楊 兵, 劉 琰,劉輝東,羅 暢,萬(wàn) 強(qiáng),蔡 耀,陳 浩,陳燕鳴
(武漢大學(xué) 動(dòng)力與機(jī)械學(xué)院,武漢 430072)
?
AlTiSiN/AlCrSiN納米多層復(fù)合涂層的結(jié)構(gòu)及性能研究
楊兵, 劉琰,劉輝東,羅暢,萬(wàn)強(qiáng),蔡耀,陳浩,陳燕鳴
(武漢大學(xué) 動(dòng)力與機(jī)械學(xué)院,武漢 430072)
以AlTiSi合金和AlCrSi合金為靶材料,采用陰極電弧離子鍍技術(shù)在單晶硅、硬質(zhì)合金基底上沉積AlTiSiN/AlCrSiN納米晶多層復(fù)合涂層,系統(tǒng)研究了氮?dú)鈮簭?qiáng)變化對(duì)AlTiSiN/AlCrSiN復(fù)合涂層結(jié)構(gòu)和力學(xué)性能的影響.利用掃描電鏡和X射線(xiàn)衍射儀分析了涂層的形貌和相結(jié)構(gòu),用顯微硬度計(jì)和摩擦磨損儀測(cè)量了涂層顯微硬度和摩擦系數(shù).結(jié)果表明:氮?dú)鈮簭?qiáng)對(duì)涂層微結(jié)構(gòu)和性能具有較大影響,涂層是以NaCl型TiN和CrN相結(jié)構(gòu)為主的多晶材料.由于多元素?fù)诫s導(dǎo)致復(fù)合涂層的衍射峰與純TiN和CrN衍射峰位相比發(fā)生一定的偏移.隨著氮?dú)鈮簭?qiáng)的增大,涂層的衍射峰強(qiáng)度逐漸降低并寬化,說(shuō)明隨著氮?dú)鈮簭?qiáng)的增大晶粒尺寸減小.涂層表面的顆粒污染和沉積氣壓密切相關(guān),隨氣壓增加污染顆粒尺寸逐步減少,涂層表面粗糙度降低;當(dāng)?shù)獨(dú)鈮簭?.0 Pa增加到4.0 Pa時(shí)涂層的硬度值由2437.9 HK逐漸增大至3221.5 HK;涂層摩擦學(xué)性能也和氮?dú)鈮好芮邢嚓P(guān),當(dāng)?shù)獨(dú)鈮簭?qiáng)低于3.0 Pa時(shí),平均摩擦系數(shù)約0.410;而在氮?dú)鈮簭?qiáng)高于3.0 Pa后,平均摩擦系數(shù)逐漸降至0.258.
電弧離子鍍;AlTiSiN/AlCrSiN復(fù)合涂層;氮?dú)鈮簭?qiáng);顯微硬度;摩擦系數(shù)
隨著高強(qiáng)度鋼、 高溫合金及復(fù)合材料等難加工材料使用量的急劇增加,以及高速切削、干切削和微潤(rùn)滑切削工藝大量使用,切削區(qū)域的溫度常高于常規(guī)硬度為20~30 GPa 的 TiN、TiCN、TiAlN 等刀具涂層的熱分解溫度,導(dǎo)致刀具氧化磨損嚴(yán)重而失效,對(duì)切削刀具涂層性能提出了更高的技術(shù)要求[1-3].自從Veprek[4]成功制備出超硬Ti-Si-N涂層以來(lái),納米晶-非晶復(fù)合涂層成為超硬質(zhì)涂層研究的一個(gè)熱點(diǎn).但純Ti-Si-N涂層摩擦系數(shù)大,在工業(yè)應(yīng)用上存在一定的局限性.為了克服這些缺點(diǎn),添加多合金元素(Al、Cr、W)形成多元納米晶復(fù)合涂層是該類(lèi)涂層發(fā)展的一個(gè)主要方向.AlTiSiN和AlCrSiN是目前工業(yè)上獲得應(yīng)用的兩種合金化涂層,利用合金化提高涂層的耐磨性及切削性能.Si能起到細(xì)化晶粒、提高硬度的作用,Si在AlTiN和AlCrN涂層中以會(huì)形成非晶態(tài)的Si3N4,能有效地阻止相鄰晶粒間由于擇優(yōu)取向方向的改變而導(dǎo)致的結(jié)合力的喪失,并消除內(nèi)部殘余應(yīng)力,改善力學(xué)性能,大范圍拓展了納米晶-非晶涂涂層的應(yīng)用范圍.但大多集中在涂層的多元合金化,涂層硬度、韌性及切削性能有待進(jìn)一步提高.
將多種 Me-Si-N納米晶-非晶涂層材料復(fù)合構(gòu)筑納米多層結(jié)構(gòu),充分利用納米晶-非晶強(qiáng)化導(dǎo)致的超硬效應(yīng)及多層膜結(jié)構(gòu)大量界面導(dǎo)致的韌化效應(yīng),在保持材料高硬度基礎(chǔ)上大幅度提高涂層的韌性、硬度及耐溫性,是目前超硬刀具涂層材料領(lǐng)域發(fā)展的前沿.本文嘗用多弧離子鍍方法制備了AlTiSiN/AlCrSiN納米晶多層復(fù)合涂層,系統(tǒng)研究了氮?dú)鈮簭?qiáng)對(duì)涂層結(jié)構(gòu)和力學(xué)性能的影響.
1.1材料和儀器
場(chǎng)發(fā)射掃描電鏡(Sirion IMP型, 荷蘭FEI),X射線(xiàn)衍射儀(X'Pert Pro型,荷蘭帕納科),顯微硬度計(jì)(HX-1000,上海光學(xué)儀器廠(chǎng)),球盤(pán)測(cè)試儀(MS-T3000,蘭州華匯).
1.2涂層的制備
用AlTiSi合金靶和AlCrSi合金靶制備了AlTiSiN/AlCrSiN復(fù)合涂層,實(shí)驗(yàn)所用基體材料為硬質(zhì)合金與單晶硅片.AlTiSiN/AlCrSiN復(fù)合涂層沉積之前,先用氬氣進(jìn)行輝光清洗10 min以保證襯底表面清潔,之后用Cr靶轟擊10 min以增強(qiáng)涂層附著力.為保證AlTiSiN/AlCrSiN復(fù)合涂層與基底之間的結(jié)合力,沉積過(guò)程中通入N2制備CrN過(guò)渡層和CrN/AlTiSiN的梯度結(jié)構(gòu),沉積襯底偏壓為-150 V,靶電流控制為60 A,沉積時(shí)間均為10 min,控制氮?dú)饬髁繉⒊练e氣壓保持在3.3 Pa.工件模具繞沉積室的中心軸旋轉(zhuǎn),工件模具轉(zhuǎn)至AlTiSi靶前面時(shí)形成AlTiSiN涂層,當(dāng)工件模具轉(zhuǎn)至AlCrSi靶前面形成AlCrSiN涂層,工件模具連續(xù)轉(zhuǎn)動(dòng)將形成AlCrSiN/AlTiSiN多層涂層.制備AlTiSiN/AlCrSiN復(fù)合涂層的具體參數(shù)見(jiàn)表1.
表1AlTiSiN/AlCrSiN納米復(fù)合涂層沉積參數(shù)
Tab.1Deposition parameter of AlTiSiN/AlCrSiN
nano-composite coatings
參數(shù)值靶材AlTiSi,AlCrSi偏壓U/V-100反應(yīng)氣體N2p(N2)/Pa2.0,2.5,3.0,3.5,4.0AlTiSi靶電流I/A60AlCrSi靶電流I/A60基體溫度θ/℃250沉積時(shí)間t/min30
1.3涂層性能檢測(cè)
用掃描電鏡觀察樣品表面和截面形貌,用XRD分析AlTiSiN/AlCrSiN復(fù)合涂層的晶體結(jié)構(gòu)與相組成.用顯微硬度計(jì)測(cè)量AlTiSiN/AlCrSiN復(fù)合涂層硬度,載荷為50 g,為提高測(cè)量的準(zhǔn)確性,每個(gè)樣品取10個(gè)點(diǎn)進(jìn)行測(cè)量,取其平均值,平均摩擦系數(shù)用球盤(pán)測(cè)試儀測(cè)得.對(duì)磨材料為不銹鋼,球盤(pán)載荷為500 g,旋轉(zhuǎn)速度為50 r/min,每組持續(xù)時(shí)間為30 min.
2.1涂層X(jué)RD衍射結(jié)果分析
圖1為不同氮?dú)鈮簭?qiáng)下制備的樣品的XRD衍射圖.圖1結(jié)果表明:AlTiSiN/AlCrSiN復(fù)合涂層中晶體結(jié)構(gòu)為NaCl型,涂層中有TiN和CrN的衍射峰,并具有多個(gè)晶面取向,分別為(111),(200),(220).復(fù)合涂層的衍射峰在TiN和CrN的衍射峰之間,隨著氮?dú)鈮簭?qiáng)的增大,涂層的衍射峰逐漸降低并展寬,其中(200)取向衍射峰展寬程度大于(111)和(220)取向,表明(200)取向上晶粒尺寸更小.根據(jù)Scherrer[5]公式計(jì)算AlTiSiN/AlCrSiN在不同晶面取向上的平均晶粒尺寸:
其中,D為晶粒度,為衍射光線(xiàn)波長(zhǎng),為半峰寬,為衍射角,K為常數(shù)(取0.89).
圖1 不同氮?dú)鈮簭?qiáng)下制備的AlTiSiN/AlCrSiN的XRD圖 Fig.1 XRD patterns of AlTiSiN/AlCrSiN coatings under varied N2 pressures
不同氮?dú)鈮簭?qiáng)下制備的AlTiSiN/AlCrSiN 晶粒尺寸見(jiàn)表2.由表2可見(jiàn),隨著氮?dú)鈮簭?qiáng)增大,相對(duì)于其他取向,(200)取向上晶粒尺寸更小,這是由于薄膜的生長(zhǎng)和取向是由表面能和應(yīng)變能綜合控制的結(jié)果,隨著氮?dú)鈮簭?qiáng)的增大,涂層應(yīng)力增大[6],根據(jù)薄膜能量最小化理論,當(dāng)薄膜應(yīng)力較大時(shí),彈性應(yīng)變能成為決定薄膜結(jié)晶取向的主導(dǎo)因素,而(200)取向上的應(yīng)變能相對(duì)于其他取向較大,因此(200)取向上晶粒生長(zhǎng)速率小于另外兩個(gè)取向.圖中未見(jiàn)硅或硅合金的衍射峰,說(shuō)明硅以非晶態(tài)形式存在,這與Veprek和Reiprich研究TiSiN納米復(fù)合涂層時(shí)所得出的結(jié)果一致[7].圖中也未見(jiàn)AlN或Al的峰,且TiN、CrN的衍射峰相對(duì)于標(biāo)準(zhǔn)峰發(fā)生了偏移,這是因?yàn)锳l部分存在于TiN、CrN的晶格中形成了飽和固溶體的緣故[8].
表2 不同氮?dú)鈮簭?qiáng)下制備的AlCrSiN/AlTiSiN晶粒尺寸
2.2涂層的表面形貌分析
圖2 為在不同氮?dú)鈮簭?qiáng)條件下制備的AlTiSiN/AlCrSiN復(fù)合涂層的表面形貌.由圖2可見(jiàn)當(dāng)?shù)獨(dú)鈮簭?qiáng)為2.0 Pa時(shí),涂層表面分布著較多的的大顆粒.因?yàn)榈獨(dú)鈮簭?qiáng)較低時(shí),真空室中粒子碰撞幾率較小,很多粒子來(lái)不及碰撞直接沉積到基體表面形成顆粒較大的熔滴[9].隨著氮?dú)鈮簭?qiáng)增大,粒子碰撞的幾率增大,并且有利于未經(jīng)第一次碰撞直接沉積到基體表面的粒子產(chǎn)生二次濺射,使得涂層表面分布的顆粒尺寸減小[10,11].當(dāng)壓強(qiáng)增大到3.5 Pa時(shí),過(guò)高的氮?dú)鈮簭?qiáng)使金屬粒子運(yùn)動(dòng)的自由程變短,降低了高能粒子對(duì)基體的再濺射作用,導(dǎo)致涂層表面出現(xiàn)凹坑[12].當(dāng)?shù)獨(dú)鈮簭?qiáng)增至4.0 Pa時(shí),真空室中的氮?dú)馀c靶材產(chǎn)生反應(yīng),在靶材表面形成氮化物,阻礙靶材產(chǎn)生金屬離子,難以在涂層表面產(chǎn)生大顆粒及凹坑.
a)2.0 Pa;b)2.5 Pa;c)3.0 Pa;d)3.5 Pa;e)4.0 Pa圖2 不同氮?dú)鈮簭?qiáng)下制備的AlTiSiN/AlCrSiN表面形貌Fig.2 SEM of AlTiSiN/AlCrSiN coatings under varied N2 pressures
圖3為氮?dú)鈮簭?qiáng)為3.5 Pa時(shí)制備的AlTiSiN/AlCrSiN復(fù)合涂層的SEM截面形貌圖,由圖3可見(jiàn)AlTiSiN/AlCrSiN復(fù)合涂層有3層,由下到上分別為CrN過(guò)渡層,CrN/AlTiSiN梯度層,AlTiSiN/AlCrSiN復(fù)合涂層.層與層之間結(jié)合致密,未出現(xiàn)孔洞與斷層現(xiàn)象,且AlTiSiN/AlCrSiN復(fù)合涂層的致密性?xún)?yōu)于CrN和CrN/AlTiSiN.
圖3 氮?dú)鈮簭?qiáng)為3.5 Pa時(shí)制備的AlTiSiN/AlCrSiN復(fù)合涂層截面形貌圖Fig.3 Cross-section morphology of AlTiSiN/AlCrSiN coating under N2 pressure of 3.5 Pa
2.3AlTiSiN/AlCrSiN涂層硬度測(cè)試
圖4為復(fù)合涂層的顯微硬度隨氮?dú)鈮簭?qiáng)變化的曲線(xiàn)圖.由圖4可見(jiàn)復(fù)合涂層的硬度隨著氮?dú)鈮簭?qiáng)的增大而呈現(xiàn)單調(diào)上升的趨勢(shì).在壓強(qiáng)為4.0 Pa時(shí)達(dá)到最高硬度值3221.5 HK.這是由于在真空室中氮?dú)馀c金屬離子反應(yīng)生成晶體,壓強(qiáng)增大,金屬離子與氮?dú)馀鲎驳膸茁试龃螅w形成速度加快,剛結(jié)晶的晶體來(lái)不及長(zhǎng)大就被新形成的晶粒所覆蓋,因此晶粒尺寸減小.這與XRD圖譜中氮?dú)鈮簭?qiáng)增大涂層晶粒尺寸減小的變化規(guī)律相對(duì)應(yīng).根據(jù)Hall-Petch關(guān)系[13],晶粒尺寸減小會(huì)導(dǎo)致硬度增加.
圖4 復(fù)合涂層顯微硬度隨氮?dú)鈮簭?qiáng)變化曲線(xiàn)圖 Fig.4 Microhardness of AlTiSiN/AlCrSiN coatings under varied N2 pressures
2.4 AlTiSiN.AlCrSiN涂層平均摩擦系數(shù)測(cè)試
圖5為涂層的平均摩擦系數(shù)隨氮?dú)鈮簭?qiáng)變化曲線(xiàn)圖.由圖5可見(jiàn),氮?dú)鈮簭?qiáng)為2.0~3.0 Pa時(shí),涂層的平均摩擦系數(shù)基本保持不變;而壓強(qiáng)增加至3.0~4.0 Pa時(shí),涂層的平均摩擦系數(shù)減小.因?yàn)榍罢咄繉拥谋砻嫒鄣晤w粒較大,表面較粗糙;后者涂層表面熔滴顆粒數(shù)量減少,尺寸減小,降低了表面粗糙度,表面更加平整,涂層的平均摩擦系數(shù)降低.此外氮?dú)鈮簭?qiáng)增大至3.5~4.0 Pa時(shí),涂層硬度較高,硬度值的增大也降低了涂層的平均摩擦系數(shù).
圖5 涂層的平均摩擦系數(shù)隨氮?dú)鈮簭?qiáng)變化曲線(xiàn)圖 Fig.5 Average friction coefficient of AlTiSiN/AlCrSiN coatings under varied N2 pressures
(1)以AlTiSi合金和AlCrSi合金作為陰極弧靶材料,用多弧離子鍍系統(tǒng)制備了AlTiSiN/AlCrSiN復(fù)合涂層,其相結(jié)構(gòu)為含有TiN和CrN的NaCl型結(jié)構(gòu).
(2)隨著氮?dú)鈮簭?qiáng)的增大,AlTiSiN/AlCrSiN復(fù)合涂層表面大顆粒逐漸減少,表面粗糙度降低,表面趨于平整.
(3)氮?dú)鈮簭?qiáng)對(duì)AlTiSiN/AlCrSiN復(fù)合涂層的硬度有顯著影響.隨著氮?dú)鈮簭?qiáng)的增大,涂層的硬度增大.在氮?dú)鈮簭?qiáng)為4.0 Pa時(shí),涂層硬度達(dá)到最大值3221.5 HK.
(4)氮?dú)鈮簭?qiáng)影響AlTiSiN/AlCrSiN復(fù)合涂層的平均摩擦系數(shù).氮?dú)鈮簭?qiáng)低于3.0 Pa時(shí),涂層平均摩擦系數(shù)變化不明顯;氮?dú)鈮簭?qiáng)大于3.0 Pa時(shí),涂層的平均摩擦系數(shù)隨氮?dú)鈮簭?qiáng)增大而降低.在氮?dú)鈮簭?qiáng)為4.0 Pa時(shí),涂層的平均摩擦系數(shù)達(dá)到最小值0.258.
[1]Tam P L, Zhou Z F, Shum P W, et al. Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions[J]. Thin Solid Films, 2013, 516(16):5725-5731.
[2]Chu K, Shen Y G. Mechanical and tribological properties of nanostructured TiN/TiBN multilayer films[J]. Wear, 2008, 265(3/4):516-524.
[3]Knotek O, Atzor M, Barimani A, et al. Development of low temperature ternary coatings for high wear resistance [J]. Surf Coat Tech, 1990, 42(1):21-28.
[4]Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2, nanocomposites with HV=80 to≥105 GPa[J]. Surf Coat Tech, 2000, s 133-134(1):152-159.
[5]Patterson A L. The Scherrer formula for x-ray particle size determination[J]. Phys Rev,1939, 56(10):978-982.
[6]趙升升, 程毓, 常正凱, 等. (Ti,Al)N涂層應(yīng)力沿層深分布的調(diào)整及大厚度涂層的制備[J]. 金屬學(xué)報(bào), 2012(3):277-282.
[7]Veprek S , Reiprich S. A concept for the design of novel superhard coatings[J]. Thin Solid Films, 1995, 268(1/2):64-71.
[8]Finster J, Klinkenberg E D, Heeg J. ESCA and SEXAFS investigations of insulating materials for ULSI microelectronics[J]. Vacuum, 1990, 41(90):1586-1589.
[9]陳燕鳴, 萬(wàn)強(qiáng), 蔡耀,等. 多弧離子鍍制備TiN涂層的高溫氧化行為分析[J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015,34(4):68-71.
[10]Li M, Wang F. Effects of nitrogen partial pressure and pulse bias voltage on (Ti,Al)N coatings by arc ion plating[J]. Surf Coat Tech, 2003, 167(2):197-202.
[11]Creasey S, Lewis D B, Smith I J, et al. SEM image analysis of droplet formation during metal ion etching by a steered arc discharge[J]. Surf Coat Tech, 1997, 97(1):163-175.
[12]Li M, Wang F. Effects of nitrogen partial pressure and pulse bias voltage on (Ti,Al)N coatings by arc ion plating[J]. Surf Coat Tech, 2003, 167(2):197-202.
[13]Segal V M, Ferrasse S, Alford F. Physical vapor deposition targets, and methods of fabricating metallic materials: US, US6946039[P]. 2005.
Microstructure and Mechanical Properties of AlTiSiN/AlCrSiN Multilayer Coatings
YangBing,LiuYan,LiuHuidong,LuoChang,WanQiang,CaiYao,ChenHao,ChenYanming
(School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China)
AlTiSiN/AlCrSiN nanocomposite coatings were deposited on Si and cemented carbide substrate using AlTiSi, AlCrSi cathodes by vacuum cathodic arc evaporation. The influence of N2pressure on the structure and mechanical properties of the coatings were investigated systematically. The morphology and phase structure were investigated by SEM and XRD. The micro hardness and coefficient of friction were measured by the micro hardness tester and friction and wear tester. The results showed that N2pressure had great influence on the microstructure and mechanical properties of the coatings. The coatings were polycrystalline which exhibited NaCl-type TiN and CrN phase. The diffraction peaks of the coatings had a certain deviation due to the multi element doping compared with the pure TiN and CrN diffraction peaks. With the increase of N2pressure, the intensity of the diffraction peaks of the coating decreased and widened gradually, suggesting that the grain size decreased with the increase of the N2pressure. The particle pollution was closely related to the deposition pressure. The particle size and the surface roughness decreased with the increase of the pressure. The coating hardness increased from 2437.9 HK to 3221.5 HK gradually when N2pressure increased from 2.0 Pa to 4.0 Pa. The tribological properties of the coatings were also closely related to nitrogen pressure. When the pressure was lower than 3.0 Pa, the average friction coefficient was about 0.410, while the average friction coefficient decreased to 0.258 when N2pressure was higher than 3.0 Pa.
multi-arc; AlTiSiN/AlCrSiN; N2pressure; microhardness; friction coefficient
2015-03-27
楊 兵(1997-), 男, 副教授, 博士, 研究方向:金屬材料,納米復(fù)合涂層 , E-mail: toyangbing@163.com
國(guó)家自然科學(xué)基金資助項(xiàng)目(11275141)
TG174.444
A
1672-4321(2016)03-0013-04