孫東慧,李坤,朱蘭,孔巖,陳志科
(電子科技大學(xué),四川 成都 611731)
?
有限元法在納米光子學(xué)中的應(yīng)用研究
孫東慧,李坤,朱蘭,孔巖,陳志科
(電子科技大學(xué),四川 成都 611731)
尋求快速且高效求解偏微分方程的方法對(duì)科學(xué)未來(lái)的發(fā)展起來(lái)很大的作用。而作為新興起來(lái)的納米光子學(xué),從被提出就一直廣受關(guān)注。怎么去求解涉及納米光子學(xué)的模型,也一直備受關(guān)注。本文主要研究是用有限元求解納米光子學(xué)中的德魯?shù)履P?,用?shù)值實(shí)驗(yàn)進(jìn)行模擬,求解散射體在納米級(jí)的現(xiàn)象。
有限元;納米光子學(xué);德魯?shù)履P?/p>
To find a fast and efficient method to solve partial differential equations has a great effect on the development of Science in the future.As a burgeoning nano photonics,was put forward has been widely concerned.How to solve the nano photonics model,has attracted much attention.This paper is using the finite element method to solve Drude model in nano photonics,Numerical experiments are used to simulate,Finding the phenomenon of dissolution of the emitter at the nanometer level.
納米光子學(xué),被定義為納米技術(shù)和光子學(xué)的融合學(xué)科,是一個(gè)新興的前沿學(xué)科。它為基礎(chǔ)研究提供了挑戰(zhàn),也為新技術(shù)提供了機(jī)遇。納米光子學(xué)在市場(chǎng)上已經(jīng)取得了一定的影響。它是一個(gè)多學(xué)科交叉的研究領(lǐng)域,為物理學(xué),化學(xué),應(yīng)用科學(xué),工程學(xué)和生物學(xué),以及生物醫(yī)學(xué)技術(shù)創(chuàng)造了機(jī)遇。
納米光子學(xué)(Nanophotonics)研究光在納米范疇內(nèi)的行為。它是處理光或光和粒子,物質(zhì)相互作用光工程的一個(gè)亞波長(zhǎng)分支。作為納米光學(xué)的重要部分,等離子體探索了電磁學(xué)在小于波長(zhǎng)的維度上的定義。納米光學(xué)領(lǐng)域的技術(shù)包括近場(chǎng)(near-field)掃描光學(xué)顯微鏡,光助隧道掃描顯微鏡和表面等離激元(Plasmon)光學(xué)。納米光學(xué)有二方面的研究:第一,在納米范圍研究光的性質(zhì);第二,為工程應(yīng)用提高能量效率。
在等離子領(lǐng)域,亞波長(zhǎng)的金屬被用來(lái)散射光,模擬非局部等離子性質(zhì)已經(jīng)成為了一項(xiàng)標(biāo)準(zhǔn),甚至對(duì)于復(fù)雜的幾何體,這些都?xì)w功于先進(jìn)的數(shù)值方法和專用的軟件技術(shù)。
有限元法(finite element method)是一種高效能、常用的數(shù)值計(jì)算方法??茖W(xué)計(jì)算領(lǐng)域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化后,可以編制程序,使用計(jì)算機(jī)輔助求解。有限元法在早期是以變分原理為基礎(chǔ)發(fā)展起來(lái)的,所以它廣泛地應(yīng)用于以拉普拉斯方程和泊松方程所描述的各類物理場(chǎng)中(這類場(chǎng)與泛函的極值問(wèn)題有著緊密的聯(lián)系)。自從1969年以來(lái),某些學(xué)者在流體力學(xué)中應(yīng)用加權(quán)余數(shù)法中的迦遼金法(Galerkin)或最小二乘法等同樣獲得了有限元方程,因而有限元法可應(yīng)用于以任何微分方程所描述的各類物理場(chǎng)中,而不再要求這類物理場(chǎng)和泛函的極值問(wèn)題有所聯(lián)系。
電傳導(dǎo)的德魯?shù)履P驮?900年由保羅·德魯?shù)绿岢?,以解釋電子在物質(zhì)(特別是金屬)中的輸運(yùn)性質(zhì)。這個(gè)模型是分子運(yùn)動(dòng)論的一個(gè)應(yīng)用,假設(shè)了電子在固體中的微觀表現(xiàn)可以用經(jīng)典的方法處理,很像一個(gè)釘球機(jī),其中電子不斷在較重的、相對(duì)固定的正離子之間來(lái)回反彈。用德魯?shù)履P涂梢杂?jì)算超導(dǎo)材料石墨烯的介電常數(shù)和電導(dǎo)率以及計(jì)算均勻外磁場(chǎng)中的交流電導(dǎo)率等。所以對(duì)德魯?shù)履P偷难芯坑泻艽蟮默F(xiàn)實(shí)意義。
2.1局部問(wèn)題德魯?shù)履P凸?/p>
方程第二個(gè)式子為一階吸收邊界條件。
對(duì)方程進(jìn)行弱變分,設(shè)電場(chǎng)所在的空間為the sobolev space
設(shè)測(cè)試函數(shù)Φ∈v=H(curl,Ω)
5)適時(shí)冬剪。及時(shí)收聽(tīng)天氣預(yù)報(bào),根據(jù)氣候變化適當(dāng)調(diào)整冬剪時(shí)間,建議在12月下旬至次年1月上中旬修剪;結(jié)果母枝選留時(shí)切忌選用徒長(zhǎng)枝、基部直徑大于1.5 cm的發(fā)育不充分枝;可適當(dāng)增加15%~20%的留枝量,避免由于部分枝蔓芽體受凍,影響萌芽率和花芽分化質(zhì)量。
方程(1)式乘以試探函數(shù)得
(3)
利用矢量第一格林公式,(3)式變?yōu)?/p>
(4)
進(jìn)一步化簡(jiǎn):
(5)
再利用(6)式
則有:
(7)
2.2離散
對(duì)公式(7)進(jìn)行離散:
根據(jù)有限元理論,在每個(gè)剖分小區(qū)域上Ee,φe∈ve=H(curl,Ω)
(8)
將(7)式化為直角坐標(biāo)形式
(9)
將(8)式代入(9)式則有:
整理成矩陣形式得:
其中i,j=1,2,3…N
這一部分,我們即將呈現(xiàn)一些關(guān)于德魯?shù)履P偷臄?shù)值結(jié)果,有限元方法的數(shù)值實(shí)驗(yàn)已經(jīng)用MATLAB代碼實(shí)現(xiàn)出來(lái)。
3.1真空中平面波的傳播
我們首先考慮關(guān)于平面波在真空中傳播的模型,選擇的區(qū)域?yàn)閳A域,一階吸收邊界條件強(qiáng)加在邊界上面,參數(shù)ε1=ε2=1:網(wǎng)格剖分呈現(xiàn)在圖(1)。
圖(1)
數(shù)值結(jié)果:
接下來(lái)分別展示兩個(gè)區(qū)域都為真空狀態(tài)電場(chǎng)虛部分布圖如圖(2),電場(chǎng)實(shí)部分布圖如圖(3),電場(chǎng)分布圖如圖(4)
圖(2)
圖(3)
圖(4)
3.2平面波的散射問(wèn)題
數(shù)值結(jié)果:
接下來(lái)我們展示的是在里面區(qū)域是散射體的情況下,磁場(chǎng)與電場(chǎng)的分布情況。
圖(5)
圖(6)
圖(7)
在這篇論文中,我們用有限元方法求解納米光子學(xué)的德魯?shù)履P?,并用?shù)值實(shí)驗(yàn)驗(yàn)證了平面波在真空中的傳播及平面波的散射問(wèn)題。在不久的將來(lái),我們將利用HDG與FEM耦合的方法求解上述問(wèn)題。
[1]B.Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discon- tinuous Galerkin, mixed, and continuous Galerkin methods for second order elli- ptic problems, SIAM J. Numer. Anal. 47 (2) (2009) 1319-1365.
[2]L. Li, S. Lanteri, R. Perrussel, Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell’s equations, Compel 2 (3) (2013) 1112-1138.
[3]N. Nguyen, J. Peraire, B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations, J. Comput. Phys. 230 (19) (2011) 7151-7175.
[4]L.Li, S. Lanteri, R. Perrussel, A Hybridizable Discontinuous Galerkin Method for Solving 3D Time-Harmonic Maxwell’s Equations,numerical mathematics and advanced applications http://link.springer.com/book/10.1007/978-3-642-33134-3
[5]L. Li, S. Lanteri, R. Perrussel, A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equation, Journal of Computational Physics, 256 (2014) 563-581
[6]V. Dolean, S. Lanteri, R. Perrussel, Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method, IEEE Trans. Magn. 44 (6) (2008) 954-957.
[7]朱凌雪.高波數(shù)Helmholtz方程的連續(xù)內(nèi)罰有限元方法和內(nèi)罰間斷Galerkin方法:[碩士學(xué)位論文]. 南京大學(xué),2013-05.
[8]陸金甫,關(guān)治. 偏微分方程數(shù)值解法(第二版). 清華大學(xué)出版社,2004-01.
[9]Reed, W. H. & T. R. Hill. Triangular mesh methods for the neutron transport equation[R]. Los Alamos: Los Alamos Scientific Laboratory,1973.
[10]Houston, I.Perugia, A. Schneebeli & D. Schotzau. Interior penalty method for the indefinite time-harmonic Maxwell equations[J]. Numer. Math., (2005), 100(3): 485-518.
[11]Perugia, D.Schotzau & P. Monk. Stabilized interior penalty methods for the time-harmonic Maxwell equations[J]. Comput. Methods Appl. Meeh. Engrg., (2002), 191(41): 4675-4697.
[12]Perugia, D.Schotzau. The -Local discontinuous Galerkin method for low-frequeney time-harmonic Maxwell equations[J]. Math. Comp., (2002), 72(243): 1179-1214.
[13]S. Raza, S. I. Bozhevolnyi, M. Wubs and A. N. Mortensen, Nonlocal optical response in metallic nanostructures. J. Physics: Condensed Matter, 2015, 27, doi:10.1088/0953-8984/27/18/183204.
[14]K. R. Hiremath, L. Zschiedrich and F. Schmidt, Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using Ne’de’lec finite elements. J. Comput. Phys., 2012, 31: 5890-5896
[15]K. Busch, M. K?nig, and J. Niegemann, Discontinuous Galerkin methods in nanophotonics. Laser Photonics Rev., 2011, 5(6): 773-809.
[16]D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 2002, 39 (5):1749-1779.
[17]Bernardo Cockburn,Clint Dawson, Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems,Computational Geosciences 6:505-522,202.
[18]Ilaria Perugia,Dominik Schotzau, On the Coupling of Local Discontinuous Galerkin and Conforming Finite Element Methods, Journal of Scientific Computing, Vol.16,No.4,December 2001 (2002).
[19]P. Castillo, B. Cockburn, I. Perugia and D. Sch?tzau, An a priori error estimate of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., to appear.
[20]I. Perugia and D. Sch?tzau, The coupling of local discontinuous Galerkin and conforming finite element methods, J. Sci. Comput., to appear.
[21]F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed elements for second order elliptic problems, Numer. Math. 88 (1985) 217-235.
[22]F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, Berlin,1991).
[23]P. Alotto, A. Bertoni, I. Perugia and D. Schotzau, Discontinuous finite element methods for the simu-lation of rotating electrical machines, COMPEL 20 (2001) 448-462.
[24]C. Dawson and J. Proft, Coupling of continuous and discontinuous Galerkin methods for transport problems, Computer methods in applied mechanics and engineering, submitted.
[25]P. Alotto and A. Bertoni, Discontinuous finite element methods for the simulation of rotating electrical machines, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering,Vol. 20 Iss 2 pp.448-462.
[26]B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for time dependent convection-diffusion systems, SIAMJ.Numer. Anal. 35 (1998) 2440-2463.
[27]F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131 (1997) 267-279.
[28]B. Cockburn, C. Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, in: J.R. Whiteman (Ed.), The Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, Elsevier, Amsterdam, 2000, pp. 225-238.
國(guó)家自然基金(數(shù)學(xué));G0501100111301057
孫東慧(1991-),女,漢族,河南新鄉(xiāng)人,碩士研究生,電子科技大學(xué)數(shù)學(xué)科學(xué)學(xué)院,研究方向:有限元。
TB115
A
1671-1602(2016)18-0024-04