邱瑞斌, 雷 飛, 陳 園, 王 瓊
(湖南大學(xué) 機(jī)械與運(yùn)載工程學(xué)院,湖南 長(zhǎng)沙410082)
?
基于權(quán)重比的車架多工況拓?fù)鋬?yōu)化方法研究
邱瑞斌, 雷飛, 陳園, 王瓊
(湖南大學(xué) 機(jī)械與運(yùn)載工程學(xué)院,湖南 長(zhǎng)沙410082)
在賽車實(shí)際行駛過(guò)程中車架會(huì)受到各種工況的考驗(yàn),因此在進(jìn)行車架結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)時(shí)必須同時(shí)考慮多個(gè)工況下車架的拓?fù)鋬?yōu)化結(jié)果.然而,在進(jìn)行多工況下拓?fù)浣Y(jié)構(gòu)設(shè)計(jì)時(shí)往往會(huì)遇到如何分配各個(gè)工況權(quán)重比的問(wèn)題,各工況權(quán)重比的分配直接影響車架最終的拓?fù)浣Y(jié)構(gòu).針對(duì)此問(wèn)題進(jìn)行研究,通過(guò)構(gòu)造代理模型并利用遺傳算法尋找最佳權(quán)重比.首先,采用折衷規(guī)劃法建立同時(shí)考慮多個(gè)工況下車架剛度的拓?fù)鋬?yōu)化綜合目標(biāo)函數(shù)模型;接著,采用最優(yōu)拉丁超立方試驗(yàn)設(shè)計(jì)方法采樣,構(gòu)造徑向基函數(shù)代理模型,并在代理模型的基礎(chǔ)上利用NSGA-II進(jìn)行求解,得到各個(gè)工況最佳權(quán)重比;最后,將獲得的各個(gè)工況最佳權(quán)重比代入綜合目標(biāo)模型中進(jìn)行拓?fù)溆?jì)算,獲得同時(shí)考慮各工況下車架剛度的拓?fù)浣Y(jié)構(gòu).將該方法與獲得權(quán)重比常用的層次分析法(AHP)和正交試驗(yàn)法(OED)進(jìn)行比較,該方法較其他兩種方法得到的綜合目標(biāo)值是最優(yōu)的,車架所有工況的加權(quán)柔度是最低的.結(jié)果表明,所提出的方法很好地解決了多工況下拓?fù)鋬?yōu)化權(quán)重比分配的問(wèn)題,并且較其他方法具有明顯的優(yōu)越性.
權(quán)重比; 代理模型; 遺傳算法; 車架; 拓?fù)鋬?yōu)化
賽車車架是整車的承載基體,車架的性能直接影響著賽車的性能,車架的輕量化設(shè)計(jì)不僅能大幅減輕整車質(zhì)量,而且能很好地改善賽車的操縱性[1].結(jié)構(gòu)的拓?fù)鋬?yōu)化是輕量化設(shè)計(jì)方法中最重要的方法之一,被廣泛地應(yīng)用到結(jié)構(gòu)設(shè)計(jì)的初期階段,在整車的輕量化設(shè)計(jì)中發(fā)揮了重要的作用[2].然而,在實(shí)際行駛過(guò)程中車架會(huì)受到各種工況的考驗(yàn),因此車架結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計(jì)是一個(gè)多工況下的拓?fù)鋬?yōu)化問(wèn)題.
對(duì)于多工況下的拓?fù)鋬?yōu)化設(shè)計(jì),一般的處理方法是采用線性加權(quán)方法將多工況這個(gè)多目標(biāo)問(wèn)題轉(zhuǎn)化為單目標(biāo)問(wèn)題求解,扶原放等[3-4]采用線性加權(quán)方法將各個(gè)工況下車架剛度最大轉(zhuǎn)化為各工況的加權(quán)柔度最小的單一目標(biāo)問(wèn)題.但是如果目標(biāo)函數(shù)中至少有2個(gè)目標(biāo)存在不一致性,線性加權(quán)方法就不能確保得到所有的Pareto最優(yōu)解[5].而折衷規(guī)劃法就能夠很好地解決上述問(wèn)題,其思想是將多目標(biāo)的折衷解視為距每一個(gè)目標(biāo)函數(shù)的理想解距離最小的矢量,因而實(shí)現(xiàn)了單一目標(biāo)的轉(zhuǎn)化.蘭鳳崇等[5-7]運(yùn)用折衷規(guī)劃法定義了整車各個(gè)工況下車身結(jié)構(gòu)靜態(tài)剛度和動(dòng)態(tài)振動(dòng)頻率最大化的綜合目標(biāo)函數(shù),并在此基礎(chǔ)上完成了車身結(jié)構(gòu)的優(yōu)化設(shè)計(jì),驗(yàn)證了折衷規(guī)劃法的有效性.但是,無(wú)論采用哪種方法進(jìn)行多目標(biāo)轉(zhuǎn)化,都會(huì)遇到如何分配各個(gè)工況權(quán)重比值的問(wèn)題,這個(gè)問(wèn)題的解決與否直接影響著最終優(yōu)化結(jié)果的質(zhì)量.
代理模型結(jié)合遺傳算法尋找最優(yōu)解的方法,是一種通過(guò)構(gòu)造數(shù)學(xué)模型來(lái)代替原有有限元模型并能充分利用遺傳算法全局搜索的優(yōu)越性的方法,在結(jié)構(gòu)的多目標(biāo)優(yōu)化中被廣泛應(yīng)用.該方法一方面可以大大提高優(yōu)化效率,另一方面,相當(dāng)精度的代理模型能夠很好地保證優(yōu)化結(jié)果有較高的精度.陳國(guó)棟等[8]采用代理模型結(jié)合遺傳算法的方法對(duì)車身結(jié)構(gòu)進(jìn)行優(yōu)化,驗(yàn)證了該方法在多目標(biāo)優(yōu)化中的高效性;洪煌杰等[9-10]將該方法應(yīng)用到空投氣囊和飛機(jī)飛翼這種更復(fù)雜的結(jié)構(gòu)的多目標(biāo)優(yōu)化設(shè)計(jì)中,結(jié)果顯示,該方法能夠很好地解決多目標(biāo)優(yōu)化尋優(yōu)問(wèn)題,結(jié)果滿足設(shè)計(jì)要求.
基于此,通過(guò)借助折衷規(guī)劃法構(gòu)建多個(gè)工況下的車架拓?fù)鋬?yōu)化綜合目標(biāo)函數(shù)模型,以各個(gè)工況的權(quán)重比為變量,以綜合目標(biāo)函數(shù)最優(yōu)為優(yōu)化目標(biāo),并引入代理模型和遺傳算法(NSGA-II)對(duì)目標(biāo)函數(shù)模型中的各個(gè)工況的權(quán)重比進(jìn)行最優(yōu)搜索.將多目標(biāo)優(yōu)化方法中的代理模型結(jié)合遺傳算法的方法巧妙地應(yīng)用于多工況拓?fù)鋬?yōu)化中各個(gè)工況權(quán)重比尋優(yōu)的問(wèn)題中,不僅驗(yàn)證了所采用方法的有效性,同時(shí)很好地解決了多目標(biāo)轉(zhuǎn)化過(guò)程中各個(gè)工況權(quán)重比的分配這一優(yōu)化難題.
1.1設(shè)計(jì)問(wèn)題描述
在進(jìn)行結(jié)構(gòu)優(yōu)化設(shè)計(jì)之前,需參考賽車車身結(jié)構(gòu)模型進(jìn)行設(shè)計(jì)區(qū)域的填充.構(gòu)建拓?fù)淇臻g,并在考慮方程式賽車車架設(shè)計(jì)規(guī)范的基礎(chǔ)上[11],在拓?fù)鋬?yōu)化中的模型設(shè)定了不可設(shè)計(jì)區(qū)域,如圖1所示.
圖1 賽車車架拓?fù)淇臻g模型(標(biāo)記部分為不可設(shè)計(jì)區(qū)域)Fig.1 Topological space model of racing car frame (marked parts are not devisable)
車架的前后懸架采用雙橫臂懸架,車架材料彈性模量為210 GPa,泊松比為0.3,密度為7.85 g/cm3.為了提高計(jì)算精度,有限元模型網(wǎng)格采用退化的四面體單元即十節(jié)點(diǎn)四面體單元.為保證車身結(jié)構(gòu)設(shè)計(jì)的對(duì)稱性,在Hypermesh中對(duì)模型進(jìn)行了縱向?qū)ΨQ設(shè)置.同時(shí),為了避免最終拓?fù)浣Y(jié)構(gòu)中出現(xiàn)細(xì)小的傳力路徑,保證結(jié)構(gòu)最小尺度不至于太小,設(shè)置最小拓?fù)浣Y(jié)構(gòu)為20 mm,最大拓?fù)浣Y(jié)構(gòu)為60 mm.
1.2多工況分析
選取賽車在實(shí)際使用過(guò)程中常遇到的工況進(jìn)行分析,即:彎曲工況、扭轉(zhuǎn)工況、加速工況、制動(dòng)工況、轉(zhuǎn)彎工況.為了簡(jiǎn)化計(jì)算,取懸架上下安裝點(diǎn)的中點(diǎn)為簡(jiǎn)化點(diǎn),前后懸架安裝點(diǎn)簡(jiǎn)化為4個(gè),分別在簡(jiǎn)化點(diǎn)施加約束與載荷[11-12].成員和發(fā)動(dòng)機(jī)的重量通過(guò)RBE3單元分別加載在座椅安裝處和6個(gè)發(fā)動(dòng)機(jī)安裝點(diǎn)處,各個(gè)工況下約束和加載情況如表1所示,邊界條件設(shè)置如圖2和圖3所示.同時(shí),賽車設(shè)計(jì)規(guī)則明確規(guī)定:車架主環(huán)最高位置處最大位移不得超過(guò)25 mm,車架重要安裝硬點(diǎn)的變形范圍要控制在合理的范圍內(nèi).在此,限制賽車手質(zhì)量加載點(diǎn)處總位移上限為5 mm,發(fā)動(dòng)機(jī)安裝點(diǎn)處總位移上限為3 mm,車架頂端總位移約束為25 mm[13].約束設(shè)置中1,2,3分別代表x,y,z方向的平動(dòng)自由度.
表1 各工況下約束和加載設(shè)置情況
圖2 彎曲、加速、制動(dòng)和轉(zhuǎn)彎工況邊界條件設(shè)置Fig.2 Boundary conditions of bending, accelerating, braking and turning conditions
圖3 扭轉(zhuǎn)工況邊界條件設(shè)置Fig.3 Boundary conditions of twist conditions
1.3多工況拓?fù)鋬?yōu)化數(shù)學(xué)模型
在靜態(tài)問(wèn)題中,結(jié)構(gòu)的拓?fù)鋬?yōu)化問(wèn)題是通過(guò)最小化結(jié)構(gòu)的平均柔度l(u)來(lái)實(shí)現(xiàn)的,由總應(yīng)變能通過(guò)下式定義[14]:
(1)
式(1)等同于以下表達(dá)式:
(2)
式中:K為可行解組成的空間,l(v)為負(fù)載的線性形式,a(v,v)表示單元由虛位移v在v方向產(chǎn)生的能量,a(u,u)表示單元由虛位移u在u方向產(chǎn)生的能量.通過(guò)式(1)和式(2)可得,結(jié)構(gòu)的平均柔度最小的問(wèn)題等價(jià)于結(jié)構(gòu)的應(yīng)變能最大的問(wèn)題.
在實(shí)現(xiàn)過(guò)程中,將車架的結(jié)構(gòu)剛度問(wèn)題轉(zhuǎn)化為結(jié)構(gòu)的平均柔度(compliance)問(wèn)題,即單元的總應(yīng)變能問(wèn)題.借助折衷規(guī)劃法及功效函數(shù)法建立以結(jié)構(gòu)體積分?jǐn)?shù)上限為0.3為約束、以柔度最小為目標(biāo)的多剛度拓?fù)鋬?yōu)化綜合目標(biāo)函數(shù)模型[5]:
(3)
1.4各個(gè)工況權(quán)重比分配優(yōu)化方法
從式(3)可以看到各個(gè)工況下的柔度權(quán)重比ωi(第i個(gè)工況的柔度權(quán)重比)直接影響著綜合目標(biāo)函數(shù)值,不同的方法會(huì)得到不同的分配結(jié)果,這就導(dǎo)致優(yōu)化具有很大的自由度.因此,如何恰當(dāng)?shù)剡x取各個(gè)工況的權(quán)重比是獲得更優(yōu)綜合目標(biāo)函數(shù)值中急需解決的問(wèn)題.
針對(duì)此問(wèn)題,通過(guò)結(jié)合徑向基代理模型和遺傳算法對(duì)多工況下拓?fù)鋬?yōu)化中各個(gè)工況權(quán)重比的分配問(wèn)題進(jìn)行研究.首先,對(duì)多目標(biāo)問(wèn)題進(jìn)行合理轉(zhuǎn)化,采用折衷規(guī)劃法建立同時(shí)考慮多個(gè)工況下車架剛度的拓?fù)鋬?yōu)化綜合目標(biāo)函數(shù)模型;然后,考慮到實(shí)際有限元模型的復(fù)雜性及計(jì)算的低效性,構(gòu)造徑向基函數(shù)代理模型代替復(fù)雜的有限元模型,并結(jié)合遺傳算法(NSGA-II)進(jìn)行最佳工況權(quán)重比組合的尋找,獲得各個(gè)工況的最佳權(quán)重比;最后,將獲得的各個(gè)工況的最佳權(quán)重比代入有限元模型中進(jìn)行拓?fù)鋬?yōu)化計(jì)算.在上述流程計(jì)算結(jié)果的基礎(chǔ)上,將各個(gè)工況下車架柔度計(jì)算結(jié)果與參考方法進(jìn)行比較驗(yàn)證.主要過(guò)程流程圖如圖4所示.
圖4 各工況權(quán)重比分配優(yōu)化方法的主要過(guò)程流程圖Fig.4 The main process flow chart of the weight ratio distribution optimization method for respective condition
2.1最優(yōu)拉丁超立方采樣
最優(yōu)拉丁超立方試驗(yàn)設(shè)計(jì)(optimallatinhypercubedesign,OLHD)是在LHD的基礎(chǔ)上增加了優(yōu)化準(zhǔn)則,能較好地滿足樣本采集的投影均勻性和空間均布性[8].因此,采用最優(yōu)拉丁超立方試驗(yàn)設(shè)計(jì)方法,將5個(gè)工況的權(quán)重比作為取樣對(duì)象,樣本數(shù)為25,并將采樣結(jié)果進(jìn)行歸一化處理.最后將5個(gè)工況的權(quán)重比代入拓?fù)淠P椭羞M(jìn)行計(jì)算,獲得各個(gè)取值樣本點(diǎn)的綜合目標(biāo)函數(shù)值,樣本點(diǎn)及輸出目標(biāo)值如表2所示.
2.2構(gòu)建代理模型
采用徑向基函數(shù)根據(jù)相應(yīng)樣本點(diǎn)所構(gòu)建的代理模型是一種能夠很好地平衡精度和計(jì)算效率的代理模型[8],因此采用徑向基函數(shù)構(gòu)建代理模型,其中近似模型如下:
(4)
式中:N為差值樣本點(diǎn)的個(gè)數(shù);λj為通過(guò)差值確定的系數(shù);φ是徑向距離r=‖x-xj‖2的函數(shù),取常用的Multi-quadric函數(shù):
(5)
其中 c為光滑參數(shù),且0 代理模型構(gòu)建完后必須驗(yàn)證模型的精度,RBF是一種插值模型, 樣本點(diǎn)處誤差為零, 不能像多項(xiàng)式擬合那樣通過(guò)樣本點(diǎn)誤差來(lái)評(píng)價(jià)整個(gè)代理模型的誤差,必須通過(guò)額外的測(cè)試點(diǎn)來(lái)評(píng)價(jià),所以本文采用平均相對(duì)誤差RAAE(即樣本點(diǎn)處相對(duì)誤差的平均值)來(lái)評(píng)價(jià)模型的精度. (6) (7) 表2 最優(yōu)拉丁超立方樣本點(diǎn)及對(duì)應(yīng)的綜合目標(biāo)函數(shù)值 2.3拓?fù)溆?jì)算結(jié)果 采用NSGA-II方法計(jì)算得到各個(gè)工況的最佳權(quán)重比分別為0.13, 0.07, 0.30, 0.32, 0.18,將各個(gè)工況最佳權(quán)重比代入有限元模型中進(jìn)行計(jì)算.借助高效并被廣泛使用的SIMP法即密度法進(jìn)行拓?fù)鋬?yōu)化計(jì)算,經(jīng)過(guò)64次迭代后結(jié)束,車架最終的拓?fù)浣Y(jié)構(gòu)清晰、合理,如圖5所示.拓?fù)浣Y(jié)構(gòu)顯示,車架結(jié)構(gòu)整體上呈左右對(duì)稱分布,車架的底部及側(cè)部出現(xiàn)了較多的三角形結(jié)構(gòu),車架發(fā)動(dòng)機(jī)安裝處的結(jié)構(gòu)比較合理,這些結(jié)構(gòu)對(duì)車架的剛度提高有很好的參考價(jià)值. 綜合目標(biāo)函數(shù)的迭代過(guò)程如圖6所示.由圖可知綜合目標(biāo)函數(shù)值逐漸減小并最終達(dá)到穩(wěn)定值,迭代過(guò)程經(jīng)歷了3個(gè)階段,這是由于在計(jì)算過(guò)程中,為避免結(jié)構(gòu)中出現(xiàn)半密度單元而引入懲罰系數(shù),因此出現(xiàn)了模型再次計(jì)算的過(guò)程[5],直至滿足精度要求,迭代過(guò)程停止. 柔度目標(biāo)的迭代過(guò)程如圖7所示.由圖可得:在整個(gè)拓?fù)鋬?yōu)化迭代過(guò)程中,5個(gè)工況下車架結(jié)構(gòu)的柔度隨著迭代的進(jìn)行不斷減小,其中扭轉(zhuǎn)工況下的車架柔度優(yōu)化后較優(yōu)化前變化最大,表明車架扭轉(zhuǎn)工況下的剛度有了很大程度的提高;各個(gè)工況的柔度曲線波動(dòng)趨勢(shì)相近,并最終達(dá)到穩(wěn)定狀態(tài). 2.4結(jié)果分析 為了驗(yàn)證本文采用方法的有效性及優(yōu)越性,將本文確定各個(gè)工況權(quán)重比的方法設(shè)為方案1,按照正交試驗(yàn)和層次分析法擬定了2組不同的權(quán)重比組合,分別為表2中的方案2、方案3.基于正交試驗(yàn)確定權(quán)重比的方法參考文獻(xiàn)[15],基于層次分析法確定權(quán)重比的方法參考文獻(xiàn)[16-18].對(duì)3種方案分別進(jìn)行相同的拓?fù)鋬?yōu)化計(jì)算,各個(gè)方案的目標(biāo)函數(shù)迭代過(guò)程如圖8所示,權(quán)重比組合方案及各個(gè)方案各工況柔度最終優(yōu)化值如表3和表4所示. 圖5 車架拓?fù)鋬?yōu)化結(jié)果Fig.5 Topology optimization results of the frame 圖6 綜合目標(biāo)函數(shù)迭代過(guò)程Fig.6 Iterative process of the comprehensive objective function 方案彎曲工況扭轉(zhuǎn)工況加速工況制動(dòng)工況轉(zhuǎn)彎工況10.1300.0700.3000.3200.18020.0900.0900.3600.3600.09030.4080.8500.1090.1250.290 圖7 車架柔度迭代過(guò)程Fig.7 Iterative process of frame compliance 圖8 各個(gè)方案的綜合目標(biāo)函數(shù)迭代過(guò)程Fig.8 Iterative process of the comprehensive objective function of each method 方案迭代數(shù)/次彎曲工況柔度/(N-1·mm)扭轉(zhuǎn)工況柔度/(N-1·mm)加速工況柔度/(N-1·mm)制動(dòng)工況柔度/(N-1·mm)轉(zhuǎn)彎工況柔度/(N-1·mm)16414.8189.725.356.9494.5526316.83171.55.377.1591.4736115.2293.1514.0218.3382.24 根據(jù)圖8可發(fā)現(xiàn):3種方案的目標(biāo)函數(shù)的迭代過(guò)程都經(jīng)歷了3個(gè)過(guò)程,目標(biāo)函數(shù)值不斷減小并最終收斂;方案1中目標(biāo)函數(shù)的收斂曲線始終是最低的,也就是說(shuō)方案1中車架的綜合柔度值是最小的;雖然方案1迭代次數(shù)最多,但是方案1中目標(biāo)函數(shù)在開(kāi)始迭代時(shí)是下降最快的.此外,方案1中目標(biāo)函數(shù)的最終迭代值為0.062 765 7,通過(guò)代理模型計(jì)算得到的目標(biāo)函數(shù)值為0.063 957 4,計(jì)算誤差為1.86%,可以認(rèn)為代理模型精度可靠. 針對(duì)多工況下結(jié)構(gòu)拓?fù)鋬?yōu)化過(guò)程中遇到的各個(gè)工況權(quán)重比分配的問(wèn)題進(jìn)行了研究,采用代理模型與遺傳算法相結(jié)合的方法很好地解決了該問(wèn)題,并通過(guò)方程式賽車車架多工況下拓?fù)鋬?yōu)化這一實(shí)例進(jìn)行了驗(yàn)證.對(duì)結(jié)果分析比較發(fā)現(xiàn),與參考方法相比,本文采用的方法具有明顯的優(yōu)越性.同時(shí),本文采用的方法在解決各個(gè)工況權(quán)重比分配問(wèn)題的過(guò)程中,借助遺傳算法NSGA-II求解最佳權(quán)重比過(guò)程是連續(xù)的,可以在優(yōu)化總目標(biāo)的同時(shí)針對(duì)性地尋找重點(diǎn)工況下車架的最優(yōu)柔度值,因此更具有靈活性.此外,研究不僅解決了多工況下車架拓?fù)鋬?yōu)化各工況權(quán)重比分配的問(wèn)題,而且對(duì)其他同類型的權(quán)重比分配問(wèn)題也具有很好的參考價(jià)值. [1] 柴天. FSAE賽車整車性能分析與研究[D]. 長(zhǎng)沙: 湖南大學(xué)機(jī)械與運(yùn)載工程學(xué)院,2009:11-12. CHAI Tian. Analysis and research on performance of FSAE racing car [D]. Changsha: Hunan University, College of Mechanical and Vehicle Engineering, 2009: 11-12. [2] CHEN T Y, WU S C. Multi-objective optimal topology design of structures [J]. Computational Mechanics, 1998, 21(6): 483-492. [3] 扶原放,金達(dá)鋒,喬蔚煒. 多工況下微型電動(dòng)車車身結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì),2010,27(2):77-80. FU Yuan-fang, JIN Da-feng, QIAO Wei-wei. Topological optimization design on the body structure of mini electric cars under multi-working conditions [J]. Journal of Machine Design, 2010, 27(2):77-80. [4] 崔偉. 某重型汽車車架多目標(biāo)拓?fù)鋬?yōu)化設(shè)計(jì)及其有限元分析[D]. 長(zhǎng)沙: 湖南大學(xué)機(jī)械與運(yùn)載工程學(xué)院, 2012:40-45. CUI Wei. Multi-objective topology optimization and finite element analysis to a heavy automobile frame[D]. Changsha: Hunan University, College of Mechanical and Vehicle Engineering, 2012:40-45. [5] 蘭鳳崇,賴番結(jié),陳吉清,等. 考慮動(dòng)態(tài)特性的多工況車身結(jié)構(gòu)拓?fù)鋬?yōu)化研究[J]. 機(jī)械工程學(xué)報(bào),2014, 50(20):122-128. LAN Feng-chong, LAI Fan-jie, CHEN Ji-qing, et al. Multi-case topology optimization of body structure considering dynamic characteristic [J]. Journal of Mechanical Engineering, 2014, 50(20):122-128. [6] 范文杰,范子杰,桂良進(jìn),等. 多工況下客車車架結(jié)構(gòu)多剛度拓?fù)鋬?yōu)化設(shè)計(jì)研究[J]. 汽車工程,2008,30(6):531-533. FAN Wen-jie, FAN Zi-jie, GUI Liang-jin, et al. Multi-stiffness topology optimization of bus frame with multiple conditions [J]. Automotive Engineering, 2008, 30(6): 531-533. [7] 蘭鳳崇,張浩鍇,王家豪,等. 汽車轉(zhuǎn)向節(jié)拓?fù)鋬?yōu)化方法研究及應(yīng)用[J]. 汽車工程,2014,36(4):464-468. LAN Feng-chong, ZHANG Hao-kai, WANG Jia-hao, et al. Study and application of topology optimization technique for vehicle steering knuckles [J]. Automotive Engineering, 2014, 36(4): 464-468. [8] 陳國(guó)棟,韓旭. 基于代理模型的多目標(biāo)優(yōu)化方法及其在車身設(shè)計(jì)中的應(yīng)用[J]. 機(jī)械工程學(xué)報(bào),2014,50(9): 70. CHEN Guo-dong, HAN Xu. Multi-objective optimization method based on metamodel and its applications in vehicle body design [J]. Journal of Mechanical Engineering, 2014, 50(9): 70. [9] 洪煌杰,王紅巖,李建陽(yáng),等. 基于代理模型的空投裝備氣囊緩沖系統(tǒng)多目標(biāo)優(yōu)化[J]. 振動(dòng)與沖擊,2015,34(3): 215-220. HONG Huang-jie, WANG Hong-yan, LI Jian-yang, et al. Multi-objective optimization of an airbag cushion system for airdropping equipment based on surrogate model [J]. Journal of Vibration and Shock, 2015, 34(3):215-220. [10] 劉俊,宋文萍,韓忠華. 基于代理模型的飛翼多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)[J]. 航空計(jì)算技術(shù),2015, 45(2):1-5. LIU Jun, SONG Wen-ping, HAN Zhong-hua. Multi-objective aerodynamic design optimization of a flying wing using surrogate model [J]. Aeronautical Computing Technique, 2015, 45(2):1-5. [11] 居小凡. Formula SAE 賽車的設(shè)計(jì)制造及測(cè)試[D]. 上海:上海交通大學(xué)汽車工程學(xué)院,2009:15-19. JU Xiao-fan. Design-bulid-test of a formula SAE racing car [D]. Shanghai: Shanghai Jiaotong University, Institute of Automotive Engineering, 2009:15-19. [12] JIANG Li-man, WANG Guo-quan, GONG Guo-qing, et al. Lightweight design for a FSC car based on modal and stiffness analysis [C]//Proceedings of the FISITA 2012 World. Berlin, Heidelberg: Springer-Verlag, 2013: 1009-1022. [13] 陽(yáng)文君,郭振輝. FSC車架靜態(tài)性能的有限元分析與試驗(yàn)驗(yàn)證[J]. 湖北汽車工業(yè)學(xué)院學(xué)報(bào),2012,26(4):68-71. YANG Wen-jun, GUO Zhen-hui. Finite element analysis and test validation on static performance of FSC frame [J]. Journal of Hubei University of Automotive Technology, 2012, 26(4):68-71. [14] MIN S, NISHIWAKI S, KIKUCHI N. Unified topology design of static and vibrating structures using multiobjective optimization [J]. Computers & Structures, 2000, 75(1): 93-116. [15] 高云凱,王婧人,汪翼. 基于正交試驗(yàn)的大型客車車身結(jié)構(gòu)多工況拓?fù)鋬?yōu)化研究[J]. 汽車技術(shù),2011(11): 16-19. GAO Yun-kai, WANG Jing-ren, WANG Yi. Multi-case topology optimization of bus body structure based on orthogonal test [J]. Automobile Technology, 2011(11):16-19. [16] 代麗,朱愛(ài)華,趙勻. 應(yīng)用層次分析法計(jì)算分插機(jī)構(gòu)優(yōu)化目標(biāo)的權(quán)重[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(2):60-65. DAI Li, ZHU Ai-hua, ZHAO Yun. Using AHP to calculate optimization objective weights of transplanting mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 60-65. [17] 田啟華,王進(jìn)學(xué),杜義賢,等. 基于密度-敏度層次更新策略的三維連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[J]. 工程設(shè)計(jì)學(xué)報(bào),2015,22(2):155-160. TIAN Qi-hua, WANG Jin-xue, DU Yi-xian, et al. Three-dimensional continuum topology optimization based on density-sensitivity level update policy[J]. Chinese Journal of Engineering Design, 2015,22(2):155-160. [18] 駱正清,楊善林. 層次分析法中幾種標(biāo)度的比較[J]. 系統(tǒng)工程理論與實(shí)踐,2004, 24(9):51-60. LUO Zheng-qing, YANG Shan-lin. Comparative study on several scales in AHP [J]. Systems Engineering-theory and Practice, 2004, 24(9): 51-60. Research on the method of multi-case topology optimization of frame structure based on the weight ratio QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong (College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China) The frame will be subject to the test of various conditions in the actual moving conditions. So a plurality of topology results under every condition must be considered when conducting topology optimization of the frame structure. While there is a common issue during the process of multi-case topology optimization about how to determine the weight ratio of respective condition and the final topology results of the frame depend directly on this distribution. This issue was showed a further study and a feasible solution to this problem with a combination of surrogate model and genetic algorithm was gaved. At first, a comprehensive object function maximizing the static stiffness under multi-case was defined by using compromise programming approach. And then, a Radial Basis Function surrogate model was constructed by using optimal Latin Hypercube Sampling, meanwhile, optimal weight ratios of every load condition had been obtained with the method of combining surrogate model with NSGA-II. At last, the optimal weight ratios obtained in the previous process were applied into the object function and a feasible topology result of the frame structure was got which had considered multi-case loads. Moreover, the contrastive study was carried out to compare the comprehensive objective optimization approach proposed in this study with those that determined the weight ratio by analytic hierarchy process (AHP) or orthogonal experimental design (OED). Compared with the other two methods, this method had the lowest value of comprehensive objective function and the weighted compliance of all conditions was also the lowest. Results show that the method proposed in this paper is a good solution to obtain weight ratio of every condition in the process of topology optimization of a frame and is superior to reference methods. weight ratio; surrogate model; genetic algorithm; frame; topology optimization 2016-01-27. 國(guó)家自然科學(xué)基金資助項(xiàng)目(11232004). 邱瑞斌(1989-),男,江蘇徐州人,碩士,從事汽車輕量化研究,E-mail:ruibinqiu@hnu.edu.cn. 雷飛(1981—),男,河南南陽(yáng)人,講師,博士,從事汽車輕量化研究,E-mail:leifeihun@163.com. 10.3785/j.issn. 1006-754X.2016.05.007 U 462 A 1006-754X(2016)05-0444-09 本刊網(wǎng)址·在線期刊:http://www.zjujournals.com/gcsjxb http://orcid.org// 0000-0003-2215-32973 總 結(jié)