孫凱峰,劉莉莉,孫東,劉偉杰,何寧,段舜山,*
1.暨南大學(xué)水生生物研究中心,廣州510632
2.環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州510655
3.安徽大學(xué)江淮學(xué)院,合肥230039
微藻對(duì)壬基酚的響應(yīng)及去除能效研究
孫凱峰1,2,劉莉莉1,3,孫東1,劉偉杰1,何寧1,段舜山1,*
1.暨南大學(xué)水生生物研究中心,廣州510632
2.環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州510655
3.安徽大學(xué)江淮學(xué)院,合肥230039
分離篩選11種微藻開展微藻對(duì)NP暴露的響應(yīng)特征和去除能效研究。NP對(duì)葉綠素a含量的96 h半抑制效應(yīng)濃度(EC50)介于0.60~3.33 mg·L-1之間,EC50由小到大依次為:短棘盤星藻<羊角月牙藻<小球藻<衣藻<斜生柵藻<肥壯蹄形藻<卷曲纖維藻<二尾柵藻<惠氏微囊藻<四尾柵藻<蛋白核小球藻。除斜生柵藻、羊角月牙藻、肥壯蹄形藻、卷曲纖維藻之外,微藻的生長速率與EC50呈顯著的正相關(guān)關(guān)系。EC50與細(xì)胞粒徑、表面積以及體積總體上呈負(fù)相關(guān)關(guān)系,與微藻對(duì)NP的最大去除速率和半飽和常數(shù)呈正相關(guān)關(guān)系。NP的藻類去除過程符合一級(jí)反應(yīng)動(dòng)力學(xué)方程,且NP的半衰期與微藻起始總表面積呈顯著的負(fù)相關(guān)關(guān)系。NP對(duì)微藻群落的影響與其濃度相關(guān),其選擇性干擾效應(yīng)主要與微藻耐受性相關(guān)。NP耐受性高的種類多表現(xiàn)出高生長速率和去除能力。
壬基酚;微藻;急性毒性;生物去除
孫凱峰,劉莉莉,孫東,等.微藻對(duì)壬基酚的響應(yīng)及去除能效研究[J].生態(tài)毒理學(xué)報(bào),2016,11(3):226-236
Sun K F,Liu L L,Sun D,et al.Bioremoval of nonylphenol and variable responses of freshwater algae under nonylphenol exposure[J].Asian Journal of Ecotoxicology,2016,11(3):226-236(in Chinese)
壬基酚(nonylphenol,NP)是化學(xué)工業(yè)和有機(jī)合成工業(yè)中重要的中間體,廣泛應(yīng)用于塑料產(chǎn)品、洗滌劑、殺菌劑以及紡織業(yè)生產(chǎn)中。除合成過程中原料廢渣直接排放外(約占0.5%),環(huán)境中NP主要來源于其前體物質(zhì)NP聚氧乙烯醚(nonylphenol ethoxylates,NPEs)的天然降解或生物分解。近年來的研究表明,環(huán)境中的NP能夠干擾水生動(dòng)物正常內(nèi)分泌物質(zhì)的合成、釋放、轉(zhuǎn)運(yùn)代謝和結(jié)合,并能改變內(nèi)分泌系統(tǒng)的功能,破壞正常內(nèi)分泌系統(tǒng)平衡和調(diào)控作用,成為公認(rèn)的具有雌激素效應(yīng)的內(nèi)分泌干擾物(endocrine disrupting compounds, EDCs)之一[1-4]。環(huán)境中NP殘留的調(diào)查研究多數(shù)認(rèn)為,水環(huán)境中NP主要來源于人類活動(dòng)直接排放或經(jīng)過污水處理系統(tǒng)后排入。西班牙某城市污水處理廠出水口NP的濃度是(21.9±35)μg·L-1,而進(jìn)水口濃度竟高達(dá)(102±150)μg·L-1[5]。NP在不同國家和地區(qū)水樣、沉積物中的含量情況如表1所示。盡管存在調(diào)查方法和檢測(cè)手段的差異,NP在水環(huán)境中的含量已遠(yuǎn)遠(yuǎn)超過美國國家環(huán)保局(EPA)2005年推薦的標(biāo)準(zhǔn)。
表1 壬基酚(NP)在環(huán)境中的分布和含量情況Table 1 Distribution of nonylphenol(NP)in water environment around the world
NP對(duì)浮游植物的毒性效應(yīng)研究證實(shí),NP暴露能夠引起藻類葉綠素含量降低、抑制細(xì)胞分裂、改變細(xì)胞形態(tài)或細(xì)胞器形態(tài)及內(nèi)含物增多等多種生理活性變化,進(jìn)而導(dǎo)致藻細(xì)胞死亡。同時(shí),低濃度NP暴露,藻類抗氧化系統(tǒng)中谷胱甘肽轉(zhuǎn)移酶、抗壞血酸氧化酶和超氧化物歧化酶等活性顯著提高;造成線粒體膜內(nèi)外H+自由通過,破壞了正常氧化磷酸化所需的質(zhì)子動(dòng)力勢(shì)[18-19]。環(huán)境內(nèi)分泌干擾物三丁基錫[20]、四溴聯(lián)苯醚[21]、六溴十二烷[22]、四溴雙酚A[23]等對(duì)海洋微藻的毒性效應(yīng)研究也有相應(yīng)的報(bào)道,受試微藻對(duì)環(huán)境內(nèi)分泌干擾物暴露的敏感性強(qiáng)弱存在顯著的種間差異。AP的藻類去除研究表明[24-26],微藻對(duì)AP的去除過程不僅存在AP的被動(dòng)吸附過程,同時(shí)也存在藻類對(duì)AP的主動(dòng)轉(zhuǎn)運(yùn)過程。藻細(xì)胞壁由脂類、多糖、磷酸化蛋白等成分組成,表現(xiàn)出一定的疏水性特征,AP的強(qiáng)疏水性(NP的lgKow=4.48;OP的lgKow=4.12)也促使其快速吸附到細(xì)胞壁上。而后,NP可擴(kuò)散溶入細(xì)胞壁脂類分子,也可能與糖類等分子結(jié)合,或進(jìn)入胞內(nèi)與胞內(nèi)官能團(tuán)結(jié)合。另外,也有研究表明,進(jìn)入藻細(xì)胞內(nèi)的NP存在不同程度的降解過程??梢酝茰y(cè),微藻對(duì)內(nèi)分泌干擾物響應(yīng)的差異不僅與化合物的結(jié)構(gòu)有關(guān),而且與化合物在藻細(xì)胞表面的吸附和富集特征有關(guān)。本文以環(huán)境內(nèi)分泌干擾物NP為研究對(duì)象,對(duì)比研究NP的毒性效應(yīng)在微藻的種屬、形態(tài)等因子影響下的差異性,探明NP毒性效應(yīng)與微藻種類、形態(tài)等的相關(guān)關(guān)系,并對(duì)NP的藻類去除能效進(jìn)行探討。揭示NP對(duì)水域生態(tài)系統(tǒng)浮游植物的選擇性干擾效應(yīng)規(guī)律,為NP的藻類生物去除技術(shù)和NP的生態(tài)毒性監(jiān)測(cè)的指示生物篩選提供藻種資源和基礎(chǔ)理論支持。
1.1 實(shí)驗(yàn)材料
NP(C9H19C6H4OH):優(yōu)級(jí)純,購自上海晶純實(shí)業(yè)有限公司。實(shí)驗(yàn)用NP以丙酮為溶劑制備高濃度儲(chǔ)備液。
實(shí)驗(yàn)藻種:分離自暨南大學(xué)明湖,經(jīng)純化培養(yǎng)保存于BG-11培養(yǎng)基中。實(shí)驗(yàn)選取惠氏微囊藻(Microcystiswesenbergii)、斜生柵藻(Scenedesmus obliquus)、四尾柵藻(Scenedesmus quadricanda)、二尾柵藻(Scenedesmus bicauda)、蛋白核小球藻(Chlorella pyrenoidosa)、小球藻(Chlorellasp.)、衣藻(Chlamydomonassp.)、短棘盤星藻(Pediastrum boryanum)、羊角月牙藻(Selenastrum capricornutum)、肥壯蹄形藻(Kirchneriella obesa)、卷曲纖維藻(Ankistrodesmus convolutus)為研究對(duì)象。受試微藻的形態(tài)學(xué)參數(shù)見附表1。微藻采用人工氣候培養(yǎng)箱(CC275TL-2H, Xutemp)靜置培養(yǎng),每天搖瓶3次。培養(yǎng)條件設(shè)定為:溫度(23±1)℃,光照強(qiáng)度80 μmol·(m2·s)-1,光周期為12 L:12 D。
1.2 實(shí)驗(yàn)方法
NP對(duì)微藻生長的干擾效應(yīng)參考OECD(2006)的要求設(shè)定:將指數(shù)生長期的藻細(xì)胞濃縮后接種到50 mL玻璃管(Schott Duran,Germany)中,藻液終體積為35 mL。NP濃度為:0.10、0.16、0.25、0.40、0.63、1.00、1.59、2.52、4.00、6.30、10.06 mg·L-1,對(duì)照組和實(shí)驗(yàn)組丙酮體積(V/V)為0.1%,每組3個(gè)平行。短棘盤星藻起始細(xì)胞密度為0.7×105個(gè)·L-1,其余種類細(xì)胞密度約為2×105個(gè)·L-1。
微藻對(duì)培養(yǎng)基中NP的去除能效的實(shí)驗(yàn)安排如下:
(1)培養(yǎng)基中NP含量隨時(shí)間變化趨勢(shì):藻類培養(yǎng)基中添加1 mg·L-1的NP,丙酮體積為總體積的1‰。混合均勻后分裝到150 mL三角瓶中并依次間隔10 min接種處于指數(shù)生長期的11種微藻,然后再次分裝40 mL加入NP后的藻液到50 mL玻璃管中進(jìn)行試驗(yàn),分別于0 min、10 min、30 min、1 h、6 h、12 h、24 h按照接種順序取樣5 mL,經(jīng)0.45 μm的有機(jī)微孔濾膜過濾并收集濾液。濾膜用丙酮(1‰)清洗3次并合并濾液到帶蓋的螺口離心管(10 mL)中,并每組設(shè)3個(gè)平行,對(duì)照組為不接種微藻的BG-11培養(yǎng)基。
(2)微藻培養(yǎng)液中不同起始濃度NP的去除:藻類培養(yǎng)基中NP起始濃度分別為100、200、400、600、800、1 000 μg·L-1,丙酮體積為總體積的0.1%。依次間隔10 min接種處于指數(shù)生長期的微藻,搖勻后分裝40 mL到50 mL玻璃管(Schott Duran,Germany)中進(jìn)行試驗(yàn),每組設(shè)3個(gè)平行,對(duì)照組為不接種微藻的BG-11培養(yǎng)基。60 min時(shí)按照接種順序取5 mL藻液經(jīng)0.45 μm的有機(jī)微孔濾膜過濾,濾膜用丙酮(1‰)清洗3次并合并濾液到帶蓋的螺口離心管中(10 mL),4℃冰箱保存。
細(xì)胞密度、葉綠素a含量、比生長速率、96 h急性毒性半效應(yīng)濃度(EC50)等的測(cè)定和計(jì)算參考文獻(xiàn)[27]方法進(jìn)行。
培養(yǎng)液中NP的半衰期(Half life,T1/2):培養(yǎng)液中NP的時(shí)間變化采用Ct/C0表征,其中Ct代表t時(shí)刻N(yùn)P的含量,而C0代表起始NP的含量。通過擬合Ct/C0隨時(shí)間變化曲線計(jì)算NP的半衰期。
微藻對(duì)不同起始濃度NP的去除速率采用Michaelis-Menten方程進(jìn)行擬合:
V=Vmax×SN/(KS+SN)
其中,V表示去除速率;Vmax表示最大去除速率;SN表示培養(yǎng)液中的NP濃度;Ks半飽和常數(shù)(1/2最大去除速率時(shí)的NP濃度)。
NP的萃取和HPLC分析:5 mL過濾后水樣加入0.5 mL二氯甲烷,振蕩混勻后靜置10 min后分離下層液體到液相進(jìn)樣瓶中,萃取過程重復(fù)3次。氮?dú)獯蹈珊蠹尤爰状级ㄈ莸? mL。采用安捷倫1200系列高效液相色譜測(cè)定,熒光檢測(cè)器(激發(fā)光波長228 nm,發(fā)射光波長305 nm)。色譜分離采用安捷倫C18柱(4.6 mm×250 mm,直徑5 μm),溫度為25℃。進(jìn)樣量20 μL,流動(dòng)相采用75%的乙腈水溶液,流速為0.8 mL·min-1。NP標(biāo)準(zhǔn)曲線設(shè)置為50、100、200、400、600、800、1 000 μg·L-1,助溶劑丙酮體積為總體積的1‰。
1.3 數(shù)據(jù)統(tǒng)計(jì)與分析
實(shí)驗(yàn)數(shù)據(jù)采用Origin 8.0整理和制圖,采用SPSS13.0軟件包進(jìn)行統(tǒng)計(jì)分析,單因素方差分析(One way-ANOVA)用來檢查處理之間的差異性,P< 0.05和P<0.01分別認(rèn)為顯著和極其顯著。藻類96 h-EC50值通過擬合NP對(duì)微藻生長的抑制率%與NP濃度的回歸方程計(jì)算。
GIR%=(Cck-CNP)/Cck×100%
公式中,Cck為對(duì)照組藻細(xì)胞密度,CNP為NP暴露組藻細(xì)胞密度。
2.1 NP對(duì)微藻的毒性效應(yīng)及影響因素
NP對(duì)微藻葉綠素a含量產(chǎn)生毒性效應(yīng)的濃度范圍和毒性效應(yīng)參數(shù)如表2所示。NP對(duì)11種微藻葉綠素a含量的半抑制效應(yīng)濃度(EC50)介于0.60~3.33 mg·L-1之間,其毒性效應(yīng)強(qiáng)弱順序依次為:短棘盤星藻>羊角月牙藻>小球藻>衣藻>斜生柵藻>肥壯蹄形藻>卷曲纖維藻>二尾柵藻>惠氏微囊藻>四尾柵藻>蛋白核小球藻。NP對(duì)柵藻屬和小球藻屬微藻生長的抑制效應(yīng)也存在極顯著差異,四尾柵藻的耐受性顯著高于其他柵藻種類,而蛋白核小球藻耐受性顯著高于其他小球藻。然而,NP對(duì)斜生柵藻、肥壯蹄形藻和衣藻生長的半抑制效應(yīng)濃度無顯著差異(P>0.05)。
表2 NP對(duì)微藻葉綠素a含量的抑制效應(yīng)Table 2 Growth inhibition of NP on the Chl.a content of algae after cultured for 96 h
微藻對(duì)環(huán)境內(nèi)分泌干擾物的差異響應(yīng)在現(xiàn)有文獻(xiàn)中也有相應(yīng)的報(bào)道,近頭狀偽蹄形藻(Pseudokirchneriella subcapitata)對(duì)壬基酚、辛基酚和雌二醇的耐受性均高于萊茵衣藻、銅綠微囊藻,且銅綠微囊藻不同株系間對(duì)3種污染物的耐受性也存在不同差異[19]。三丁基錫對(duì)派格棍形藻(Bacillaria paxillifera)、聚生角毛藻(Chaetoceros socialis)和簡裸甲藻(Gymnodinium simplex)的毒性效應(yīng)顯著高于丹麥細(xì)柱藻(Leptocylindrus danicus)和微型原甲藻(Prorocentrum minimum)[20]。六溴環(huán)十二烷對(duì)叉鞭金藻(Dicrateriasp.)和中肋骨條藻(Skeletonema costatum)的毒性顯著高于三角褐指藻(Phaeodactylum tricornutum)和海洋小球藻(Chlorellasp.);而四溴雙酚A對(duì)4種微藻毒性強(qiáng)弱順序?yàn)椋褐欣吖菞l藻>叉鞭金藻>海洋小球藻>三角褐指藻[22]。鄧結(jié)平等[23]的研究表明四溴雙酚A對(duì)7種海洋微藻毒性效應(yīng)強(qiáng)弱順序?yàn)椋耗彩辖敲?Chaetoceros muelleri)>微擬球藻(Nannochloropsis oculata)>等鞭金藻塔西堤品系(Isochrysis galbana(Tahitian strain))>湛江等鞭金藻(Dicrateria zhanjiangensis)>塔胞藻(Pyramidomonassp.)>三角褐指藻>亞心形扁藻(Platymonas subcordiformis)。NP暴露下普通小球藻(Chlorella vulgaris)的光合作用效率、色素含量、光能轉(zhuǎn)化效率、抗氧化系統(tǒng)酶類活性等生理過程的抑制效應(yīng)顯著低于羊角月牙藻。同時(shí),NP在普通小球藻細(xì)胞內(nèi)的降解速率也顯著高于羊角月牙藻[18]。綜合現(xiàn)有的研究以及本研究中11種微藻對(duì)NP的響應(yīng),我們可以推斷,NP對(duì)微藻生長的差異性干擾效應(yīng)與其他種類環(huán)境污染物的毒性效應(yīng)相類似。NP耐受性強(qiáng)的種類主要包括:四尾柵藻、蛋白核小球藻和惠氏微囊藻,而敏感性較強(qiáng)的種類則主要是羊角月牙藻、斜生柵藻、肥壯蹄形藻等。耐受性高的微藻種類可以用來開展NP的藻類生物去除等應(yīng)用開發(fā),而敏感性高的種類可用來進(jìn)行NP的環(huán)境毒理學(xué)測(cè)試中敏感性指示種的篩選。
NP對(duì)11種微藻生長的抑制效應(yīng)不僅與藻種有關(guān),而且受藻種的生理和形態(tài)特性的影響。除斜生柵藻、羊角月牙藻、肥胖蹄形藻、卷曲纖維藻之外,其余7種微藻的生長速率與EC50呈顯著的正相關(guān)關(guān)系(EC50=11.04μ-2.20,R2=0.8547,P<0.01)。蛋白核小球藻的高EC50值受其高生長速率的影響,相反的,短棘盤星藻的低EC50值受其低生長速率的影響(圖1)。這一研究結(jié)果在王曉艷等[22]的研究中也有報(bào)道,海洋小球藻和三角褐指藻的生長速率顯著高于中肋骨條藻和叉鞭金藻,且對(duì)六溴環(huán)十二烷和四溴雙酚A的耐受性也顯著高于后者。另外,本研究中所選取的斜生柵藻、羊角月牙藻是環(huán)境毒理學(xué)中常用的敏感性指示種,其對(duì)多數(shù)環(huán)境污染物的響應(yīng)均較其他種類敏感。本研究也證實(shí)了NP的環(huán)境生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)也可采用衣藻和卷曲纖維藻、肥壯蹄形藻等高敏感性微藻進(jìn)行,進(jìn)一步豐富了環(huán)境毒理學(xué)實(shí)驗(yàn)中的藻類生物材料。NP毒性與受試微藻細(xì)胞形態(tài)學(xué)特征也呈一定的相關(guān)關(guān)系,EC50與細(xì)胞粒徑總體上呈負(fù)相關(guān)關(guān)系;除羊角月牙藻和卷曲纖維藻外,EC50與藻細(xì)胞表面積呈顯著的負(fù)相關(guān)關(guān)系(EC50=-0.0043S+2.60,R2=0.3908,P=0.042),與藻細(xì)胞體積呈也顯著的負(fù)相關(guān)關(guān)系(EC50=-0.0089V+ 3.05,R2=0.5705,P=0.018)。本研究中微藻的耐受性與形態(tài)特征的相關(guān)關(guān)系與謝永紅等[20]研究結(jié)果相類似,細(xì)胞粒徑和表面積較大的微藻種類耐受性顯著低于粒徑和表面積較小的微藻種類。
圖1 藻細(xì)胞增長速率、表面積(μm2)、體積(μm3)與EC50的相關(guān)關(guān)系
2.2 微藻對(duì)NP的去除能效
微藻培養(yǎng)液中NP(1 mg·L-1)隨時(shí)間變化情況如圖2所示,24 h內(nèi)NP去除率顯著增加,各處理組培養(yǎng)液中NP去除率均超過90%。微藻對(duì)NP的去除率與總細(xì)胞表面積呈顯著正相關(guān)關(guān)系,起始階段(10 min)NP去除率介于6%~25%,NP去除率與總細(xì)胞表面積呈顯著正相關(guān)相關(guān)(NP%=0.05S+5.46,R2=0.9812,P<0.01);12 h時(shí),NP去除率在一定程度上仍受藻類總表面積的影響,其相關(guān)關(guān)系為:NP%= 0.046S+83.00(R2=0.5898,P=0.004)(附圖1)。藻類培養(yǎng)液中NP(1 mg·L-1)的半衰期在各處理組間的變化情況表明,11種微藻培養(yǎng)液中NP的半衰期介于28~200 min之間(圖2)。除斜生柵藻、卷曲纖維藻和惠氏微囊藻外,NP半衰期與藻細(xì)胞總表面積呈顯著的負(fù)相關(guān)關(guān)系(T1/2=-1.07S+229.40,R2=0.8581,P <0.001)(附圖2)。微藻對(duì)NP的去除速率在不同研究中受微藻種類和起始密度的影響,表現(xiàn)出一定的差異。類似的研究也表明,NP的藻類去除速率與細(xì)胞密度呈正相關(guān)關(guān)系,但去除速率在不定舟形藻(Navicula incerta)[28]、球等鞭金藻(Isochrysis galbana)[29]、銅綠微囊藻(Microcystis aeruginosa)[30]、羊角月牙藻[18]和多種小球藻中存在較大差別,這一現(xiàn)象主要受各實(shí)驗(yàn)起始細(xì)胞密度以及受試微藻藻種的差別導(dǎo)致。另外,也有研究表明,固定化處理后小球藻對(duì)培養(yǎng)液中NP的去除率增加顯著[31-32]。
圖2 微藻對(duì)NP(1 mg·L-1)的去除動(dòng)力學(xué)參數(shù)
不同起始濃度NP的藻類去除能效經(jīng)米氏方程擬合(附圖3)后各相關(guān)參數(shù):最大去除速率(Vmax)和半飽和常數(shù)(1/2Vmax對(duì)應(yīng)的起始NP的濃度)見表3。NP暴露60 min后,11種微藻對(duì)NP的最大去除速率介于9.94和91.00 μg·(mg·h)-1之間。11種微藻的NP去除速率從大到小順序依次為:斜生柵藻>惠氏微囊藻>蛋白核小球藻>四尾柵藻>短棘盤星藻>二尾柵藻>小球藻>肥壯蹄形藻>羊角月牙藻>卷曲纖維藻>衣藻。微藻對(duì)NP去除速率的差異可分為6組,四尾柵藻、短棘盤星藻、二尾柵藻、小球藻之間無顯著差異;羊角月牙藻、卷曲纖維藻、肥壯蹄形藻之間也無顯著差異(P>0.05);但斜生柵藻、惠氏微囊藻、蛋白核小球藻和衣藻之間均存在顯著差異(P<0.05),同時(shí),柵藻屬和小球藻屬微藻之間也存在顯著差異(P<0.05),斜生柵藻的NP去除速率顯著高于其他2種柵藻,蛋白核小球藻的NP去除速率顯著高于其他小球藻。微藻對(duì)NP去除的半飽和常數(shù)介于10.38~79.43 μg之間,蛋白核小球藻和惠氏微囊藻顯著高于其他種微藻,卷曲纖維藻和二尾柵藻半飽和常數(shù)顯著低于其他種類(P<0.05)。柵藻屬和小球藻屬之間半飽和常數(shù)均具有顯著差異(P<0.05)。微藻對(duì)烷基酚類環(huán)境內(nèi)分泌干擾物的吸附和去除過程在銅綠微囊藻[33]和斜生柵藻[34]的研究中也得到印證。銅綠微囊藻可以快速吸附辛基酚(OP),且去除過程符合一級(jí)反應(yīng)動(dòng)力學(xué)方程。培養(yǎng)5 d后,斜生柵藻可以去除89%的NP和58%的OP,并且去除過程符合一級(jí)反應(yīng)動(dòng)力學(xué)方程。
圖3 藻細(xì)胞對(duì)NP的最大吸附速率(Vmax)、半飽和常數(shù)(Ks)與EC50的相關(guān)關(guān)系
培養(yǎng)液中NP的生物吸附一定程度上增加了藻細(xì)胞的NP暴露濃度,從而導(dǎo)致高吸附能力微藻的NP暴露毒性增加。11種受試微藻的EC50與NP的半飽和常數(shù)Ks呈顯著的正相關(guān)關(guān)系(EC50=0.027Ks+0.62,R2=0.5445,P=0.0058);除斜生柵藻和惠氏微囊藻之外,微藻的EC50與NP的最大去除速率Vmax呈顯著的正相關(guān)關(guān)系(EC50=0.062Vmax+0.16,R2= 0.4204,P=0.035)(圖3)。微藻對(duì)NP的去除包括了被動(dòng)吸附和主動(dòng)吸收的過程,而微藻的去除能效均受其自身對(duì)NP耐受性程度的間接調(diào)控。有研究表明,高去除能效微藻對(duì)NP等環(huán)境內(nèi)分泌干擾物的生物去除過程中也進(jìn)行了生物降解的過程,如:普通小球藻[18,31-32,34-35]、近頭狀偽蹄形藻(Pseudokirchneriella subcapitata)、急尖柵藻(Scenedesmus acutus)、四尾柵藻和網(wǎng)狀空星藻(Coelastrum reticulatum)[36]、水華魚腥藻(Anabaena flos-aquae)以及銅綠微囊藻(Microcystis aeruginosa)[30]等。微藻的高生物降解能效間接增加了微藻對(duì)環(huán)境內(nèi)分泌干擾物的耐受性,有助于微藻在環(huán)境內(nèi)分泌干擾物污染水體中的生存和種間競爭優(yōu)勢(shì)的獲得。
表3 微藻培養(yǎng)液中NP去除速率與NP初始濃度的米氏方程擬合曲線相關(guān)參數(shù)Table 3 Parameters of Michaelis-Menten equation for NP removal rate and initial concentrations
綜上所述,NP對(duì)淡水生態(tài)系統(tǒng)的中微藻生長的抑制效應(yīng)存在顯著的種間差異性,96 h半抑制效應(yīng)濃度(EC50)介于0.60~3.33 mg·L-1之間。NP對(duì)微藻毒性效應(yīng)的影響因素包括:微藻種類、生長速率、微藻形態(tài)以及微藻對(duì)NP的生物富集能力等。四尾柵藻和蛋白核小球藻的EC50顯著高于同屬的其他種類。除斜生柵藻、羊角月牙藻、肥壯蹄形藻、卷曲纖維藻之外,微藻的生長速率與EC50呈顯著的正相關(guān)關(guān)系。NP對(duì)微藻毒性效應(yīng)EC50與藻細(xì)胞粒徑、表面積和體積呈負(fù)相關(guān)關(guān)系;與微藻對(duì)NP的最大去除速率和半飽和常數(shù)呈正相關(guān)關(guān)系。NP對(duì)微藻群落的影響與其濃度相關(guān),其選擇性干擾效應(yīng)主要與微藻耐受性相關(guān)。NP耐受性高的種類多表現(xiàn)出高生長速率和高NP去除能效。四尾柵藻和蛋白核小球藻可作為污水處理廠出水中氮磷和NP等殘留的生物降解材料;斜生柵藻、羊角月牙藻、肥壯蹄形藻、卷曲纖維藻可用作NP暴露生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的敏感性指示種。
(References):
[1] Kruger T,Long M,Bonefeld-Jorgensen C B.Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor[J].Toxicology,2008,246:112-123
[2] Bergman ?,Heindel J J,Kasten T,et al.The impact of endocrine disruption:A consensus statement on the state of the science[J].Environmental Health Perspectives, 2013,121(4):104-106
[3] Vandenberg L N,Colborn T,Hayes T B,et al.Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology[J].Reproductive Toxicology,2013,38:1-15
[4] Ying G G,Williams B,Kookana R.Environmental fate of alkylphenols and alkylphenol ethoxylates-A review[J]. Environment International,2002,28:215-226
[5] Sánehez-Avila J,Bonet J,Velasco G,et al.Determination and occurrence of phthalates,alkylphenols,bisphenol A, PBDEs,PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant[J]. Science of The Total Environment,2009,407(13):4157-4167
[6] Li D H,Kim M,Shim W J,et al.Seasonal flux of nonylphenol in Han River,Korea[J].Chemosphere,2004,56 (1):1-6
[7] Stachel B,Ehrhorn U,Heemken O,et al.Xenoestrogens in the River Elbe and its tributaries[J].Environmental Pollution,2003,124(3):497-507
[8] Heemken O P,Reincke H,Stachel B,et al.The occurrence of xenoestrogens in the Elbe River and the North Sea[J].Chemosphere,2001,45:245-259
[9] Isobe T,Nishiyama H,Nakashima A,et al.Distribution and behavior of nonylphenol,octylphenol and nonylphenol monoethoxylate in Tokyo metropolitan area:Their association with aquatic particles and sedimentary distributions[J].Environmental Science&Technology,2001,35 (6):1041-1049
[10] Blackburn M,Kirby S,Waldock M.Concentrations of alkyphenol polyethoxylates entering UK estuaries[J].Marine Pollution Bulletin,1999,38(2):109-118
[11] Jonkers N,Laane R,De Voogt P.Fate of nonylphenol ethoxylates and their metabolites in two Dutch estuaries: Evidence of biodegradation in the field[J].Environmental Science&Technology,2003,37(2):321-327
[12] Ferguson P,Iden C,Brownawell B.Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewageimpacted urban estuary[J].Environmental Science& Technology,2001,35(12):2428-2435
[13] 段菁春,陳兵,麥碧嫻,等.洪季珠江三角洲水系烷基酚污染狀況研究[J].環(huán)境科學(xué),2004,25(3):48-52
Duan J C,Chen B,Mai B X,et al.Survey of alkyphenols in aquatic environment of Zhujiang Delta[J].Environmental Science,2004,25(3):48-52(in Chinese)
[14] 李正炎,李浩東.西瓦湖中壬基酚和雙酚A的污染特征[J].青島海洋大學(xué)學(xué)報(bào),2003,33(6):847-853
Li Z Y,Li H D.Distribution characteristics of nonylphenol and bisphenol A in Shihwa Lake[J].Journal of Ocean University of Qingdao,2003,33(6):847-853(in Chinese)
[15] Xu J,Wang P,Guo W F,et al.Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China[J].Chemosphere,2006,65(9):1445-1451
[16] 傅明珠.烷基酚在近海海洋和河口環(huán)境中的濃度分布與初步生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[D].青島:中國海洋大學(xué),2007
Fu M Z.Distribution characteristics of alkylphenols in coastal and estuary environment and the ecological risk assessment[D].Qingdao:Ocean University of China, 2007(in Chinese)
[17] 沈鋼,張祖麟,余剛,等.夏季海河與渤海灣中壬基酚和辛基酚污染的狀況[J].中國環(huán)境科學(xué),2005,25(6): 733-736
Shen G,Zhang Z L,Yu G,et al.The pollution state of nonylphenol and octylphenol in Haihe River and Bohai Bay in summer[J].Chinese Environmental Science,2005, 25(6):733-736(in Chinese)
[18] Gao Q T,Tam N F Y.Growth,photosynthesis and antioxidant responses of two microalgal species,Chlorella vulgarisandSelenastrum capricornutum,to nonylphenol stress[J].Chemosphere,2011,82:346-354
[19] Perron M C,Juneau P.Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria[J].Environmental Research,2011,111:520-529
[20] 謝永紅,蘇榮國,張麗笑,等.三丁基錫對(duì)中國近海常見海洋微藻的毒性效應(yīng)[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(6-7):1075-1080
Xie Y H,Su R G,Zhang L X,et al.The toxic effects of chloride tributyltin on the predominant marine algae in China coastal water[J].Ecology and Environmental Sciences,2011,20(6-7):1075-1080(in Chinese)
[21] 孟范平,李卓娜,趙順順,等.BDE-47對(duì)4種海洋微藻抗氧化酶活性的影響[J].生態(tài)環(huán)境學(xué)報(bào),2009,18(5): 1659-1664
Meng F P,Li Z N,Zhao S S,et al.Effects of BDE-47 on the antioxidase activities of four species of marine microalgae[J].Ecology and Environmental Sciences,2009, 18(5):1659-1664(in Chinese)
[22] 王曉艷,蔣鳳華,曹為,等.六溴環(huán)十二烷和四溴雙酚A對(duì)4種海洋微藻的急性毒性[J].海洋環(huán)境科學(xué),2013, 32(6):831-835
Wang X Y,Jiang F H,Cao W,et al.Acute toxic effect of hexabromocyclododecane and tetrabromobisphenol A on four marine microalgae[J].Marine Environmental Science,2013,32(6):831-835(in Chinese)
[23] 鄧結(jié)平,李赟,潘魯青.四溴雙酚A對(duì)7種海洋微藻的急性毒性[J].中國海洋大學(xué)學(xué)報(bào),2015,45(2):54-59
Deng J P,Li Y,Pan L Q.The acute toxicity of TBBPA on seven marine microalgae[J].Periodical of Ocean University of China,2015,45(2):54-59(in Chinese)
[24] 趙麗,劉征濤,馮流,等.單歧藻對(duì)烷基酚類化合物的生物降解性及QSBR研究[J].環(huán)境科學(xué)研究,2005,18 (1):23-27
Zhao L,Liu Z T,Feng L,et al.Study on biodegradability of alkylphenols bytolypothrix and QSBR[J].Research of Environmental Sciences,2005,18(1):23-27(in Chinese)
[25] 翟洪艷,孫紅文.藻類對(duì)壬基酚微生物降解的影響[J].生態(tài)環(huán)境,2007,16(3):842-845
Zhai H Y,Sun H W.The effect of algae on biodegradation of nonylphenol by microorganism[J].Ecology and Environment,2007,16(3):842-845(in Chinese)
[26] 彭章娥,楊海真,汪蓓蓓,等.淡水藻類對(duì)辛基酚的吸附行為研究[J].環(huán)境科學(xué),2009,30(12):3652-3657
Peng Z E,Yang H Z,Wang B B,et al.Study on the sorption of 4-octylphenol by freshwater algae[J].Environmental Sciences,2009,30(12):3652-3657(in Chinese)
[27] Sun K F,Liu W J,Liu L L,et al.Ecological risks assessment of organophosphorus pesticides on bloom ofMicrocystis wesenbergii[J].International Biodeterioration& Biodegradation,2013,77:98-105
[28] Liu Y,Guan Y T,Gao Q T,et al.Cellular responses,biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatomNavicula incerta[J].Chemosphere,2010,80:592-599
[29] Correa-Reyes G,Viana M T,Marquez-Rocha F J,et al. Nonylphenol algal bioaccumulation and its effect through the trophic chain[J].Chemosphere,2007,68:662-670
[30] Babu B,Wu J T.Biodegradation of phthalate eaters by cyanobacteria[J].Journal of Phycology,2010,46:1106-1113
[31] Gao Q T,Wong Y S,Tam N F Y.Removal and biodegradation of nonylphenol by differentChlorellaspecies[J]. Marine Pollution Bulletin,2011,63:445-451
[32] Gao Q T,Wong Y S,Tam N F Y.Removal and biodegradation of nonylphenol by immobilizedChlorella vulgaris [J].Bioresource Technology,2011,102:10230-10238
[33] Baptista M,Stoichev T,Basto M C P,et al.Fate and effects of octylphenol in aMicrocystis aeruginosaculture medium[J].Aquatic Toxicology,2009,92:59-64
[34] Zhou G J,Peng F Q,Yang B,et al.Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalgaScenedesmus obliquus[J].Ecotoxicology and Environmental Safety,2013,87:10-16
[35] Peng Z E,Wu F,Deng N S.Photodegradation of bisphenol A in simulated lake water containing algae,humic acid and ferric ions[J].Environmental Pollution,2006, 144:840-846
[36] Nakajima N,Teramoto T,Kasai F,et al.Glycosylation of bisphenol A by freshwater microalgae[J].Chemosphere, 2007,69:934-941◆
Bioremoval of Nonylphenol and Variable Responses of Freshwater Algae under Nonylphenol Exposure
Sun Kaifeng1,2,Liu Lili1,3,Sun Dong1,Liu Weijie1,He Ning1,Duan Shunshan1,*
1.Research Centre of Hydrobiology,Jinan University,Guangzhou 510632,China
2.South China Institute of Environmental Sciences,MEP,Guangzhou 510655,China
3.Department of Biochemistry,Anhui University Jianghuai College,Hefei 230031,China
1 December 2015 accepted 8 January 2016
The effects of nonylphenol(NP)on growth,chlorophyll a content of eleven freshwater algae and their bioremoval ability on NP were compared.Acute toxic of NP was conducted with ten concentrations of NP(0.10, 0.16,0.25,0.40,0.63,1.00,1.59,2.52,4.00,6.30,10.06 mg·L-1),where a final acetone concentration of 0.1%(v/ v)was set as control.The NP bioremoval in eleven algal cultures was determined during incubation with 100,200, 400,600,800,1 000 μg·L-1of NP in BG-11 medium after exposure for 1 h,while the changes of NP(1 mg·L-1) in algal cultures were determined at 0 min,10 min,30 min,1 h,6 h,12 h and 24 h.The half inhibitory effect concentrations(EC50)of NP on Chl.a ranged from 0.6 to 3.33 mg·L-1after being cultured for 96 h.The EC50valuessuggested that the tolerance of algae to NP increased according to the following order:Pediastrum boryanum,Selenastrum capricornutum,Chlorellasp.,Chlamydomonassp.,Scenedesmus obliquus,Kirchneriella obesa,Ankistrodesmus convolutus,Scenedesmus bicauda,Microcystis wesenbergii,Scenedesmus quadricandaandChlorella pyrenoidosa.A positive correlation was detected between algal growth rate and EC50values,except forS.obliquus,S. capricornutum,K.obesaandA.convolutus.In addition,negative correlations were detected between EC50values and cell size,surface area and volume,respectively.Removal rate of NP in all algal species were higher than 90% at 24 h,and a positive correlation was detected between NP removal rate and the total cell surface areas.The algal removal of NP(1 mg·L-1)followed the first-order kinetics equation.A negative correlation was observed between the half-life of NP and total algal surface area.Removal rates of NP under different initial NP concentrations were well fitted with Michaelis-Menten equation.The maximum removal rates of NP ranged from 9.94 to 91 μg·(mg· h)-1,while half saturated constant ranged from 10.38 to 79.43 μg.Positive correlation were detected between EC50values and the maximum removal rates of NP,EC50values and half saturated constants,respectively.Effects of NP on growth of algae and structure of community were dependent on the NP concentration.Variation of community was influenced by the tolerance of NP among tested algal species.Algal species with higher tolerance of NP showed higher growth rates and higher bioaccumulation of NP.
nonylphenol;algae;acute toxicity;bioremoval
附表1 微藻的形態(tài)學(xué)參數(shù)Appendix 1 The morphological parameters of microalgae
環(huán)柱體Annulus卷曲纖維藻(A.convolutus)12.4410.5048.48羊角月牙藻(S.capricornutum)8.936.6941.40直徑/μm Diameter/μm表面積/μm2Surface area/μm2體積/μm3Volume/μm3球體Sphere體積/μm3Volume/μm3圓柱體Cylinder惠氏微囊藻(M.wesenbergii)5.3389.1079.24小球藻(Chlorellasp.)8.33218.09302.49蛋白核小球藻(C.pyrenoidosa)5.1482.8471.07衣藻(Chlamydomonassp.)6.66139.32154.597直徑/μm Diameter/μm高/μm Height/μm表面積/μm2Surface area/μm2短棘盤星藻(P.boryanum)17.631.20556.63292.80肥壯蹄形藻(K.obesa)7.562.47131.75110.82
附圖1 NP去除率與細(xì)胞表面積的相關(guān)關(guān)系
附圖2 藻類培養(yǎng)液中NP(1 mg·L-1)的半衰期與藻細(xì)胞總表面積的相關(guān)關(guān)系
附圖3 微藻培養(yǎng)液中NP去除速率與起始濃度在第60分鐘的米式方程擬合曲線
2015-12-01 錄用日期:2016-01-08
1673-5897(2016)3-226-11
X171.5
A
10.7524/AJE.1673-5897.20151201003
簡介:段舜山(1955—),男,生態(tài)學(xué)博士,教授,主要研究方向?yàn)樗廴旧鷳B(tài)和藻類生理生態(tài)學(xué),發(fā)表學(xué)術(shù)論文200余篇。
國家自然科學(xué)基金項(xiàng)目(21307140,41476099);中央級(jí)公益性科研院所基本科研業(yè)務(wù)專項(xiàng)(PM-zx703-201602-043,PM-zx021-201211-123)
孫凱峰(1983-),男,博士后,研究方向?yàn)樵孱惿砩鷳B(tài)學(xué),E-mail:jnuskf2009@163.com;
*通訊作者(Corresponding author),E-mail:tssduan@jnu.edu.cn