non-profit Research Institutions of Chinese Academy of Forestry(CAFYBB2014QB001)
introduction:YANG Yan-Fang(1978—),female,Ph.D,Major in plant second metabolic engineering.
date:2016-04-19
OverexpressionofDmDREBaGeneSignificantlyEnhancesLowTemperatureToleranceinTransgenicTobacco
YANG Yan-Fang1WU Jian2ZHU Kai2LIU Li-Qing4CHEN Fa-Di3YU De-Yue2*
(1.Research Institute of Forestry,Chinese Academy of Forestry,State Key Laboratory of Tree Genetics and Breeding,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration,Beijing 100091;2.National Center for Soybean Improvement,National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095;3.College of Horticulture,Nanjing Agricultural University,Nanjing 210095;4.Fujian Provincial Key Lab of Subtropic Plant Physiology and Biochemistry,Fujian Institute of Subtropical Botany,Xiamen 361009)
Many environmental factors such as drought, salt stress, hormones and low/high temperature influence the growth and development of plants. It has been found that DREB transcription factors play important roles in plants against different abiotic stresses. In this study,DmDREBa(GenBank accession No.EF490996), aDREB-like gene isolated from chrysanthemum was overexpressed in tobacco plants by mediation ofAgrobacteriumtumefaciensunder the control of the constitutive promoter CaMV 35S, and 43 transgenic tobacco plants were obtained by PCR method. 9 transgenic tobacco plants were randomly selected to perform RT-PCR investigation and 7 plants indicated RNA transcripts accumulation. The southern blot result showed that 1-3 copies ofDmDREBawere randomly inserted. The tolerance of transgenic tobacco plants was increased comparing with the wild type tobacco plants under low temperature condition. The water loss of transgenic tobacco was less than wild type plants after natural transpiration. Moreover, the density of the stomata in the epidermis was observed. The result showed that the numbers of stomata in upper or lower epidermis of transgenic plants were reduced comparing to wild type tobacco. The result ofttest demonstrated that the differences between the upper and lower epidermis of transgenic plants and wild type were significant. Furthermore, the content of malondialdehyde(MDA) in transgenic plants was lower than that in wild type tobacco plants at lower temperature condition, which indicated the tolerance ability of transgenic plants was increased. All these results indicated thatDmDREBaimproved tolerance ability of trangenic tobacco plants to the lower temperature stress. This research will provide a very useful reference for functional analysis of DREB genes in chrysanthemum in the future.
chrysanthemum;DREB;Agrobacterium-mediated transformation;transgenic tobacco(Nicotianatabacum‘Xantbine’);tolerance
國(guó)家自然科學(xué)基金項(xiàng)目(31300567);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(CAFYBB2014QB001)
楊艷芳(1978—),女,副研究員,現(xiàn)主要從事植物次生代謝工程研究。
* 通信作者:E-mail:dyyu@njau.edu.cn
2016-04-19
* Corresponding author:E-mail:dyyu@njau.edu.cn
Q943.2
A
10.7525/j.issn.1673-5102.2016.05.013