管茂發(fā),彭思艷,余樂書,章 凱,楊流賽
(上饒師范學院化學化工學院,江西省塑料制備成型重點實驗室,江西上饒334001)
Y2O3∶Eu3+納米晶的尺寸調控與發(fā)光性能研究
管茂發(fā),彭思艷,余樂書,章 凱,楊流賽
(上饒師范學院化學化工學院,江西省塑料制備成型重點實驗室,江西上饒334001)
以尿素為沉淀劑,檸檬酸為表面活性劑,通過水熱法得到了非晶態(tài)的水合硝酸氧釔前驅體,進一步燒結處理后生成了立方相Y2O3納米晶.利用X-射線衍射(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)、紅外光譜(FTIR)和熒光光譜(PL)分別對所得樣品的相結構、形貌粒度、表面結構以及發(fā)光性能進行研究.結果表明:當燒結溫度從600℃升高到900℃,Y2O3∶Eu3+納米顆粒的結晶性增強,并實現(xiàn)了粒徑調控,由13.0 nm增加至27.9 nm.隨著Y2O3∶Eu3+納米顆粒尺寸的增加,比表面積減小會導致發(fā)光離子附近的表面晶格缺陷降低,同時納米晶表面吸附水、硝酸根以及檸檬酸根等雜質離子逐漸被去除,減少了熒光猝滅中心,從而有利于增強熒光發(fā)射強度以及延長熒光壽命.
水熱法;高溫燒結;Y2O3∶Eu3+;納米晶;熒光性能
對于稀土摻雜納米發(fā)光材料,納米晶的尺寸對其發(fā)光性能具有重要的影響[1-6].為獲取性能優(yōu)異的納米發(fā)光材料,人們通過各種方式和手段來增強材料的發(fā)光性能,并取得了巨大進展.稀土摻雜納米晶具有很高的比表面積,而且表面的摻雜離子處于配位不足的環(huán)境,很容易以弱的化學鍵與表面吸附的雜質結合,這些吸附物在摻雜稀土離子周圍產生很高的振動能,導致熒光淬滅效應[7].因此,提高納米晶的結晶性以及消除表面吸附物的熒光淬滅效應,對于改善納米材料的發(fā)光性能具有重要意義.Takeshita等[8-9]研究了YVO4∶Eu3+納米顆粒發(fā)光性能與表面吸附檸檬酸根含量的關系,通過增加水洗的次數(shù)來去除表面吸附的檸檬酸根,從而提高其發(fā)光性能;Chung等[10]通過溶劑熱合成GdVO4∶Eu3+前驅體,并通過高溫燒結處理,有效地改善了其發(fā)光性能.稀土摻雜納米發(fā)光材料在形態(tài)和性質上的特點使其在應用上有著體相材料不可比擬的優(yōu)勢[11].納米熒光粉顆粒能夠顯著改善陰極射線管涂屏的均勻性,有助于提高質量和清晰度;同時還為發(fā)展和研究透明復合材料開辟了新途徑[12],由于納米顆粒光散射小,可將其埋在無定型透明基質中,在激光和放大器上獲得應用;此外,納米熒光粉還可以作為場發(fā)射(FED)顯示的磷光體.在稀土發(fā)光基質材料中,Y2O3是一種高效的發(fā)光基質,且以Eu3+激活的Y2O3紅色發(fā)光材料受到研究者的廣泛關注[13-20].由于高的發(fā)光效率、優(yōu)異的色純度與光衰特性,Y2O3∶Eu3+已被廣泛地應用于節(jié)能燈芯片,同時也是制備高能復印燈和紫外真空激發(fā)氣體放電彩色顯示版的熒光材料.Y2O3的制備方法呈現(xiàn)出多樣性,主要有水熱法、溶劑熱法、化學沉淀法、超聲波法、溶膠-凝膠法、高溫固相法以及微乳液法.其中,水熱合成技術由于其產物純度較高,反應物可達分子或原子水平級均勻,發(fā)光中心均勻分布,是實現(xiàn)納米晶尺寸和形貌控制的有效合成手段.
因此,本論文采用水熱法得到前驅體,根據(jù)前驅體的非晶結構特點,調節(jié)燒結溫度,實現(xiàn)Y2O3∶Eu3+納米晶的尺寸調控,通過 X-射線衍射(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)、紅外光譜(FTIR)以及熒光測試,進一步研究Y2O3∶Eu3+納米晶的尺寸對其相結構、形貌、表面狀態(tài)以及發(fā)光性能的影響.
1.1 主要試劑
Y(NO3)3·6H2O(國藥集團,純度99.99%),Eu(NO3)3·6H2O(國藥集團,純度 99.99%),C6H8O7·H2O(國藥集團,AR),CO(NH2)2(國藥集團,AR),蒸餾水(自制).
1.2 樣品制備
采用水熱法結合高溫燒結兩步法制備納米Y2O3∶Eu3+熒光粉,Eu3+摻雜的濃度為6 mol%.按設計好的配比分別稱取物質的量之和為4 mmol的Y(NO3)3·6H2O和Eu(NO3)3·6H2O溶于70 mL蒸餾水中,溶解后加入8 mmol檸檬酸形成絡合物,得到澄清溶液;向混合溶液中再加入2.4 g尿素,攪拌30 min后,轉移到容積為100 mL反應釜中,水熱條件下180℃反應24 h.將生成的前驅體過濾并洗滌,并在烘箱80℃干燥6 h,研磨成細粉.最后,將前驅體粉末分成五等份,一份保留,將其余四份樣品置于程控箱式電阻爐中,升溫速度為5℃/min,分別在600,700,800和900℃下燒結2 h處理,冷卻后得到一系列納米Y2O3∶Eu3+熒光粉,研磨后進行表征.
1.3 材料表征
粉末樣品的物相結構通過日本Rigaku Mini-Flex II粉末衍射儀(XRD)測試,納米晶的顆粒大小采用 Scherrer公式D=0.9λ/(βcos θ)計算得到,其中λ為所用的X射線波長(0.154 18 nm),θ是晶面的衍射角,b為去除儀器誤差的半峰寬;采用SU8010掃描電鏡和JEM 2010透射電鏡觀察產物顆粒形貌及尺寸;樣品的紅外光譜(FTIR)測試采用 KBr壓片技術,使用的儀器為美國PerkinElmer公司Spectrum One傅里葉變換紅外光譜儀.利用Cary Eclipse熒光分光光度計表征樣品的熒光性能.
2.1 XRD分析
水熱反應后得到前驅體以及在不同高溫處理的產物XRD結構如圖1所示.
圖1 前驅體和Y2O3∶Eu3+納米晶的XRD譜圖Fig.1 XRD patterns of precursors and Y2O3∶Eu3+samples:(a)precursors,(b)600℃,(c)700℃,(d)800℃ and(e)900℃.Vertical bars denote the standard data for a cubic structure of bulk Y2O3(JCPDS,No.88-2162)
圖1(a)為水熱反應后的前驅體,沒有出現(xiàn)X射線的衍射峰,為非晶態(tài)結構.Li等[21]的研究表明,沉淀物是水合硝酸氧釔Y(OH)3-n(NO3)n· mH2O.由于反應條件的不同,沉淀物可能以膠體或者晶體形式存在.利用前驅體非晶態(tài)的特點,對其進行高溫燒結處理,研究燒結溫度對結晶后樣品結構和尺寸的影響.由圖1(b)-(e)可知,燒結后樣品所有衍射峰的數(shù)據(jù)均與立方相Y2O3的標準卡片(PDF No.88-2162)相一致,沒有雜相,表明產物為純的立方相Y2O3.同時,其尖銳的衍射峰表明,經過燒結后顆粒具有較高的結晶度.依據(jù)最強衍射峰(222),由Scherrer公式計算,在600、700、800和900℃下燒結2 h處理后,得到樣品顆粒平均粒徑值依次為:13.0、16.4、20.9和27.9 nm.由于前驅體為非晶態(tài),更容易實現(xiàn)納米顆粒尺寸的調控,所以經過高溫燒結處理后,隨著納米晶的結晶性提高,顆粒逐漸長大,這與圖1觀察到衍射峰強度逐漸增強,半峰寬逐漸地變窄相一致.
2.2 形貌分析
通過掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)來觀察樣品的形貌和尺寸信息.由圖2(a)和(c)可以看到,水熱合成前驅體顯現(xiàn)絮狀團聚,但可以觀察到納米顆粒形貌.在水熱合成過程中,表面活性劑吸附在前驅體表面,防止其繼續(xù)生長,形成納米級顆粒.前驅體在高溫燒結過程中,一方面,非晶態(tài)的水合硝酸氧釔Y(OH)3-n(NO3)n·mH2O發(fā)生分解,釋放氮氧化物和水,生成立方相Y2O3納米晶;同時,在燒結過程中,表面活性劑的揮發(fā),有利于減少Y2O3納米晶的表面缺陷.在700℃下燒結2 h處理后得到Y2O3∶Eu3+納米晶的TEM如2(b)和(d)所示,樣品的納米顆粒形貌得到保持,顆粒尺寸為20 nm左右,與XRD計算得到平均粒徑16.4 nm比較接近.同時,隨著反應溫度的升高,Y2O3∶Eu3+納米晶的結晶性增強,顆粒長大.
圖2 前驅體的SEM形貌圖(a)和(c),在700℃下燒結2 h處理后得到Y2O3∶Eu3+納米晶的TEM形貌圖(b)和(d)Fig.2 SEM images of precursors(a)and(c),TEM images of as-prepared Y2O3∶Eu3+nanocrystals calcined at 700℃for 2 h:(b)and(d)
2.3 紅外分析
煅燒前后樣品表面結構的變化可以通過紅外光譜測試,圖3顯示了前驅體和在900℃燒結2 h得到Y2O3∶Eu3+納米晶的紅外譜圖.對于前驅體,位于3 623和3 157 cm-1出現(xiàn)強的吸收峰,分別歸屬于結構水以及結晶水中O-H鍵的伸縮振動;在1 561和1 412 cm-1處的兩個強吸收峰,而且峰形明顯寬化,可能除了前驅物中O-H鍵的彎曲振動以及NO3-的反對稱伸縮振動之外[14],還有來自于羧酸鹽中羧基的反對稱和對稱伸縮振動的貢獻[22-23].在854和685 cm-1處出現(xiàn)的較弱吸收峰是羧酸根中C-O鍵的彎曲振動峰,可能是由于前驅物表面吸附了少量的檸檬酸.然而,煅燒處理后,紅外譜圖出現(xiàn)了顯著的變化,結晶水以及NO3-的特征吸收峰減弱甚至消失,同時在562和463 cm-1處出現(xiàn)新的吸收峰對應于立方相Y2O3中 Y-O鍵的特征吸收峰,說明前驅物在高溫燒結過程中逐漸分解,聚集在一起的顆粒進一步結晶長大,顆粒表面變得更加規(guī)整,結晶性增強,生成了立方相Y2O3納米晶,而且表面吸附物如檸檬酸的消除,導致納米顆粒表面結構明顯改變.
2.4 熒光性能分析
圖4顯示了在900℃下燒結2 h處理后Y2O3∶Eu3+熒光粉的熒光激發(fā)和發(fā)射譜圖.以電偶極躍遷5D0→7F2(614 nm)為檢測發(fā)射波長,得到激發(fā)譜如圖4(左),處于230~310 nm的寬激發(fā)譜帶是來自于O2-→Eu3+的電荷轉移躍遷譜帶(CTB),其它較窄激發(fā)譜帶對應于Eu3+離子的4f層中的電子本征躍遷能級.由激發(fā)譜圖可知,CTB帶的吸收躍遷強度明顯大于Eu3+離子的4f層中的電子躍遷強度,所以選擇250 nm作為有效的激發(fā)波長,可以實現(xiàn)更高的能量傳遞效率.如圖4(右)所示,得到Eu3+的特征發(fā)射5D0→7FJ(J=1-5)躍遷[10],依次為 583 nm 處的5D0→7F0的躍遷[24-25],590、596和602nm處的5D0→7F1態(tài)躍遷,614和634 nm處的5D0→7F2態(tài)躍遷,648~673 nm和684~722 nm范圍的發(fā)射帶分別歸屬于5D0→7F3和5D0→7F4的能級躍遷,而位于755 nm的發(fā)射帶對應于5D0→7F5的能級躍遷.由于Eu3+主要占據(jù)在Y3+離子的C2晶格位置,具有反演中心缺失的特點,有助于電偶極躍遷,所以電偶極躍遷(5D0→7F2)強度明顯高于磁偶極躍遷(5D0→7F1).
圖3 前驅體(a)和在900℃下燒結2 h處理后得到Y2O3∶Eu3+納米晶的紅外譜圖(b)Fig.3 FTIR spectra of precursors(a)and(b)as-prepared Y2O3∶Eu3+nanocrystals calcined at 900℃ for 2 h
圖4 在900℃下燒結2 h處理后得到納米晶Y2O3∶Eu3+的熒光激發(fā)(λem=614 nm)和發(fā)射(λex=250 nm)譜圖Fig.4 Photo luminescence excitation(λem=614 nm)and emission spectra(λex=250 nm)of as-prepared Y2O3∶Eu3+nanocrystals calcined at 900℃ for 2 h
納米晶的尺寸對其發(fā)光性能具有非常重要的影響,包括發(fā)光強度以及熒光壽命.圖5顯示了發(fā)光積分強度(400~800 nm)與納米顆粒尺寸的變化關系,以尺寸為27.9 nm的積分強度(100%)進行對比,隨著尺寸減小,積分強度逐漸降低.
圖5 燒結處理后Y2O3∶Eu3+納米晶的發(fā)射積分強度(空心圓)及其熒光壽命(實心方塊)隨納米顆粒尺寸的變化關系Fig.5 Variations of total integrated emission intensity(hollow circle)and lifetime(solid square)of annealed samples Y2O3∶Eu3+as a function of particle size
設置激發(fā)波長為 250 nm和發(fā)射波長為614 nm,測量了Y2O3∶Eu3+納米晶Eu3+離子5D0能級的發(fā)光衰減曲線.圖6給出了在900℃下燒結2 h處理后Y2O3∶Eu3+樣品的熒光衰減曲線,可以看出,壽命衰減曲線很好地符合單指數(shù)函數(shù),I= I0exp(-t/τ),其中τ為衰減壽命.計算得到其衰減壽命為1.919 ms.其它樣品也觀察到了相似的壽命衰減行為,得到的熒光壽命列在表1中.通過對比發(fā)現(xiàn),隨著納米顆粒尺寸的減小,熒光壽命縮短.這與發(fā)光積分強度隨著尺寸的變化關系表現(xiàn)出相似的趨勢,如圖5所示.由上述現(xiàn)象可知,納米顆粒尺寸的減小導致發(fā)光積分強度降低以及熒光壽命縮短.這是因為納米材料具有大的比表面積會影響到發(fā)光中心離子在納米晶的表面,界面和次級相間的分布,而表面晶格缺陷以及表面吸附雜質是影響發(fā)光性能的主要因素[7].一方面,顆粒表面吸附雜質具有高的振動能,會引發(fā)顆粒表面處于激發(fā)態(tài)能級的電子通過與表面配體發(fā)生無福射弛豫而回到基態(tài),導致發(fā)光強度和壽命減弱,另一方面,隨著納米顆粒的尺寸減小,比表面積增加會導致發(fā)光離子附近的表面晶格缺陷幾率增大,從而降低發(fā)光性能.因此,通過燒結處理,提高納米的結晶性,降低表面缺陷,去除納米晶表面吸附水、硝酸根和檸檬酸根等雜質,最終實現(xiàn)發(fā)光性能增強的效果.
圖6 在900℃下燒結2 h處理后得到納米晶Y2O3∶Eu3+的熒光壽命曲線Fig.6 Decay curve of5D0level of Eu3+for as-prepared Y2O3∶Eu3+nanocrystals calcined at 900℃ for 2 h
表1 Y2O3∶Eu3+納米晶的晶粒尺寸、發(fā)光強度和熒光壽命Table 1 Comparison of luminescence intensity,lifetime and crystalsizes of Y2O3∶Eu3+
通過水熱法得到非晶態(tài)的水合硝酸氧釔前驅體,在高溫燒結過程中,伴隨表面活性劑的揮發(fā),Y(OH)3-n(NO3)n·mH2O發(fā)生分解,釋放氮氧化物和水,生成立方相Y2O3納米晶.前驅體納米顆粒團聚較明顯,隨著燒結溫度的升高,Y2O3∶Eu3+納米晶的結晶性增強,納米顆粒長大,實現(xiàn)了粒徑由13.0 nm調控至27.9 nm.隨著Y2O3∶Eu3+納米顆粒尺寸的減小,比表面積增加導致發(fā)光離子附近的表面晶格缺陷幾率增大,同時表面吸附雜質離子含量增多,產生明顯的表面熒光猝滅效應,導致發(fā)光積分強度降低以及熒光壽命縮短.
[1]ZHOU Liangjun,GU Zhanjun,LIU Xiaoxiao,et al.Size-tunable synthesis of lanthanide-doped Gd2O3nanoparticles and their applications for optical and magnetic resonance imaging[J].Journal of Materials Chemistry,2012,22(3):966-974.
[2]ZHENG Jie,ZHOU Chen,YU Mengxiao,et al.Different sized luminescent gold nanoparticles[J].Nanoscale,2012,4(14):4073-4083.
[3]XU Wen,WANG Yu,BAI Xue,et al.Controllable synthesis and size-dependent luminescent properties of YVO4∶Eu3+nanospheres and microspheres[J].Journal of Physical Chemistry C,2010,114(33):14018-14024.
[4]WILLIAMS D K,YUAN H,TISSUE B M.Size dependence of the luminescence spectra and dynamics of Eu3+∶Y2O3nanocrystals[J].Journal of Luminescence,1999,83(4):297-300.
[5]DAI Qilin,SONG Hongwei,WANG Meiyuan,et al.Size and Concentration Effects on the Photoluminescence of La2O2S∶Eu3+Nanocrystals.Journal of Physical Chemistry C,2008,112(49):19399-19404.
[6]邢明銘,曹望和.納米Y2O2S∶Tb3+X射線發(fā)光粉的合成及發(fā)光性質[J].材料科學與工藝,2009,17(1):51-54.XING Mingming,CAO Wanghe.Preparationand luminescence property of Y2O2S∶Tb3+nanosized X-ray phosphors[J].Materials Science and Technology,2009,17(1):51-54.
[7]WANG Feng,WANG Juan,LIU Xiaogang.Direct evidence ofa surface quenchingeffecton sizedependent luminescence of upconversion nanoparticles[J].Angewandte Chemie-International Edition,2010,49(41):7456-7460.
[8]TAKESHITA S,OGATA H,ISOBE T,et al.Effects of citrate additive on transparency and photostability properties of YVO4∶Bi3+,Eu3+nanophosphor[J].Journal of the Electrochemical Society,2010,157(3):J74-J80.
[9]TAKESHITA S,WATANABE T,ISOBE T,et al.Improvement of the photostability for YVO4∶Bi3+,Eu3+nanoparticles synthesized by the citrate route[J].Optical Materials,2011,33(3):323-326.
[10]CHUNG J W,YANG H K,MOON B K,et al.The dependence of temperature synthesis of GdVO4∶Eu3+nanoparticle phosphors by solvothermal method[J].Current Applied Physics,2009(9):S222-S225.
[11]劉鳳珍,邵鑫,尹貽彬,等.稀土離子摻雜釩酸鹽發(fā)光材料的研究現(xiàn)狀及進展 [J].中國材料進展,2011(4):44-48.LIU Fengzhen,SHAO Xin,YIN Yibin,et al.New method for preparation of high-energy carbon-carbon double bonds[J].Materials China,2011(4):44-48.
[12]楊應國,胡小華,袁曦明.納米稀土發(fā)光材料的研究與展望[J].礦產保護與利用,2005(5):47-50.YANG Yingguo,HU Xiaohua,YUAN Ximing.Research and development of nanosized rare-earth luminescent materials[J].Conservation and Utilization of Mineral Resources,2005(5):47-50.
[13]BOUKERIKA A,GUERBOUS L.Annealing effects on structural and luminescence properties of red Eu3+-doped Y2O3nanophosphors prepared by sol-gel method[J].Journal of Luminescence,2014,145(0):148-153.
[14]付曉燕,牛淑云,張洪武,等.絡合溶膠凝膠法制備納米級Y2O3∶Ln(Eu,Dy,Sm,Tb)發(fā)光體[J].功能材料,2004(5):635-637.FU Xiaoyan,NIU Shuyun,ZHANG Hongwu,et al.The preparation of nanosized Y2O3∶Ln(Eu,Dy,Sm,Tb)using complex sol-gel technique[J].Journal of Functional Materials,2004(5):635-637.
[15]司偉,姜妲,高宏等.Ca2+、La3+摻雜納米Y2O3∶Eu3+的超聲波制備及光致發(fā)光性能[J].稀土,2008(5):24-29.SI Wei,JIANG Da,GAO Hong,et al.Preparation and photoluminescence of nanometer Y2O3∶Eu3+doped with Ca2+and La3+by ultrasonic precipitation method[J].Chinese Rare Earths,2008(5):24-29.
[16]顏虹云,包娜,沈林,等.水熱法合成不同形貌納米氧化釔粉體[J].熱加工工藝,2010,20:66-72.YAN Hongyun,BAO Na,SHEN Lin,et al.Synthesis of nano-structure yttria powders with different morphology by hydrothermal method[J].Material and Heat Treatment,2010,20:66-72.
[17]董相廷,劉宗瑞,于德才,等.Y2O3∶Eu3+超微粉末的合成及發(fā)光性質研究[J].材料科學與工藝,1995,3(3):47-51.DONG Xiangting,LIU Zongrui,YU Decai,et al.A study of preparaaitonof Y2O3∶Eu3+ultrafine powders and luminous properties[J].Materials Science and Technology,1995,3(3):47-51.
[18]李渝,尹劍波,趙曉鵬.兩步法制備單分散的Li摻雜Y2O3∶Eu3+微球及其發(fā)光性能[J].功能材料,2011(2):336-338.LI Yu,YIN Jianbo,ZHAO Xiaopeng.Two-steps prepared monodisperse Li-doped Y2O3∶Eu3+microspheres and their luminescence properties[J].Journal of Functional Materials,2011(2):336-338.
[19]王瑩,趙高揚.水熱合成棒狀氧化釔粉體的生長過程和生長機理的研究[J].功能材料,2013(5):649-652.WANG Ying,ZHAO Gaoyang.Crystal growth process and mechanism of rods Y2O3powders synthesized by hydrothermal treatment[J].Journal of Functional Materials,2013,(5):649-652.
[20]ZHAI Yongqing,YAO Zihua,DING Shiwen,et al.Synthesis and characterization of Y2O3∶Eu nanopowder via EDTA complexing sol-gel process[J].Materials Letters,2003,57(19):2901-2906.
[21]LI Nan,YANAGISAWA,KAZUMICHI.Controlling the morphology of yttrium oxide through different precursors synthesized by hydrothermal method[J].Journal of Solid State Chemistry,2008,181(8):1738-1743.
[22]SU Yiguo,LIGuangshe,XUE Yanfeng,etal.Tunable physical properties of CaWO4nanocrystals via particle size control[J].Journal of Physical Chemistry C,2007,111(18):6684-6689.
[23]DU Chunfang,YI Geer,SU Yiguo,et al.Synthesis,characterization,and enhanced luminescence of CaWO4∶Eu3+/SBA-15 composites[J].Journal of Materials Science,2012,47(17):6305-6314.
[24]PACKIYARAJ P,THANGADURAI P.Structural and photoluminescence studies of Eu3+doped cubic Y2O3nanophosphors[J].Journal of Luminescence,2014,145(0):997-1003.
[25]AKITA Y,HARADA T,SASAI R,et al.Emission properties of Ln(Eu,Tb,Dy,Er)-doped Y2O3nanoparticles synthesized by surfactant-assembly and their applications in visible color-tuning[J].Journal of Photochemistry and Photobiology A:Chemistry,2015,299:87-93.
(編輯 張積賓)
Size control and luminescence properties of Y2O3∶Eu3+nanocrystals
GUAN Maofa,PENG Siyan,YU Leshu,ZHANG Kai,YANG Liusai
(School of Chemistry and Chemical Engineering,Jiangxi Province Key Laboratory of Polymer Preparation and Processing,Shangrao Normal University,Shangrao 334001,China)
Y2O3∶Eu3+red nanophosphors were synthesized by a hydrothermal method with citric acid as a complex agent and urea as precipitant and an annealing process at different temperatures ranging from 600 to 900℃.The obtained powders were characterized by X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),F(xiàn)ourier transform infrared spectroscopy(FTIR)and photoluminescence spectroscopy(PL).Effects of annealing treatment on structural,morphological and photoluminescence properties of Y2O3∶Eu3+are investigated.XRD results revealed that Y2O3∶Eu3+powders crystallized in cubic phase after annealing treatment.The average crystallite size increased from 13.0 to 27.9 nm as temperature increasing.Moreover,it is demonstrated that annealing treatment can give rise to changes in surface structures.The luminescence emission intensity and average lifetimes of Y2O3∶Eu3+powders are enhanced with increasing crystallite size,which is attributed to the decrease of the surface defect states due to the declined ratio of surface to volume and the removal of surface absorbance such as hydroxyl groups,nitrate and citric species.
Hydrothermal method;annealing treatment;Y2O3∶Eu3+;nanocrystals;fluorescence properties
TB34
A
1005-0299(2016)05-0091-06
10.11951/j.issn.1005-0299.20160515
2015-08-13.
江西省青年科學基金(20161BAB213058);上饒師范學院大學生科技課題(2016dxs25);江西省塑料制備成型重點實驗室(jxsr201502);江西省上饒市信江英才866工程項目資助.
楊流賽(1985—),男,博士,講師
楊流賽,E-mail:yangliusai@126.com.