曹青松,陳 剛,周繼惠
(華東交通大學(xué) 機(jī)電工程學(xué)院,江西 南昌 330013)
?
超聲波測(cè)振信號(hào)的Hilbert變換解調(diào)方法研究
曹青松,陳剛,周繼惠
(華東交通大學(xué) 機(jī)電工程學(xué)院,江西 南昌 330013)
以縱向壓力波形式定向傳播的超聲波遇到振動(dòng)物體時(shí),反射超聲波信號(hào)的相位會(huì)因多普勒效應(yīng)而被振動(dòng)所調(diào)制.對(duì)該反射超聲波信號(hào)求導(dǎo)得到含有時(shí)變相位及時(shí)變幅值的調(diào)幅調(diào)頻信號(hào),采用Hilbert變換解調(diào)方法求取該調(diào)幅調(diào)頻信號(hào)的瞬時(shí)幅值和瞬時(shí)頻率.由于超聲波信號(hào)存在幅值衰減,而超聲波頻率不易受外界干擾,故從瞬時(shí)頻率中提取被測(cè)物體的振動(dòng)速度,并由振動(dòng)速度求導(dǎo)得到振動(dòng)加速度.仿真及實(shí)驗(yàn)結(jié)果表明:Hilbert變換解調(diào)方法能夠有效地從反射超聲波信號(hào)中提取瞬時(shí)頻率信息,而且與實(shí)際振動(dòng)速度及振動(dòng)加速度相比較,從瞬時(shí)頻率中提取的振動(dòng)速度及振動(dòng)加速度具有較高的準(zhǔn)確性.
振動(dòng)檢測(cè);超聲波;多普勒效應(yīng);瞬時(shí)頻率;Hilbert變換
超聲波具有傳播方向性好、傳播能量大、反射性能好等優(yōu)點(diǎn),在工程技術(shù)中應(yīng)用廣泛[1,2].超聲波在空氣中以縱向壓力波的形式定向傳播,在聲阻抗差較大的固/氣分界面會(huì)發(fā)生明顯的反射現(xiàn)象[3].在空氣介質(zhì)中傳播的超聲波遇到振動(dòng)物體時(shí),超聲波的相位會(huì)因多普勒效應(yīng)而被振動(dòng)所調(diào)制,反射超聲波信號(hào)則為受振動(dòng)信號(hào)調(diào)制的非線性調(diào)相信號(hào)[4].基于上述特點(diǎn),超聲波被應(yīng)用于非接觸振動(dòng)測(cè)量[5].
受振動(dòng)信號(hào)調(diào)制的反射超聲波信號(hào)為調(diào)相信號(hào),為從該調(diào)相信號(hào)中解調(diào)出被測(cè)物體的振動(dòng)信息,F(xiàn)ernando等人[6]將超聲波發(fā)射信號(hào)及反射超聲波信號(hào)同時(shí)轉(zhuǎn)換成TTL波形,并對(duì)該TTL波形進(jìn)行異或處理,處理后的信號(hào)輸入到低通濾波器中求得被測(cè)物體的振動(dòng)信號(hào).Persson等人[7]鑒于調(diào)相信號(hào)的瞬時(shí)頻率與振動(dòng)速度成正比,采用鑒頻器提取調(diào)相信號(hào)的頻率信息,從頻率信息中獲取被測(cè)物體的振動(dòng)速度.Hiroshi等人[8]采用載波為正弦波的射頻脈沖超聲波信號(hào)進(jìn)行振動(dòng)測(cè)量,獲取的反射超聲波信號(hào)被振動(dòng)調(diào)制后產(chǎn)生頻移,頻移量與被測(cè)物體的振動(dòng)速度成正比.為獲取振動(dòng)信息,將反射超聲波與入射超聲波信號(hào)相乘并經(jīng)由低通濾波處理,從得到的信號(hào)中提取振動(dòng)速度.
反射超聲波信號(hào)為受振動(dòng)信號(hào)調(diào)制的調(diào)相信號(hào),其一階導(dǎo)數(shù)為具有時(shí)變幅值和時(shí)變相位的調(diào)幅調(diào)頻(AM-FM)信號(hào).調(diào)幅調(diào)頻信號(hào)的瞬時(shí)頻率含有被測(cè)物體的振動(dòng)信息,通過(guò)其瞬時(shí)頻率也可反解得到振動(dòng)信號(hào).Hilbert變換解調(diào)方法是求取信號(hào)瞬時(shí)頻率的經(jīng)典方法[9].任達(dá)千等人[9]采用Hilbert變換解調(diào)方法對(duì)旋轉(zhuǎn)機(jī)械振動(dòng)信號(hào)各個(gè)IMF分量進(jìn)行解調(diào)處理,獲取了信號(hào)的瞬時(shí)頻率信息,由該頻率信息提取了旋轉(zhuǎn)機(jī)械的故障特性.趙冬青等人[10]采用Hilbert變換解調(diào)方法對(duì)濾波后的單頻正弦信號(hào)進(jìn)行解調(diào)處理,獲取了信號(hào)的瞬時(shí)頻率信息.張旻等人[11]對(duì)窄帶信號(hào)進(jìn)行Hilbert變換解調(diào)處理,提取信號(hào)的瞬時(shí)頻率信息.
鑒于上述研究背景,本文提出采用Hilbert變換解調(diào)方法對(duì)求導(dǎo)后的超聲波測(cè)振信號(hào)進(jìn)行解調(diào)處理,得到該調(diào)幅調(diào)頻信號(hào)的瞬時(shí)頻率及瞬時(shí)幅值.由獲取的瞬時(shí)頻率反解得到振動(dòng)速度及振動(dòng)加速度.最后對(duì)超聲波測(cè)振信號(hào)的Hilbert變換解調(diào)方法進(jìn)行仿真及實(shí)驗(yàn)研究.
發(fā)射探頭發(fā)射的超聲波在振動(dòng)表面會(huì)發(fā)生反射,反射超聲波信號(hào)的相位會(huì)因多普勒效應(yīng)而被振動(dòng)所調(diào)制.圖1為超聲波測(cè)振原理圖,圖中L為超聲波探頭與處于平衡位置處的被測(cè)點(diǎn)間的距離,φ為超聲波的反射角,h為被測(cè)點(diǎn)處的位移.
圖1 超聲波測(cè)振原理圖Fig.1 Principle diagram of vibration measurement with a continuous ultrasonic beam
超聲波發(fā)射探頭發(fā)射的超聲波可表示為
(1)
式中:At為超聲波的幅值;ω為超聲波信號(hào)的頻率.
由圖1可知,當(dāng)|h|max?L時(shí),超聲波傳播距離
因而接收探頭接收的反射超聲波信號(hào)為
(3)
式中:k=ω/c=2π/λ,c為超聲波的聲速,λ為超聲波的波長(zhǎng),Ar為反射超聲波信號(hào)幅值.
令被測(cè)點(diǎn)處位移h為正弦信號(hào),設(shè)為
(4)
式中:h0為被測(cè)點(diǎn)振動(dòng)幅值;ωL為被測(cè)點(diǎn)振動(dòng)頻率.
如式(3),反射超聲波為含有時(shí)變相位的信號(hào),對(duì)其求一階導(dǎo)數(shù)得到具有時(shí)變幅值和時(shí)變相位的調(diào)幅調(diào)頻信號(hào)(AM-FM信號(hào)),如式(5)所示:
由式(5)可知,該調(diào)幅調(diào)頻信號(hào)的瞬時(shí)幅值及瞬時(shí)頻率均含有振動(dòng)信息,而且瞬時(shí)幅值及瞬時(shí)頻率均與被測(cè)點(diǎn)的振動(dòng)速度成正比.對(duì)該調(diào)幅調(diào)頻信號(hào)進(jìn)行解調(diào)處理得到其瞬時(shí)幅值及瞬時(shí)頻率,通過(guò)瞬時(shí)頻率便可提取出振動(dòng)信號(hào).
反射超聲波信號(hào)的一階導(dǎo)數(shù)為式(5)所示的具有時(shí)變幅值和時(shí)變相位的調(diào)幅調(diào)頻信號(hào)(AM-FM信號(hào)),該調(diào)幅調(diào)頻信號(hào)可以寫(xiě)成
(6)
式中:q(t)=-2ωhcos(φ)/c,θ=-2Lω/c.
該調(diào)幅調(diào)頻信號(hào)瞬時(shí)幅值和瞬時(shí)頻率分別為
超聲波在傳播過(guò)程中存在吸收損耗及邊界損耗,而其頻率卻不易受外界干擾影響.因而為保證測(cè)量精度,采用式(8)瞬時(shí)頻率求解振動(dòng)物體被測(cè)點(diǎn)處的振動(dòng)速度dh/dt及振動(dòng)加速度d2h/dt2.
為求出調(diào)幅調(diào)頻信號(hào)的瞬時(shí)幅值及瞬時(shí)頻率,對(duì)式(6)進(jìn)行Hilbert變換得
以x(t)為實(shí)部,x(t)為虛部,構(gòu)造解析信號(hào)z(t).
(12)
z(t)的模r(t)為信號(hào)x(t)的瞬時(shí)幅值的絕對(duì)值|a(t)|,相位θ(t)的導(dǎo)數(shù)為是信號(hào)x(t)的瞬時(shí)頻率,即
對(duì)N點(diǎn)離散信號(hào)x(n)=a(n)cos(φ(n)),通過(guò)Hilbert變換求其瞬時(shí)幅值及瞬時(shí)頻率方法如下:
計(jì)算x(n)的離散傅里葉變換(DFT),得到X(k),k=0,1,…,N-1.令
對(duì)Z(k)作逆傅里葉變換(IDFT),得到解析信號(hào)z(n),z(n)的實(shí)部為x(n),虛部為x^(n).于是,離散信號(hào)x(n)的瞬時(shí)幅值為
采用二階中心差商代替導(dǎo)數(shù),得到歸一化的瞬時(shí)頻率為
采用Hilbert變換法求得超聲波測(cè)振信號(hào)的瞬時(shí)頻率及瞬時(shí)幅值,結(jié)合式(9),式(10)便可求出振動(dòng)物體被測(cè)點(diǎn)處的振動(dòng)速度及振動(dòng)加速度.
為檢驗(yàn)Hilbert變換解調(diào)方法對(duì)超聲波測(cè)振信號(hào)解調(diào)的有效性及準(zhǔn)確性,選取如式(5)所示調(diào)幅調(diào)頻信號(hào)作為仿真信號(hào),其中超聲波信號(hào)頻率、幅值及傳播速度分別為40 kHz,1 mm,343 m/s,超聲波探頭與處于平衡位置處的被測(cè)點(diǎn)間的距離L=18 mm,超聲波的反射角φ=π/12,被測(cè)點(diǎn)振動(dòng)頻率為60 Hz,被測(cè)點(diǎn)處的位移h=1.5sin(2π·60t)mm.于是得到仿真信號(hào)為
采用Hilbert變換解調(diào)方法對(duì)仿真信號(hào)進(jìn)行解調(diào),得到仿真信號(hào)瞬時(shí)幅值及瞬時(shí)頻率,如圖2,圖3所示.將求得的瞬時(shí)頻率代入式(9),式(10)分別得到被測(cè)點(diǎn)處的振動(dòng)速度及振動(dòng)加速度.被測(cè)點(diǎn)處實(shí)際振動(dòng)位移h=1.5sin(2π·60 t)mm,對(duì)其進(jìn)行求導(dǎo)即可得到被測(cè)點(diǎn)處的實(shí)際振動(dòng)速度和實(shí)際振動(dòng)加速度.經(jīng)Hilbert變換解調(diào)方法調(diào)得到的計(jì)算振動(dòng)速度及物體測(cè)量點(diǎn)處的實(shí)際振動(dòng)速度如圖4所示,Hilbert變換解調(diào)方法解調(diào)得到的計(jì)算振動(dòng)加速度和被測(cè)點(diǎn)處的實(shí)際振動(dòng)加速度如圖5所示.
圖3 仿真信號(hào)瞬時(shí)頻率Fig.3 Instantaneous frequency of simulation signals
圖4 振動(dòng)速度圖Fig.4 Vibration velocity
圖5 振動(dòng)加速度Fig.5 Vibration acceleration
由圖4,圖5可知,經(jīng)Hilbert變換解調(diào)方法解調(diào)得到的計(jì)算振動(dòng)速度與實(shí)際振動(dòng)速度、計(jì)算振動(dòng)加速度與實(shí)際振動(dòng)加速度基本一致.因而,采用Hilbert變換解調(diào)方法可以準(zhǔn)確求出被測(cè)點(diǎn)處的振動(dòng)速度及振動(dòng)加速度.
采用超聲波測(cè)振系統(tǒng)實(shí)驗(yàn)臺(tái)[5]進(jìn)行實(shí)驗(yàn),選取40 kHz正弦形式的超聲波信號(hào)為測(cè)振信號(hào),設(shè)置被測(cè)點(diǎn)以頻率60 Hz,振幅1.5 mm的正弦形式振動(dòng),反射超聲波的采樣頻率設(shè)為1 MHz.
采集的反射超聲波信號(hào)具有時(shí)變相位,求導(dǎo)后得到調(diào)幅調(diào)頻信號(hào).該調(diào)幅調(diào)頻信號(hào)經(jīng)過(guò)Hilbert變換解調(diào)方法處理之后得到其瞬時(shí)幅值和瞬時(shí)頻率,如圖6,圖7所示.采用圖6所示的瞬時(shí)頻率求得振動(dòng)速度,對(duì)振動(dòng)速度求一階導(dǎo)數(shù)得到振動(dòng)加速度,將得到的計(jì)算振動(dòng)速度及計(jì)算振動(dòng)加速度與被測(cè)點(diǎn)的實(shí)際振動(dòng)速度及實(shí)際振動(dòng)加速度進(jìn)行比較,如圖8,圖9所示.根據(jù)求得的計(jì)算振動(dòng)速度、計(jì)算振動(dòng)加速度以及實(shí)際振動(dòng)速度、實(shí)際振動(dòng)加速度,對(duì)其相應(yīng)的信號(hào)頻率及峰值進(jìn)行分析,如表1所示.
圖6 調(diào)幅調(diào)頻信號(hào)瞬時(shí)頻率Fig.6 Instantaneous frequency of AM-FM single
圖7 調(diào)幅調(diào)頻信號(hào)瞬時(shí)幅值Fig.7 Instantaneous amplitude of AM-FM single
圖8 振動(dòng)速度Fig.6 Vibration velocity
圖9 振動(dòng)加速度Fig.9 Vibration acceleration
振動(dòng)信號(hào)參數(shù)計(jì)算振動(dòng)速度/mm·s-1實(shí)際振動(dòng)速度/mm·s-1計(jì)算振動(dòng)加速度/mm2·s-1實(shí)際振動(dòng)加速度/mm2·s-1頻率/Hz60.306060.0160峰值545565205600213200頻率誤差/%-0.50-0.17峰值誤差/%3.543.56
由圖8,圖9可知,計(jì)算振動(dòng)速度與實(shí)際振動(dòng)速度之間以及計(jì)算振動(dòng)加速度與實(shí)際振動(dòng)加速度之間存在一定的相位差.然而,由表1可知,計(jì)算振動(dòng)速度與實(shí)際振動(dòng)速度間的頻率誤差及峰值誤差和計(jì)算振動(dòng)加速度與實(shí)際振動(dòng)加速度間頻率誤差及峰值誤差均比較小.所以采用Hilbert變換解調(diào)方法獲取的計(jì)算振動(dòng)速度、計(jì)算振動(dòng)加速度均具有較高的準(zhǔn)確性.
受振動(dòng)調(diào)制的反射超聲波信號(hào)為調(diào)相信號(hào),對(duì)其求一階導(dǎo)數(shù)得到含有時(shí)變幅值及時(shí)變相位的調(diào)幅調(diào)頻信號(hào).采用Hilbert變換解調(diào)方法對(duì)該調(diào)幅調(diào)頻信號(hào)進(jìn)行解調(diào)處理,獲取其瞬時(shí)頻率及瞬時(shí)幅值,并從瞬時(shí)頻率中提取被測(cè)點(diǎn)的振動(dòng)速度及振動(dòng)加速度.研究結(jié)果表明:Hilbert變換解調(diào)方法能夠有效地解調(diào)出被測(cè)點(diǎn)處的振動(dòng)速度及振動(dòng)加速度,解調(diào)結(jié)果比較準(zhǔn)確.
[1]陳建,孫曉穎,林琳,等.一種高精度超聲波到達(dá)時(shí)刻的檢測(cè)方法[J].儀器儀表學(xué)報(bào),2012,33(11):2422-2428.
Chen Jian,Sun Xiaoying,Lin Lin,et al.Method to precisely measure arrival time of ultrasonic[J].Chinese Journal of Scientific Instrument,2012,33(11):2422-2428.(in Chinese)
[2]傅賢鋒,黃亮,黃潔,等.基于超聲波四元陣測(cè)距的無(wú)錨節(jié)點(diǎn)定位算法研究.[J].儀器儀表學(xué)報(bào),2013,34(12):2874-2880.
Fu Xianfeng,Huang Liang,Huang Jie,et al.Research of anchor-free node localization algorithm based on four-element array for ultrasound ranging[J].Chinese Journal of Scientific Instrument,2013,34(12):2874-2880.(in Chinese)
[3]李廣凱,祝美麗,赫麗華,等.基于超聲波水浸點(diǎn)聚焦探頭測(cè)量材料彈性模量的方法[J].測(cè)試技術(shù)學(xué)報(bào),2014,28(4):277-281.
Li Guangkai,Zhu Meili,He Lihua,et la.Method of measuring elastic modulus of material based on water immersion point focusing probe[J].Journal of Test and Measurement Technology,2014,28(4):277-281.(in Chinese)
[4]Chereck B.Contactless measurement of mechanical vibrations based on the Doppler effect[J].Science Measurement & Technology IEE Proceedings A,134(4):339-342.
[5]周繼惠,陳剛,曹青松,等.基于多普勒效應(yīng)的超聲波測(cè)振系統(tǒng)設(shè)計(jì)[J].儀表技術(shù)與傳感器,2015(7):61-62,85.
Zhou Jihui ,Chen Gang,Cao Qingsong,et al.Design of ultrasonic system for vibration measurement based on Doppler effect[J].Instrument Technique and Sensor,2015(7):61-62,85.(in Chinese)
[6]Figueroa F,Barbieri E.An ultrasonic ranging system for structural vibration measurements[J].IEEE Transactions on Instrumentation and Measurement,1991,40(4):764-769.
[7]Persson H W,Hakansson H.Remote vibration measurements using airborne ultrasound[J].Proceedings of the IEEE Ultrasonics Symposium,1996,1:689-692.
[8]Kanai H,Satoh H,Hirose K,et al.A new method for measuring small local vibrations in the heart using ultrasound[J].IEEE Transactions on Biomedical Engineering.1993,40(12):1233-1242.
[9]任達(dá)千,楊世錫,吳昭同,等.信號(hào)瞬時(shí)頻率直接計(jì)算法與Hilbert變換及Teager能量法比較[J].機(jī)械工程學(xué)報(bào),2013,49(9):42-48.
Ren Daqian,Yang Shixi,Wu Zhaotong,et al.Comparison of instantaneous frequency directed computing method and Hilbert transform and Teager energy method[J].Journal of Mechanical Engineering,2013,49(9):42-48.(in Chinese)
[10]趙冬青,任勇峰.高速數(shù)字采集系統(tǒng)通道間信號(hào)傳輸延遲時(shí)間分析[J].測(cè)試技術(shù)學(xué)報(bào),2011,25(2):178-182.
Zhao Dongqing,Ren Yongfeng.Evaluation signal transmission delay in multi-channel high speed data acquisition system[J].Journal of Test and Measurement Technology,2011,25(2):178-182.(in Chinese)
[11]張旻,程家興,樊甫華,等.利用Hilbert變換提取信號(hào)瞬時(shí)特征參數(shù)的問(wèn)題研究[J].電訊技術(shù),2003(4):44-48.
Zhang Min,Cheng Jiaxing,Fan Fuhua,et la.Study on the problems in extracting instantaneous characters of signals based on Hilbert transform[J].Telecommunication Engineering,2003(4):44-48.(in Chinese)
Study on Hilbert Transformdemodulation Method for the Ultrasonic Vibrationmeasurement Signal
CAO Qingsong,CHEN Gang,ZHOU Jihui
(School of Mechanical and Electrical Engineering,East China Jiaotong University,Nan Chang 330013,China)
When the ultrasound that directionally propagate at the method of the longitudinal pressure waves meet vibrate object.The reflected ultrasound signal phase ismodulated by vibration signal for the Doppler effect.The AM-FM signal which have time varying phase and time varying amplitude was achieved from the derivative of the reflected ultrasound signal.The instantaneous frequency and instantaneous amplitude of the AM-FM signal were obtained through the Hilbert transform demodulation method.The amplitude attenuation of the ultrasound signal was inevitable,but its frequency was not susceptible to external disturbances.So the vibration speed of the object was obtained from the instantaneous frequency of the AM-FM signal.The vibration acceleration was achieved from the derivative of the vibration speed.Simulation and experiment result show that the instantaneous frequency can be achieved effectively from AM-FM signal through Hilbert transform demodulation method.Also,compared with the actually vibration velocity and vibration acceleration the actually vibration velocity and vibration acceleration extracted achieved from instantaneous frequency have high accuracy.
vibration measurement; ultrasonic; Doppler effect; instantaneous frequency; Hilbert transform
1671-7449(2016)05-0383-06
2016-02-22
國(guó)家自然科學(xué)基金資助項(xiàng)目(51265009);江西省自然科學(xué)基金資助項(xiàng)目(2015ACB21020)
曹青松 (1978- ),男,副教授,博士,主要從事振動(dòng)控制,無(wú)損檢測(cè)及機(jī)電一體化研究.
TB52+3
Adoi:10.3969/j.issn.1671-7449.2016.05.003