亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        3種有機(jī)磷農(nóng)藥對(duì)水生生物的乙酰膽堿酯酶抑制效應(yīng)的物種敏感度分析初探

        2016-10-27 06:16:15朱巖王飛飛張亞輝曹瑩曾鴻鵠劉征濤
        生態(tài)毒理學(xué)報(bào) 2016年3期
        關(guān)鍵詞:生物

        朱巖,王飛飛,張亞輝,曹瑩,曾鴻鵠,劉征濤

        1.桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,桂林541004

        2.中國(guó)環(huán)境科學(xué)研究院環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室國(guó)家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險(xiǎn)評(píng)估重點(diǎn)實(shí)驗(yàn)室,北京100012

        3種有機(jī)磷農(nóng)藥對(duì)水生生物的乙酰膽堿酯酶抑制效應(yīng)的物種敏感度分析初探

        朱巖1,2,王飛飛1,張亞輝2,*,曹瑩2,曾鴻鵠1,劉征濤2

        1.桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,桂林541004

        2.中國(guó)環(huán)境科學(xué)研究院環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室國(guó)家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險(xiǎn)評(píng)估重點(diǎn)實(shí)驗(yàn)室,北京100012

        通過(guò)篩選敵敵畏、馬拉硫磷和對(duì)硫磷3種有機(jī)磷農(nóng)藥對(duì)水生生物的急性毒性數(shù)據(jù)和乙酰膽堿酯酶抑制效應(yīng)數(shù)據(jù),構(gòu)建物種敏感度分布曲線進(jìn)行了比較分析。結(jié)果表明,敵敵畏對(duì)水生生物的急性毒性和乙酰膽堿酯酶抑制效應(yīng)的大小順序?yàn)椋好阁w內(nèi)抑制效應(yīng)>酶體外抑制效應(yīng)>急性毒性;馬拉硫磷和對(duì)硫磷的乙酰膽堿酯酶抑制效應(yīng)數(shù)據(jù)不足但趨勢(shì)相似,順序?yàn)椋好阁w內(nèi)抑制效應(yīng)>急性毒性>酶體外抑制效應(yīng)。敵敵畏的急性毒性和酶體外抑制效應(yīng)的5%危害濃度(HC5)分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍。在水質(zhì)基準(zhǔn)推導(dǎo)中,乙酰膽堿酯酶抑制效應(yīng)數(shù)據(jù)對(duì)有機(jī)磷農(nóng)藥的水生生物基準(zhǔn)具有重要的參考價(jià)值。

        有機(jī)磷農(nóng)藥;水生生物;乙酰膽堿酯酶;物種敏感度;水質(zhì)基準(zhǔn)

        朱巖,王飛飛,張亞輝,等.3種有機(jī)磷農(nóng)藥對(duì)水生生物的乙酰膽堿酯酶抑制效應(yīng)的物種敏感度分析初探[J].生態(tài)毒理學(xué)報(bào),2016,11(3):211-218

        Zhu Y,Wang F F,Zhang Y H,et al.A preliminary study on species sensitivity analysis of inhibition effect of three organophosphorus pesticides on acetylcholinesterase in aquatic organisms[J].Asian Journal of Ecotoxicology,2016,11(3):211-218(in Chinese)

        水生生物基準(zhǔn)作為水質(zhì)基準(zhǔn)(water quality criteria,WQC)的核心組成部分,用于保護(hù)水生態(tài)系統(tǒng)中水生生物的安全。推導(dǎo)污染物的水生生物基準(zhǔn)的方法主要包括生物模型法、評(píng)估因子法、統(tǒng)計(jì)外推法等[1]。物種敏感度分布(species sensitivity distribution,SSD)[1]作為統(tǒng)計(jì)外推法于20世紀(jì)70年代提出,已經(jīng)成為水質(zhì)基準(zhǔn)推導(dǎo)的主要方法之一[2]。SSD方法采用不同函數(shù),例如對(duì)數(shù)-邏輯斯帝函數(shù)[3-4]、對(duì)數(shù)正態(tài)分布函數(shù)[5-6]和對(duì)數(shù)三角函數(shù)[7]等,將不同生物對(duì)同一物質(zhì)的敏感度分布進(jìn)行擬合,計(jì)算出保護(hù)一定比例[8]生物的污染物濃度作為水質(zhì)基準(zhǔn)值。目前,該方法主要針對(duì)生物個(gè)體水平的毒性數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。

        長(zhǎng)期以來(lái),在推導(dǎo)水生生物基準(zhǔn)中,大多采用水生生物毒性數(shù)據(jù)中存活、生長(zhǎng)和繁殖等個(gè)體水平的“常規(guī)”毒性終點(diǎn)[9-10],而“非常規(guī)”的毒性終點(diǎn),例如雌激素紊亂[11]、酶抑制效應(yīng)、RNA或DNA[12]水平的變化被忽視。在美國(guó)的基準(zhǔn)推導(dǎo)文件中,這些“非常規(guī)”的毒性終點(diǎn)數(shù)據(jù)往往歸于“其他數(shù)據(jù)”,但這些毒性終點(diǎn)往往比“常規(guī)”毒性終點(diǎn)更加靈敏[13],這些指標(biāo)通過(guò)個(gè)體/亞個(gè)體水平表現(xiàn)外來(lái)脅迫效應(yīng),指示環(huán)境中痕量污染物短期或長(zhǎng)期暴露的毒性效應(yīng)[14-15]。陳朗等[16]分析了溴氰菊酯的酶類、生物化學(xué)、細(xì)胞學(xué)、遺傳學(xué)、基因及組織學(xué)等生物標(biāo)記物指標(biāo)的SSD曲線,指出這些指標(biāo)可以作為慢性毒性數(shù)據(jù)的一種替代或補(bǔ)充引入到水質(zhì)基準(zhǔn)推導(dǎo)中,彌補(bǔ)“傳統(tǒng)指標(biāo)”的不足。閆振廣等[17]采用基因表達(dá)效應(yīng)分析了重金屬的物種敏感度,結(jié)果發(fā)現(xiàn)銅的基因表達(dá)效應(yīng)較為敏感,具有作為慢性水質(zhì)基準(zhǔn)數(shù)據(jù)的應(yīng)用潛力,而鋅與鎘的基因表達(dá)效應(yīng)與慢性毒性數(shù)據(jù)相比沒(méi)有明顯優(yōu)勢(shì)。

        有機(jī)磷農(nóng)藥(organphosphorus pesticides,OPs)具有低成本、藥效高、品種多等特點(diǎn),是目前生產(chǎn)和使用最為廣泛的一類農(nóng)藥[18]。有機(jī)磷農(nóng)藥伴隨降雨和坡地漫流進(jìn)入環(huán)境水體中,對(duì)水生生物和人體健康構(gòu)成危害。乙酰膽堿酯酶(acetylcholinestetase, AChE)作為有機(jī)磷農(nóng)藥的靶標(biāo)酶,已經(jīng)積累了很多毒性數(shù)據(jù)。本文通過(guò)篩選敵敵畏、馬拉硫磷和對(duì)硫磷3種有機(jī)磷農(nóng)藥對(duì)水生生物的急性毒性數(shù)據(jù)和AChE抑制效應(yīng)數(shù)據(jù),利用物種敏感度分布法比較分析3種有機(jī)磷農(nóng)藥的急性毒性數(shù)據(jù)與AChE抑制效應(yīng)的敏感性,計(jì)算得到保護(hù)95%水生生物的有機(jī)磷農(nóng)藥濃度(HC5)。探討了在水質(zhì)基準(zhǔn)推導(dǎo)中,有機(jī)磷農(nóng)藥對(duì)AChE抑制效應(yīng)數(shù)據(jù)是否具有補(bǔ)充有機(jī)磷農(nóng)藥對(duì)水生生物急性毒性數(shù)據(jù)的潛力。

        1 材料與方法(Materials and methods)

        1.1 數(shù)據(jù)搜集與篩選

        本文中3種有機(jī)磷農(nóng)藥對(duì)水生生物的毒性數(shù)據(jù)主要來(lái)自美國(guó)環(huán)保署(USEPA)[19]的毒性數(shù)據(jù)庫(kù)ECOTOX(http://cfpub.epa.gov/ecotox),同時(shí)利用Web of Science、Sciencedirect、Wiley、Springer和中國(guó)知網(wǎng)等文獻(xiàn)數(shù)據(jù)庫(kù)搜索公開(kāi)發(fā)表的中英文文獻(xiàn),并以所得文獻(xiàn)的引用文獻(xiàn)作為補(bǔ)充。廣泛搜集了敵敵畏(dichlorvos)、對(duì)硫磷(parathion)和馬拉硫磷(malathion)3種有機(jī)磷農(nóng)藥對(duì)水生生物的毒性數(shù)據(jù)。搜索所用關(guān)鍵詞包括“敵敵畏”、“馬拉硫磷”、“對(duì)硫磷”、“水生生物”、“乙酰膽堿酯酶”、“有機(jī)磷農(nóng)藥”、“水質(zhì)基準(zhǔn)”、“生態(tài)風(fēng)險(xiǎn)”、“風(fēng)險(xiǎn)評(píng)估”、“物種敏感度”等。

        參考美國(guó)水生生物基準(zhǔn)技術(shù)指南[16]的數(shù)據(jù)篩選原則,將搜集到的數(shù)據(jù)進(jìn)行篩選,篩選標(biāo)準(zhǔn)為:數(shù)據(jù)的毒性終點(diǎn)為半數(shù)致死濃度(LC50)或半數(shù)效應(yīng)濃度(EC50),暴露時(shí)間2~4 d,不同暴露時(shí)間的數(shù)據(jù)以時(shí)間較長(zhǎng)的優(yōu)先;同一文獻(xiàn)中對(duì)同一種生物的多個(gè)毒性數(shù)據(jù),當(dāng)暴露時(shí)間相同時(shí),選擇最敏感的數(shù)據(jù);同一物種不同生命階段的毒性數(shù)據(jù)以敏感生命階段的數(shù)據(jù)優(yōu)先。

        1.2 數(shù)據(jù)處理

        將搜集且篩選過(guò)的數(shù)據(jù)按照濃度由小到大進(jìn)行排序并編號(hào),同一物種的多個(gè)同類毒性數(shù)據(jù)取幾何平均值作為該物種的急性毒性值或AChE抑制效應(yīng)數(shù)據(jù)。計(jì)算每個(gè)物種的累計(jì)概率:

        式中,P為累積概率,i是物種排序的秩,N是樣本數(shù)。將排序后的累積概率和濃度的對(duì)數(shù)轉(zhuǎn)換值應(yīng)用數(shù)據(jù)分析軟件Origin 9.0,選用某一特定概率模型進(jìn)行參數(shù)擬合構(gòu)建物種敏感度分布曲線。當(dāng)累積概率為0.05時(shí),對(duì)應(yīng)的濃度就是水生生物被危害的比例為5%時(shí)的污染物濃度(HC5)。采用對(duì)數(shù)-正態(tài)分布(公式2)和對(duì)數(shù)-邏輯斯蒂函數(shù)(公式3)對(duì)SSD曲線進(jìn)行擬合,采用決定校正系數(shù)(Adj.R2)和加權(quán)卡方檢驗(yàn)系數(shù)(Reduced Chi-Sqr)來(lái)判斷模型的擬合優(yōu)度,選擇最佳擬合模型。

        式中,y為累計(jì)概率,x為有機(jī)磷農(nóng)藥濃度對(duì)數(shù)轉(zhuǎn)換值(μg·L-1),α、β、μ和σ均為曲線參數(shù),erf()為誤差函數(shù)。

        2 結(jié)果(Results)

        2.1 有機(jī)磷農(nóng)藥對(duì)AChE的抑制效應(yīng)

        敵敵畏、對(duì)硫磷和馬拉硫磷3種典型有機(jī)磷農(nóng)藥對(duì)水生生物的急性數(shù)據(jù),其中包括敵敵畏的69種生物的急性毒性數(shù)據(jù),馬拉硫磷的43種生物的急性毒性數(shù)據(jù),對(duì)硫磷的11種生物的急性毒性數(shù)據(jù)(見(jiàn)附表1~3)。

        本文搜集的AChE抑制效應(yīng)數(shù)據(jù)明顯少于急性毒性數(shù)據(jù),共涉及26種水生生物,包括19種生物的敵敵畏毒性數(shù)據(jù)、8種生物的馬拉硫磷毒性數(shù)據(jù)和5種生物的對(duì)硫磷毒性數(shù)據(jù),其中以敵敵畏的AChE抑制效應(yīng)數(shù)據(jù)最為豐富(見(jiàn)表1~2)。26種水生生物中,魚(yú)類占19種。

        表1 乙酰膽堿酯酶(AChE)體外暴露于3種有機(jī)磷農(nóng)藥的半數(shù)效應(yīng)濃度/半數(shù)抑制濃度(EC50/IC50)值Table 1 The EC50/IC50values of AChE fromin vitroexposure to three organophosphorus pesticides(OPs)

        26種水生生物的離體實(shí)驗(yàn)中,根據(jù)試驗(yàn)方法的不同分為體內(nèi)染毒和體外染毒。有10篇文獻(xiàn)中采用體外染毒的方法:提取生物體內(nèi)的AChE與不同種類、濃度的有機(jī)磷農(nóng)藥混合,在一定條件下培養(yǎng)后,測(cè)定有機(jī)磷農(nóng)藥對(duì)AChE的抑制效應(yīng)[20-22];有8篇文獻(xiàn)中采用體內(nèi)染毒的方法:將待測(cè)生物暴露在不同種類、濃度的有機(jī)磷農(nóng)藥中,經(jīng)過(guò)一定時(shí)間后,提取并測(cè)定酶活,得到有機(jī)磷農(nóng)藥在不同暴露時(shí)間內(nèi)對(duì)AChE的抑制效應(yīng)[23-28]?,F(xiàn)有的數(shù)據(jù)表明,在AChE的體外抑制中,敵敵畏的16種水生生物中,最敏感的是歐洲魚(yú)銜,最不敏感的是鯽魚(yú),兩者相差約350倍;馬拉硫磷的4種水生生物中,最敏感的是黑頭軟口鰷,最不敏感的是鰱魚(yú),兩者相差約10倍;對(duì)硫磷的2種淡水水生生物中,最敏感的是大型溞,最不敏感的是羅非魚(yú),兩者相差5倍。在AChE的體內(nèi)抑制中,敵敵畏毒性相關(guān)的3種淡水水生生物中,最敏感的是大型溞,最不敏感的是搖蚊幼蟲(chóng),兩者相差約35倍;馬拉硫磷毒性相關(guān)的4種淡水水生生物中,最敏感的是側(cè)邊底鳉,最不敏感的是藍(lán)鮎,兩者相差1萬(wàn)倍;對(duì)硫磷毒性相關(guān)的4種淡水水生生物中,最敏感的是大型溞,最不敏感的是金頭鯛,兩者相差約110倍。另外,體外染毒方法中暴露時(shí)間也相差很大,最短為3 min(鰱魚(yú)),最長(zhǎng)為1 h(太平洋牡蠣)。

        2.2 SSD最佳擬合函數(shù)

        表2 乙酰膽堿酯酶(AChE)體內(nèi)暴露于3種有機(jī)磷農(nóng)藥的半數(shù)效應(yīng)濃度/半數(shù)抑制濃度(EC50/IC50)值Table 2 The EC50/IC50values of AChE fromin vivoexposure to three organophosphorus pesticides(OPs)

        表3 2個(gè)數(shù)學(xué)函數(shù)對(duì)SSD曲線的統(tǒng)計(jì)參數(shù)Table 3 The statistics of two mathematical functions for SSD curves

        通過(guò)對(duì)數(shù)-正態(tài)分布函數(shù)和對(duì)數(shù)-邏輯斯蒂函數(shù)擬合構(gòu)建SSD曲線,2個(gè)函數(shù)擬合的統(tǒng)計(jì)參數(shù)(見(jiàn)表3)。整體而言,2個(gè)函數(shù)擬合的參數(shù)值比較接近,其校正決定系數(shù)均大于0.937,加權(quán)卡方檢驗(yàn)系數(shù)均較小。對(duì)數(shù)-邏輯斯帝函數(shù)對(duì)敵敵畏和馬拉硫磷毒性數(shù)據(jù)擬合的校正決定系數(shù)大于對(duì)數(shù)-正態(tài)分布函數(shù)擬合值,并且對(duì)數(shù)-邏輯斯帝函數(shù)擬合的加權(quán)卡方檢驗(yàn)系數(shù)小于對(duì)數(shù)正態(tài)分布函數(shù)擬合值;對(duì)數(shù)-邏輯斯帝函數(shù)對(duì)對(duì)硫磷毒性數(shù)據(jù)擬合的矯正檢驗(yàn)系數(shù)和加權(quán)卡方檢驗(yàn)系數(shù)均小于對(duì)數(shù)-正態(tài)分布函數(shù)的擬合值。綜上所述,本文中SSD曲線的擬合采用對(duì)數(shù)-邏輯斯蒂函數(shù)。

        圖1 馬拉硫磷、敵敵畏和對(duì)硫磷對(duì)水生生物的急性和酶抑制效應(yīng)數(shù)據(jù)的SSD曲線

        2.3 急性毒性數(shù)據(jù)與AChE抑制效應(yīng)數(shù)據(jù)的對(duì)比

        為比較急性毒性數(shù)據(jù)和AChE抑制效應(yīng)數(shù)據(jù)之間的敏感度差異,利用對(duì)數(shù)-邏輯斯蒂函數(shù)分別對(duì)有機(jī)磷農(nóng)藥敵敵畏、對(duì)硫磷和馬拉硫磷的急性毒性和AChE抑制效應(yīng)數(shù)據(jù)進(jìn)行分布擬合,根據(jù)所獲得的參數(shù)得到SSD曲線,它可以直觀地表示不同水生生物對(duì)有機(jī)磷農(nóng)藥的敏感度分布情況(見(jiàn)圖1)。其中馬拉硫磷和對(duì)硫磷的AChE抑制效應(yīng)數(shù)據(jù)太少(n< 10)僅在圖中顯示位置,沒(méi)有構(gòu)建SSD曲線[1]。由圖1可以看出,在橫坐標(biāo)相同的情況下,對(duì)硫磷和馬拉硫磷對(duì)水生生物急性毒性的SSD曲線斜率相對(duì)較小,而敵敵畏的SSD曲線斜率則較大,表明大部分水生生物對(duì)敵敵畏的敏感度相對(duì)接近,而不同種水生生物對(duì)于馬拉硫磷和對(duì)硫磷的敏感度則差異較大。對(duì)于急性毒性和AChE抑制效應(yīng)這2類數(shù)據(jù)的敏感度來(lái)說(shuō),不同的有機(jī)磷農(nóng)藥顯示出差異性。敵敵畏的數(shù)據(jù)敏感度排序?yàn)椤懊阁w內(nèi)抑制效應(yīng)>酶體外抑制效應(yīng)>急性毒性效應(yīng)”;在低濃度區(qū)間,對(duì)硫磷對(duì)AChE的體內(nèi)抑制效應(yīng)數(shù)據(jù)與急性毒性數(shù)據(jù)接近,馬拉硫磷與敵敵畏類似;在高濃度區(qū)間,馬拉硫磷對(duì)AChE的抑制效應(yīng)數(shù)據(jù)與急性毒性數(shù)據(jù)接近;從趨勢(shì)上看,3種有機(jī)磷農(nóng)藥的共同之處都是AChE的體內(nèi)抑制效應(yīng)比AChE的體外抑制效應(yīng)更靈敏。

        為便于對(duì)3種有機(jī)磷農(nóng)藥的急性毒性和AChE抑制效應(yīng)數(shù)據(jù)進(jìn)行量化對(duì)比,分別對(duì)能保護(hù)95%的水生生物的污染物濃度(HC5)進(jìn)行計(jì)算,HC5是計(jì)算保護(hù)水生生物的水質(zhì)基準(zhǔn)的重要依據(jù)。由于欠缺馬拉硫磷和對(duì)硫磷的AChE抑制效應(yīng)數(shù)據(jù),只有敵敵畏的數(shù)據(jù)比較豐富,可以進(jìn)行擬合計(jì)算HC5。敵敵畏的急性毒性和AChE體外抑制效應(yīng)的HC5分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍。

        3 討論(Discussion)

        總體而言,3種有機(jī)磷農(nóng)藥對(duì)AChE的體內(nèi)抑制效應(yīng)比體外抑制效應(yīng)更靈敏。這可能是由于在體外染毒方法中沒(méi)有考慮到有機(jī)磷農(nóng)藥在生物體內(nèi)代謝作用的影響,使得測(cè)定農(nóng)藥對(duì)AChE的毒性數(shù)據(jù)與實(shí)際環(huán)境中同濃度農(nóng)藥對(duì)AChE的毒性數(shù)據(jù)有一定偏差。例如,對(duì)氧磷對(duì)AChE的毒性大于對(duì)硫磷,但由于對(duì)硫磷在生物體內(nèi)可以轉(zhuǎn)化為對(duì)氧磷,使得體內(nèi)抑制所得到的IC50遠(yuǎn)遠(yuǎn)小于體外抑制所得到的IC50[45]。那么,幾乎可以肯定對(duì)硫磷對(duì)水生生物的AChE抑制效應(yīng)還存在更小的IC50值,即AChE抑制效應(yīng)的敏感度還會(huì)提升。

        本文選擇了對(duì)確定水質(zhì)基準(zhǔn)具有重要參考價(jià)值的HC5對(duì)敏感度進(jìn)行定量分析,對(duì)硫磷和馬拉硫磷對(duì)水生生物體內(nèi)的AChE抑制效應(yīng)數(shù)據(jù)不足無(wú)法計(jì)算HC5。由于數(shù)據(jù)量的限制,僅將敵敵畏對(duì)水生生物體內(nèi)AChE的抑制效應(yīng)數(shù)據(jù)進(jìn)行推算來(lái)比較數(shù)據(jù)靈敏度。敵敵畏的急性毒性和AChE體外抑制效應(yīng)的HC5分別為2.07 μg·L-1和1.53 μg·L-1,兩者相差1.4倍,比較接近。陳朗等[16]對(duì)于溴氰菊酯,采用酶類、生物化學(xué)、細(xì)胞、遺傳、基因及組織學(xué)等生物標(biāo)記物指標(biāo)的最低可觀測(cè)效應(yīng)濃度(LOEC)的SSD曲線,計(jì)算得到HC5值為1.3 ng·L-1,與水生生物的基準(zhǔn)連續(xù)濃度(CCC)值0.9 ng·L-1相近,與基準(zhǔn)最大濃度(CMC)值7.5 ng·L-1,相差較大,因此作者指出這些生物標(biāo)記物指標(biāo)可以作為水生生物基準(zhǔn)中慢性數(shù)據(jù)的替代或補(bǔ)充。因此,鑒于試驗(yàn)動(dòng)物福利和AChE體外抑制試驗(yàn)數(shù)據(jù)的快速可獲得性上來(lái)說(shuō),在推導(dǎo)水質(zhì)基準(zhǔn)中,AChE抑制效應(yīng)數(shù)據(jù)可以作為有機(jī)磷農(nóng)藥的急性毒性數(shù)據(jù)的補(bǔ)充,具有重要的參考價(jià)值。

        一般認(rèn)為,在分子水平上的AChE對(duì)污染物脅迫發(fā)生應(yīng)激響應(yīng)要早于個(gè)體、種群或群落[46]。由于AChE的檢測(cè)手段能更好地評(píng)價(jià)有機(jī)磷農(nóng)藥對(duì)水生生物的危害程度,但現(xiàn)階段的數(shù)據(jù)量難以支持其在實(shí)際水環(huán)境中的應(yīng)用。只有通過(guò)積累更多有機(jī)磷農(nóng)藥對(duì)水生生物的AChE抑制數(shù)據(jù),才能正確評(píng)價(jià)AChE抑制效應(yīng)指標(biāo)在水質(zhì)基準(zhǔn)研究中的作用。因此有機(jī)磷農(nóng)藥對(duì)水生生物的AChE抑制效應(yīng)在水質(zhì)基準(zhǔn)上具有廣泛的研究前景。

        (References):

        [1] Posthuma L,Suter II G W,Traas T P.Species Sensitivity Distributions in Ecotoxicology[M].Boca Raton:CRC Press,2001

        [2] Wheeler J,Grist E,Leung K,et al.Species sensitivity distributions:Data and model choice[J].Marine Pollution Bulletin,2002,45(1):192-202

        [3] Aldenberg T,Slob W.Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data[J].Ecotoxicology and Environmental Safety, 1993,25(1):48-63

        [4] Awkerman J A,Raimondo S,Barron M G.Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models[J].Environmental Science&Technology,2008,42(9):3447-3452

        [5] Aldenberg T,Jaworska J S.Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[J].Ecotoxicology and Environmental Safety,2000,46(1):1-18

        [6] Maltby L,Brock T C,Brink P J.Fungicide risk assessment for aquatic ecosystems:Importance of interspecific variation,toxic mode of action,and exposure regime[J]. Environmental Science&Technology,2009,43(19): 7556-7563

        [7] Stephen C E,Mount D I,Hansen D J,et al.Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington DC:United States Environmental Protection Agency,Office of Research and Development,1985

        [8] Klepper O,Bakker J,Traas T P,et al.Mapping the potentially affected fraction(PAF)of species as a basis for comparison of ecotoxicological risks between substances and regions[J].Journal of Hazardous Materials,1998,61 (1):337-344

        [9] 閆振廣,孟偉,劉征濤,等.我國(guó)淡水生物氨氮基準(zhǔn)研究[J].環(huán)境科學(xué),2011,32(6):1564-1570

        Yan Z G,Meng W,Liu Z T,et al.Development of freshwater aquatic life criteria for ammonia in China[J].Environmental Science,2011,32(6):1564-1570(in Chinese)

        [10] 閆振廣,孟偉,劉征濤,等.我國(guó)典型流域鎘水質(zhì)基準(zhǔn)研究[J].環(huán)境科學(xué)研究,2010(10):1221-1228

        Yan Z G,Meng W,Liu Z T,et al.Development of aquatic criteria for cadmium for typical basins in China[J].Research of Environmental Sciences,2010(10):1221-1228 (in Chinese)

        [11] 雷炳莉,金小偉,黃圣彪,等.太湖流域3種氯酚類化合物水質(zhì)基準(zhǔn)的探討[J].生態(tài)毒理學(xué)報(bào),2009,4(1):40-49

        Lei B L,Jin X W,Huang S B,et al.Discussion of quality criteria for three chlorophenols in Taihu Lake[J].Asian Journal of Ecotoxicology,2009,4(1):40-49(in Chinese)

        [12] Fedorenkova A,Vonk J A,Lenders H R,et al.Ecotoxicogenomics:Bridging the gap between genes and populations[J].Environmental Science&Technology,2010,44 (11):4328-4333

        [13] Stephen C E,Mount D I,Hansen D J,et al.Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington DC:United States Environmental Protection Agency,Office of Research and Development,1985

        [14] Neumann N F,Galvez F.DNA microarrays and toxicogenomics:Applications for ecotoxicology[J].Biotechnology Advances,2002,20(5):391-419

        [15] Zhang W,Song Y,Gong P,et al.Earthworm cytochrome p450 determination and application as a biomarker for diagnosing PAH exposure[J].Journal of Environmental Monitoring,2006,8(9):963-967

        [16] 陳朗,宋玉芳,張偉東,等.基于多指標(biāo)的中國(guó)淡水?dāng)M除蟲(chóng)菊酯水質(zhì)基準(zhǔn)[J].生態(tài)學(xué)雜志,2015,34(10):2879-2892

        Chen L,Song Y F,Zhang W D,et al.Derivation of freshwater quality criteria by multi-index for pyrethroids in China[J].Chinese Journal of Ecology,2015,34(10): 2879-2892(in Chinese)

        [17] 閆振廣,楊霓云,王曉南,等.基于基因表達(dá)效應(yīng)的物種敏感度分析初探[J].中國(guó)科學(xué):地球科學(xué)(中文版), 2012,42(5):673-679

        [18] 張一賓,孫晶.國(guó)內(nèi)外有機(jī)磷農(nóng)藥的概況及對(duì)我國(guó)有機(jī)磷農(nóng)藥發(fā)展的看法[J].農(nóng)藥,1999,38(7):1-3

        [19] US EPA.National Recommended Water Quality Criteria [EB/OL].(2012-08-02)[2015-11-30].http://water.epa.gov/ scitech/swguigance/standards/current/index.cfm

        [20] Bruijn J D,Hermens J.Inhibition of acetylcholinesterase and acute toxicity of organophosphorous compounds to fish:A preliminary structure-activity analysis[J].Aquatic Toxicology,1993,24(3):257-274

        [21] Sturm A,Assis H D S,Hansen P D.Cholinesterases of marine teleost fish:Enzymological characterization and potential use in the monitoring of neurotoxic contamination[J].Marine Environmental Research,1999,47(4): 389-398

        [22] Galgani F,Bocquene G.In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates[J].Bulletin of Environmental Contamination and Toxicology,1990,45(2):243-249

        [23] McHenery J G,Saward D,Seaton D D.Lethal and sublethal effects of the salmon delousing agent dichlorvos on the larvae of the lobster(Homarus gammarusL.)and herring(Clupea harengusL.)[J].Aquaculture,1991,98(4): 331-347

        [24] Karen D J,Klaine S J,Ross P E,et al.Further considerations of the skeletal system as a biomarker of episodic chlorpyrifos exposure[J].Aquatic Toxicology,2001,52 (3):285-296

        [25] McHenery J,Francis C,Davies I,et al.Threshold toxicity and repeated exposure studies of dichlorvos to the larvae of the common lobster(Homarus gammarusL.)[J].A-quatic Toxicology,1996,34(3):237-251

        [26] Henery J M,Adams L G,Moore D,et al.Experimental and field studies of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel,Mytilus edulisL.[J].Aquatic Toxicology,1997,38(1):125-143

        [27] Bris L H,Maffart P,Bocquené G,et al.Laboratory study on the effect of dichlorvos on two commercial bivalves [J].Aquaculture,1995,138(1):139-144

        [28] Stien X,Percic P,Barelli G M,et al.Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NW mediterranean sea[J].Environmental Pollution,1998,99(3):339-345

        [29] 丁運(yùn)華,譚笑燕,何玉君,等.羅非魚(yú)乙酰膽堿酯酶的組織分布動(dòng)力學(xué)特性及農(nóng)藥敏感性分析[J].廣東農(nóng)業(yè)科學(xué),2015,42(12):111-115

        Ding Y H,Tan X Y,He Y J,et al.Tissue distribution,kinetic characters and sensitivity to insecticides of acetylcholinesterase inOreochromis aurea[J].Guangdong Agricultural Sciences,2015,42(12):111-115(in Chinese)

        [30] 丁運(yùn)華,嚴(yán)松溪,謝汝朋,等.幾種淡水魚(yú)肌肉乙酰膽堿酯酶的鹽析提取及農(nóng)藥敏感性研究[J].熱帶農(nóng)業(yè)科學(xué),2011,31(6):21-23

        Ding Y H,Yan S X,Xei R P,et al.Extraction and insecticides susceptibility of acetylcholinesterase from muscle tissues of fresh water fishes[J].Chinese Journal of Tropical Agriculture,2011,31(6):21-23(in Chinese)

        [31] Olson D,Christensen G.Effects of water pollutants and other chemicals on fish acetylcholinesterase(in vitro)[J]. Environmental Research,1980,21(2):327-335

        [32] 賈玉玲,彭惠民,彭方毅,等.鯽魚(yú)腦AChE制備及對(duì)幾種有機(jī)磷農(nóng)藥敏感性研究[J].環(huán)境科學(xué)與技術(shù),2010, 33(6):23-27

        Jia Y L,Peng H M,Peng F Y,et al.Preparation of acetylcholinesterase by crucian carp brain and its sensitivity to several organophosphorus pesticides[J].Environmental Science and Technology,2010,33(6):23-27(in Chinese)

        [33] Assis C R D,Linhares A G,Oliveira V M,et al.Comparative effect of pesticides on brain acetylcholinesterase in tropical fish[J].Science of The Total Environment,2012, 441:141-150

        [34] Chuiko G.Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish:Specific activities and in vitro inhibition by DDVP,an organophosphorus pesticide[J].Comparative Biochemistry and Physiology Part C:Pharmacology,Toxicology and Endocrinology,2000,127(3):233-242

        [35] Assis C R D,Castro P F,Amaral I P G,et al.Characterization of acetylcholinesterase from the brain of the amazonian tambaqui(Colossoma macropomum)and in vitro effect of organophosphorus and carbamate pesticides[J]. Environmental Toxicology and Chemistry,2010,29(10): 2243-2248

        [36] Bocquené G,Bellanger C,Cadiou Y,et al.Joint action of combinations of pollutants on the acetylcholinesterase activity of several marine species[J].Ecotoxicology,1995,4 (4):266-279

        [37] Sturm A,Wogram J,Segner H,et al.Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from three-spined stickleback(Gasterosteus aculeatus):Application in biomonitoring[J].Environmental Toxicology and Chemistry,2000,19(6):1607-1615

        [38] Key P B,Fulton M H.Correlation between 96-h mortality and 24-h acetylcholinesterase inhibition in three grass shrimp larval life stages[J].Ecotoxicology and Environmental Safety,2006,63(3):389-392

        [39] Aker W G,Hu X,Wang P,et al.Comparing the relative toxicity of malathion and malaoxon in blue catfishIctalurus furcatus[J].Environmental Toxicology,2008,23(4): 548-554

        [40] Chen C,Wang Y,Zhao X,et al.The combined toxicity assessment of carp(Cyprinus carpio)acetylcholinesterase activity by binary mixtures of chlorpyrifos and four other insecticides[J].Ecotoxicology,2014,23(2):221-228

        [41] Fulton M,Scott G.The effect of certain intrinsic and extrinsic variables on the acute toxicity of selected organophosphorus insecticides to the mummichog,Fundulus heteroclitus[J].Journal of Environmental Science&Health Part B,1991,26(5-6):459-478

        [42] Sturm A,Hansen P D.Altered cholinesterase and monooxygenase levels inDaphnia magnaandChironomus ripariusexposed to environmental pollutants[J].Ecotoxicology and Environmental Safety,1999,42(1):9-15

        [43] Arufe M I,Arellano J M,Albendín G,et al.Toxicity of parathion on embryo and yolk-sac larvae of gilthead seabream(Sparus aurataL.):Effects on survival,cholinesterase,and carboxylesterase activity[J].Environmental Toxicology,2010,25(6):601-607

        [44] Ferrari A,Venturino A,de D’Angelo A M P.Time course of brain cholinesterase inhibition and recovery following acute and subacute azinphosmethyl,parathion and carbaryl exposure in the goldfish(Carassius auratus)[J]. Ecotoxicology and Environmental Safety,2004,57(3): 420-425

        [45] Guilhermino L,Lopes M C,Carvalho A P,et al.Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenileDaphnia magna[J].Chemosphere, 1996,32(4):727-738

        [46] Markert B A,Breure A M,Zechmeister H G.Bioindicators and biomonitors:Principles,concepts,and applications[J].Amsterdam:Elsevier,2003◆

        A Preliminary Study on Species Sensitivity Analysis of Inhibition Effect of Three Organophosphorus Pesticides on Acetylcholinesterase in Aquatic Organisms

        Zhu Yan1,2,Wang Feifei1,Zhang Yahui2,*,Cao Ying2,Zeng Honghu1,Liu Zhengtao2

        1.College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004,China
        2.State Key Laboratory for Environmental Criteria and Risk Assessment,State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals,Chinese Research Academy of Environmental Sciences,Beijing 100012,China

        30 November 2015 accepted 21 January 2016

        The data of the acute toxicity and acetylcholinesterase(AChE)inhibition effect of aquatic organisms of three organophosphorus pesticides(OPs),including dichlorvos,parathion and malathion,were selected and analyzed by species sensitivity distribution.The results showed that the order of acute toxicity and AChE inhibition effect for dichlorvos wasin vivoAChE inhibition>in vitroAChE inhibition>acute toxicity.The trends of speciessensitivity distribution of malathion and parathion were similar based on their insufficient data.The orders of acute toxicity and AChE inhibition effect of malathion and parathion werein vivoAChE inhibition>actue toxicity>in vitroAChE inhibition.The 5%hazard concentration(HC5)of acute toxicity and inhibition effect of dichlorvos were 2.07 μg·L-1and 1.53 μg·L-1,respectively,which differs by 1.4 times from each other.The data of AChE inhibition effect of OPs could be of great reference value when deriving the water qulity criteria.

        organophosphate pesticide;aquatic organism;acetylcholinesterase;species sensitivity;water quality criteria

        2015-11-30 錄用日期:2016-1-21

        1673-5897(2016)3-211-08

        X171.5

        A

        10.7524/AJE.1673-5897.20151130006

        簡(jiǎn)介:張亞輝(1979—),女,副研究員,主要從事污染物聯(lián)合毒性及毒性評(píng)估與預(yù)測(cè)研究,發(fā)表學(xué)術(shù)論文20余篇。

        國(guó)家水體污染控制與治理科技重大專項(xiàng)(2012ZX07501-003);科技基礎(chǔ)性工作專項(xiàng)(2014FY120600);國(guó)家自然科學(xué)基金(51268008,21407139)

        朱巖(1990-),男,碩士研究生,研究方向?yàn)樗幚砝碚撆c技術(shù),E-mail:zhuyan_craes@foxmail.com;

        *通訊作者(Corresponding author),E-mail:zhangyahui@craes.org.cn

        猜你喜歡
        生物
        生物多樣性
        生物多樣性
        上上生物
        發(fā)現(xiàn)不明生物
        史上“最黑暗”的生物
        軍事文摘(2020年20期)2020-11-28 11:42:50
        第12話 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        最初的生物
        自然生物被直銷
        清晨生物初歷直銷
        生物的多樣性
        亚洲色欲久久久综合网| 免费a级毛片在线播放不收费| 欧美一性一乱一交一视频| 广东少妇大战黑人34厘米视频| 国产亚洲精品hd网站| 日韩精品午夜视频在线| 亚洲国产亚综合在线区| 亚洲精品字幕| 精品少妇爆乳无码aⅴ区| 亚洲女同人妻在线播放| 色大全全免费网站久久| 手机看片福利一区二区三区| 狠狠色综合播放一区二区| 玩弄丝袜美腿超短裙校花| 麻豆资源在线观看视频| 麻豆精品久久久久久久99蜜桃 | JIZZJIZZ国产| 久久久国产精品三级av| 色窝窝无码一区二区三区| 大香伊蕉国产av| 亚色中文字幕| 成人av资源在线观看| 色综合久久久久综合99| 久久婷婷综合色丁香五月| 日韩一区二区三区中文字幕| 美女扒开内裤让我捅的视频| 人妻丰满熟妇av无码区| 欧美成人专区| 人妻少妇偷人精品久久人妻| 图片小说视频一区二区| 女厕厕露p撒尿八个少妇| 亚洲AV秘 无码一区二区三| 白白色最新福利视频二| 国产精品人妻一区二区三区四| 国产天堂网站麻豆| 久久免费精品视频老逼| 色大全全免费网站久久| 国产精品无码一区二区三区免费| 免费无遮挡毛片中文字幕| 国产在线av一区二区| 精品丰满人妻无套内射|