亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鈣鈦礦錳氧化物的多場(chǎng)調(diào)控

        2016-10-26 01:24:32楊媛媛高炬
        關(guān)鍵詞:光場(chǎng)鈣鈦礦應(yīng)力場(chǎng)

        楊媛媛,高炬

        (蘇州科技學(xué)院數(shù)理學(xué)院,江蘇蘇州215009)

        鈣鈦礦錳氧化物的多場(chǎng)調(diào)控

        楊媛媛,高炬*

        (蘇州科技學(xué)院數(shù)理學(xué)院,江蘇蘇州215009)

        鈣鈦礦型錳氧化物因其各量子態(tài)的自由能相近而存在多個(gè)亞穩(wěn)相的共存與競(jìng)爭(zhēng),外加場(chǎng)的調(diào)控可導(dǎo)致各相之間的轉(zhuǎn)換??偨Y(jié)了以應(yīng)力場(chǎng)或光場(chǎng)為基礎(chǔ)的多場(chǎng)調(diào)控研究進(jìn)展,展望了錳氧化物多場(chǎng)調(diào)控的發(fā)展趨勢(shì)。目前研究發(fā)現(xiàn)錳氧化物薄膜中應(yīng)力誘導(dǎo)磁電阻增強(qiáng)效應(yīng)、電流增強(qiáng)光電導(dǎo)效應(yīng)、磁場(chǎng)對(duì)持久光電導(dǎo)的擦洗效應(yīng)等多場(chǎng)調(diào)控效應(yīng),這些調(diào)控效應(yīng)對(duì)發(fā)展新一代的氧化物功能器件具有重大意義。

        鈣鈦礦錳氧化物;多場(chǎng)調(diào)控;強(qiáng)關(guān)聯(lián)電子體系;亞穩(wěn)相

        鈣鈦礦錳氧化物屬于典型的強(qiáng)關(guān)聯(lián)電子體系,由于具有自由能相近的多種量子態(tài)相互競(jìng)爭(zhēng),不僅誘導(dǎo)出電荷/軌道有序、相分離、Mott轉(zhuǎn)變等[1-5]奇異特性,而且外加場(chǎng)可引發(fā)各種亞穩(wěn)相間的相互轉(zhuǎn)換,使其輸運(yùn)特性發(fā)生巨大變化,呈現(xiàn)出龐磁電阻(CMR)、電致電阻(EMR)、持久光電導(dǎo)(PPC)等一系列新的物理現(xiàn)象?;谶@些新的場(chǎng)致效應(yīng),有望發(fā)展出新型的氧化物場(chǎng)效應(yīng)器件。因此,自1994年Jin等人發(fā)現(xiàn)La0.67Ca0.33MnO3-δ薄膜的龐磁電阻效應(yīng)以來,鈣鈦礦錳氧化物的場(chǎng)調(diào)控特性研究即成為物理、化學(xué)、材料、信息等諸多領(lǐng)域的研究熱點(diǎn)[6]。隨后,研究人員發(fā)現(xiàn)了電場(chǎng)對(duì)錳氧化物電阻的調(diào)制作用,外加電場(chǎng)或電流可以誘導(dǎo)出龐電致電阻效應(yīng)、順磁絕緣態(tài)向鐵磁金屬態(tài)的轉(zhuǎn)變等效應(yīng)[7-10]。Kiryukhin等人報(bào)道了Pr0.7Ca0.3MnO3單晶在X光照射下的低溫反鐵磁-鐵磁轉(zhuǎn)變,且電導(dǎo)率增大6個(gè)數(shù)量級(jí)以上[11-14]。錳氧化物薄膜不僅具有上述光致效應(yīng),還呈現(xiàn)出持久光電導(dǎo)現(xiàn)象(PPC),即薄膜電阻在光場(chǎng)撤消后的較長(zhǎng)時(shí)間內(nèi)保持某個(gè)穩(wěn)定值[15-18]。另外,Thiele等對(duì)La0.7Sr0.3MnO3薄膜進(jìn)行應(yīng)力調(diào)控,發(fā)現(xiàn)面內(nèi)晶格應(yīng)力減小0.06%,薄膜電阻減小9%[19];Biswas等發(fā)現(xiàn)襯底與薄膜間的晶格失配還能導(dǎo)致La0.67Ca0.33MnO3薄膜相分離現(xiàn)象[20]。錳氧化物單場(chǎng)調(diào)控的綜述見參考文獻(xiàn)[21-24]。

        然而,隨著錳氧化物單場(chǎng)調(diào)控研究的不斷深入,人們也逐漸注意到了單場(chǎng)調(diào)控的局限性。例如,光、電、磁場(chǎng)易對(duì)電輸運(yùn)特性產(chǎn)生巨大的調(diào)控效應(yīng)(如CMR、EMR、光電導(dǎo)等),且響應(yīng)速度快,但是很難調(diào)控系統(tǒng)的宏觀參數(shù)(如金屬-絕緣體轉(zhuǎn)變溫度Tp、居里點(diǎn)Tc等)。應(yīng)力場(chǎng)可以有效調(diào)制宏觀參數(shù),但對(duì)亞穩(wěn)的量子態(tài)調(diào)控作用有限,且響應(yīng)速度慢??紤]到光、電、磁場(chǎng)與應(yīng)力場(chǎng)調(diào)控的互補(bǔ)效應(yīng),鈣鈦礦錳氧化物的多場(chǎng)調(diào)控研究有望開發(fā)出高性能的氧化物基場(chǎng)效應(yīng)器件。筆者圍繞鈣鈦礦錳氧化物多場(chǎng)調(diào)控這一研究熱點(diǎn),分別以應(yīng)力場(chǎng)和光場(chǎng)為背景,綜述了多場(chǎng)調(diào)控的研究進(jìn)展及其應(yīng)用前景。

        1 應(yīng)力場(chǎng)下的多場(chǎng)調(diào)控

        早期應(yīng)力場(chǎng)的調(diào)控主要通過薄膜與襯底間的晶格失配來實(shí)現(xiàn)[25-27]。如圖1(a)所示的電阻隨溫度變化曲線(R-T曲線),生長(zhǎng)在不同襯底上的La0.8Ca0.2MnO3薄膜展示出迥異的電阻溫度行為[28-29]。人們認(rèn)為晶格畸變改變了Mn-O的結(jié)合及Mn-O-Mn的鍵角,影響了雙交換耦合作用和Jahn-Teller畸變,進(jìn)而導(dǎo)致磁有序排列、金屬-絕緣體相變[30]、CMR[31]、相分離[19]等性質(zhì)的改變。然而,晶格失配無法連續(xù)調(diào)控應(yīng)力場(chǎng),缺乏靈活性。近年來,氧化物壓電材料的發(fā)展為實(shí)現(xiàn)應(yīng)力場(chǎng)的實(shí)時(shí)調(diào)控提供了可行性。極化的壓電體具有逆壓電效應(yīng),對(duì)壓電襯底施加縱向電場(chǎng)可實(shí)現(xiàn)其面內(nèi)晶格的伸縮(如圖2),為實(shí)現(xiàn)應(yīng)力場(chǎng)的連續(xù)調(diào)控提供另一有效手段[32-34]。2012年,Wang等人在壓電材料Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)上生長(zhǎng)了Pr0.7Sr0.3MnO3薄膜,發(fā)現(xiàn)約2.3%的應(yīng)變使薄膜的金屬-絕緣體轉(zhuǎn)變溫度上升了17 K,電阻下降約70%[17]。PMN-PT晶體不僅具有優(yōu)良的鐵電效應(yīng)和壓電效應(yīng),而且其鈣鈦礦結(jié)構(gòu)與大多數(shù)錳氧化物晶格相匹配,因而可構(gòu)造出PMN-PT基的多層膜結(jié)構(gòu),為實(shí)時(shí)改變應(yīng)力場(chǎng)從而實(shí)現(xiàn)晶格畸變下的多場(chǎng)量子調(diào)控提供了可能。

        圖1 應(yīng)力場(chǎng)與光電磁場(chǎng)耦合對(duì)鈣鈦礦錳氧化物電阻-溫度曲線的影響

        1.1應(yīng)力場(chǎng)與光場(chǎng)共同作用

        2011年,Guo等人對(duì)La0.8Ca0.2MnO3/PMN-PT薄膜進(jìn)行了應(yīng)力場(chǎng)與光場(chǎng)的調(diào)控研究,如圖1(b)所示[35]。實(shí)驗(yàn)發(fā)現(xiàn),230 K時(shí)在10 kV·cm-1電場(chǎng)下薄膜面內(nèi)應(yīng)力減小約0.12%,誘導(dǎo)電阻減小約1 kΩ;而波長(zhǎng)為532 nm(2.34 eV)的激光輻照導(dǎo)致電阻增大~340 Ω。兩場(chǎng)共同作用時(shí),薄膜電阻比零場(chǎng)下減小~800 Ω。Guo等人認(rèn)為,應(yīng)力減小了PMN-PT與La0.8Ca0.2MnO3的晶格失配,從而削弱了Jahn-Teller畸變和電子晶格耦合作用,促進(jìn)了電輸運(yùn)過程;相反光照會(huì)引起自旋排列紊亂,破壞鐵磁相與反鐵磁相之間的平衡,使反鐵磁相占優(yōu),導(dǎo)致電阻上升,光電導(dǎo)下降。后續(xù)的研究也支持了這種觀點(diǎn),2013年,Wang等人利用532 nm波長(zhǎng)的可見光照射在La0.39Pr0.24Ca0.37MnO3/PMN-PT薄膜上,在低溫處觀測(cè)到PPC效應(yīng),通過對(duì)比研究發(fā)現(xiàn)光照1 h與施加0.02%應(yīng)力均對(duì)PPC效應(yīng)有調(diào)制作用,且應(yīng)力的調(diào)制強(qiáng)度大于光場(chǎng)[36]。相關(guān)對(duì)比結(jié)果見表1。據(jù)上述研究,發(fā)現(xiàn)光場(chǎng)與應(yīng)力場(chǎng)對(duì)錳氧化物薄膜的電輸運(yùn)作用相反,兩場(chǎng)同時(shí)作用不利于增加調(diào)制深度,但是應(yīng)力對(duì)光電阻的抑制作用有重要研究?jī)r(jià)值,如果發(fā)現(xiàn)“應(yīng)力對(duì)光電導(dǎo)的擦洗效應(yīng)”,光輔助記憶元件將有更大的應(yīng)用空間。

        1.2應(yīng)力場(chǎng)與電場(chǎng)共同作用

        應(yīng)力場(chǎng)下的電場(chǎng)調(diào)控主要有兩種實(shí)現(xiàn)方式(圖2),即電場(chǎng)平行于薄膜表面時(shí)的橫向電場(chǎng)(E//)和電場(chǎng)垂直于薄膜表面的縱向電場(chǎng)(E⊥)。施加于PMN-PT單晶的縱向電場(chǎng)主要產(chǎn)生鐵電極化和應(yīng)力兩種效應(yīng)[37-38]。Sheng等人對(duì)兩種效應(yīng)進(jìn)行了研究,發(fā)現(xiàn)溫度低于Mott轉(zhuǎn)變溫度時(shí)鐵電極化效應(yīng)起主導(dǎo)作用;溫度高于Mott轉(zhuǎn)變溫度時(shí)應(yīng)力效應(yīng)起主導(dǎo)作用[39]。Zheng等人對(duì)比了極化前后La0.75Ca0.25MnO3/PMN-PT薄膜的電輸運(yùn)特性[40]。如圖1(c)所示,經(jīng)過+12 kV·cm-1電場(chǎng)極化后,薄膜面內(nèi)晶格減小0.06%,電阻降低39.3%;-12 kV·cm-1電場(chǎng)誘導(dǎo)出類似的應(yīng)力效應(yīng),但是電阻減小了53.6%,因此,縱向電場(chǎng)對(duì)薄膜的電輸運(yùn)特性有明顯調(diào)控效應(yīng)。另一方面,Gao等人研究了橫向電場(chǎng)對(duì)La0.7Ca0.3MnO3和La0.85Ba0.15MnO3薄膜的電輸運(yùn)特性,發(fā)現(xiàn)電流密度為8×104A·cm-2的橫向電場(chǎng)可使電阻減小~26%[41-42]。更多相關(guān)結(jié)果見表1。因此,筆者認(rèn)為應(yīng)力場(chǎng)與縱橫電場(chǎng)的耦合可能發(fā)展出新型的電流/電場(chǎng)敏感器件,如高密度信息記錄磁盤和新型場(chǎng)效應(yīng)器件。

        圖2 鈣鈦礦錳氧化物多場(chǎng)調(diào)控結(jié)構(gòu)示意圖

        表1 鈣鈦礦錳氧化物多場(chǎng)調(diào)控對(duì)比表

        1.3應(yīng)力場(chǎng)與磁場(chǎng)共同作用

        Zheng等人對(duì)應(yīng)力場(chǎng)與磁場(chǎng)的共同作用進(jìn)行了系統(tǒng)研究[43-45]。如圖1(d)所示,270 K時(shí),1.2 T磁場(chǎng)誘導(dǎo)La0.7Ba0.3MnO3薄膜電阻下降9 kΩ;同一溫度下,0.59%應(yīng)變誘導(dǎo)電阻下降14 kΩ;兩場(chǎng)共同作用時(shí)薄膜電阻比零場(chǎng)條件下減小近23 kΩ??梢姶艌?chǎng)與應(yīng)力場(chǎng)均可增強(qiáng)薄膜的電輸運(yùn)性能。而且,兩場(chǎng)共同作用使Tp上升了25 K。Jia等人發(fā)現(xiàn)La0.7Ca0.15Sr0.15MnO3薄膜也有類似效應(yīng),他們認(rèn)為Tp與應(yīng)力場(chǎng)有密切聯(lián)系[46],相關(guān)對(duì)比結(jié)果見表1。根據(jù)以上內(nèi)容,發(fā)現(xiàn)應(yīng)力場(chǎng)與磁場(chǎng)對(duì)錳氧化物薄膜的電輸運(yùn)作用相同,可以明顯增加調(diào)制深度,因此,應(yīng)力場(chǎng)與磁場(chǎng)的協(xié)同作用有助于增強(qiáng)錳氧化物基傳感器的靈敏度。

        2 光場(chǎng)下的多場(chǎng)調(diào)控

        光輻照作為一種外界激勵(lì),進(jìn)入材料后一部分能量轉(zhuǎn)化為熱能,另一部分能量被電子吸收形成電子-空穴對(duì)。光場(chǎng)作用的優(yōu)勢(shì)在于不需要改變材料的化學(xué)組分和晶體結(jié)構(gòu)就可以改變載流子濃度從而影響材料的電輸運(yùn)特性。1999年,Cauro等人在缺氧的La0.7(Ca,Ba,Pr)0.3MnO3和Pr2/3Sr1/3MnO3-δ薄膜中觀測(cè)到可見光誘導(dǎo)的PPC效應(yīng),他們將該效應(yīng)歸結(jié)于氧缺位[47-49]。隨后,Dai等人分別用He-Ne激光(λ=632.8 nm)和汞燈(λ= 435.8 nm~546.1 nm)照射(La0.3Nd0.7)2/3Ca1/3MnO3樣品表面,在低于50 K時(shí)觀測(cè)到激光誘導(dǎo)的PPC效應(yīng)及汞燈誘導(dǎo)的正常光電導(dǎo)效應(yīng)[50-51]。2005年,Huhtinen等人在La0.9Ca0.1MnO3薄膜中不僅觀測(cè)到PPC效應(yīng)而且還發(fā)現(xiàn)光誘導(dǎo)鐵磁性的持續(xù)現(xiàn)象,即去掉光照后鐵磁性能保持十幾個(gè)小時(shí)[52]。錳氧化物薄膜的光場(chǎng)調(diào)控研究對(duì)光電池、光開關(guān)、光敏器件的研發(fā)具有重大意義,但其物理機(jī)制尚不明朗。前期研究表明光照可能導(dǎo)致錳氧化物出現(xiàn)新的亞穩(wěn)相。因此,光場(chǎng)下的多場(chǎng)調(diào)控研究有助于加深對(duì)錳氧化物諸多新奇物理效應(yīng)的理解。

        2.1光場(chǎng)與電場(chǎng)共同作用

        2011年,Gao等人利用波長(zhǎng)為532 nm的激光和橫向電流作用于Pr0.7Sr0.3MnO3薄膜,實(shí)驗(yàn)結(jié)構(gòu)見圖2。結(jié)果顯示,與10 nA橫向電流相比,1 μA的橫向電流不僅減小薄膜電阻,而且增強(qiáng)薄膜PPC效應(yīng)。他們認(rèn)為這一效應(yīng)可能與相平衡有關(guān),電流的介入使絕緣相減少,薄膜的電阻降低,PPC效應(yīng)增強(qiáng)[53]。2012年,Hu等人對(duì)缺氧的La7/8Sr1/8MnO3-δ薄膜進(jìn)行了光場(chǎng)與電場(chǎng)耦合作用的研究,如圖3(a)所示[54-55]。結(jié)果表明,相同電流條件下,光照使電阻減小~1個(gè)數(shù)量級(jí);相同光照條件下,電流為1 μA時(shí)的薄膜電阻比10 nA時(shí)小~3個(gè)數(shù)量級(jí),相關(guān)對(duì)比結(jié)果請(qǐng)參見表1。由此可見,橫向電流對(duì)光電導(dǎo)有明顯增強(qiáng)作用。根據(jù)以上研究,發(fā)現(xiàn)光場(chǎng)與電場(chǎng)對(duì)錳氧化物薄膜的電輸運(yùn)作用相同,可以明顯增加調(diào)制深度,因此,進(jìn)一步研究光場(chǎng)與電場(chǎng)共同作用下的內(nèi)在機(jī)制有助于改善光敏器件的靈敏度。

        圖3 光場(chǎng)與電場(chǎng)、磁場(chǎng)耦合下的多場(chǎng)調(diào)控對(duì)鈣鈦礦錳氧化物R-T曲線的影響

        2.2光場(chǎng)與磁場(chǎng)共同作用

        2004年,Moshnyaga等人在La0.7Ca0.3MnO3薄膜中觀察到磁場(chǎng)抑制光致電阻現(xiàn)象[56]。2006年,Sheng等人施加磁場(chǎng)于缺氧的La2/3Sr1/3MnO3-δ薄膜,在50 K下觀察到持久光電導(dǎo)的磁場(chǎng)擦洗效應(yīng)[57]。研究表明,0.001 T磁場(chǎng)削弱PPC效應(yīng)73%;0.5 T磁場(chǎng)削弱PPC效應(yīng)高達(dá)97.5%。2012年,Guo等人針對(duì)磁場(chǎng)擦洗光電導(dǎo)效應(yīng)進(jìn)行了進(jìn)一步研究,實(shí)驗(yàn)采用波長(zhǎng)為633 nm的He-Ne激光的照射于La0.8Ca0.2MnO3薄膜,在180 K下,光場(chǎng)誘導(dǎo)電阻上升6.1%;再施加1 T的磁場(chǎng),光致電阻下降2.5%;進(jìn)一步加大磁場(chǎng)至9 T,光致電阻下降至無光照時(shí)的電阻值,見圖3(b)[58]。由此可見,磁場(chǎng)削弱了光致電阻效應(yīng),相關(guān)對(duì)比結(jié)果見表1。根據(jù)以上研究,發(fā)現(xiàn)光場(chǎng)與磁場(chǎng)對(duì)錳氧化物薄膜電輸運(yùn)的相消作用十分顯著,因此,進(jìn)一步研究光場(chǎng)與磁場(chǎng)的共同作用有助于光輔助記憶元件、磁光記錄裝置等的研發(fā)。

        3 結(jié)語(yǔ)與展望

        隨著對(duì)鈣鈦礦錳氧化物研究的深入,越來越多的研究興趣轉(zhuǎn)向多場(chǎng)調(diào)控研究,并已取得了一定的進(jìn)展。通過對(duì)比研究靜電場(chǎng)、偏置電流、光輻照、外磁場(chǎng)和應(yīng)力場(chǎng)對(duì)錳氧化物中亞穩(wěn)相分布的不同作用,人們對(duì)低維體系中場(chǎng)致阻變效應(yīng)與亞穩(wěn)特性的物理過程有了初步理解。未來可以利用錳氧化物材料結(jié)構(gòu)上的相似性、性質(zhì)上的差異以及多種自由度共存與激烈競(jìng)爭(zhēng)等特點(diǎn),設(shè)計(jì)并制備錳氧化物基外延低維結(jié)構(gòu),并通過耦合鐵電、磁性、電輸運(yùn)等特性,加強(qiáng)低維結(jié)構(gòu)對(duì)外場(chǎng)的響應(yīng)性能及人工調(diào)節(jié)性能。開展多場(chǎng)(電、磁、光、應(yīng)力、微波以及溫度場(chǎng))綜合調(diào)控將有助于發(fā)展高敏功能傳感器和新型場(chǎng)效應(yīng)器件。

        [1]HELMOLT R V,WECKER J,HOLZAPFEL B,et al.Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOxferromagnetic films[J]. Physical Review Letters,1993,71(14):2331-2333.

        [2]GHOSH K,OGALE S B,RAMESH R,et al.Transition-element doping effects in La0.7Ca0.3MnO3[J].Physical Review B,1999,59(1):533-537.

        [3]SALAMON M B,JAIME M.The physics of manganites:Structure and transport[J].Reviews of Modern Physics,2001,73(3):583-629.

        [4]DAGOTTO E.Complexity in strongly correlated electronic systems[J].Science,2005,309(5732):257-262.

        [5]TOKURA Y.Critical features of colossal magnetoresistive manganites[J].Institute of Physics Publishing,2006,69(3):797-851.

        [6]JIN S,TIEFEL T H,MCCORMACK M,et al.Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J].Science,1994,264(5157):413-415.

        [7]OGALE S B,TALYANSKY V,CHEN C H,et al.Unusual electric field effects in Nd0.7Sr0.3MnO3[J].Physical Review Letters,1996,77(6):1159-1162.

        [8]ODAGAWA A,SATO H,INOUE I H,et al.Colossal electroresistance of a Pr0.7Ca0.3MnO3thin film at room temperature[J].Physical Review B,2004,70(22):224403.

        [9]PONNAMBALAM V,PARASHAR S,RAJU A R,et al.Electric-field-induced insulator-metal transitions in thin films of charge-ordered rareearth manganates[J].Applied Physics Letters,1999,74(2):206-208.

        [10]GUHA A,KHARE N,RAYCHAUDHURI A K,et al.Magnetic field resulting from nonlinear electrical transport in single crystals of chargeordered Pr0.63Ca0.37MnO3[J].Physical Review B:Condensed Matter and Materials Physics,2000,62(18):11941-11944.

        [11]KIRYUKHIN V,CASA D,KEIMER B,et al.X-ray induced insulator-metal transitions in CMR manganites[C]//Materials Research Society Proceedings.Boston:Cambridge University Press,1997,494:65-76.

        [12]MIYANO K,TANAKA T,TOMIOKA Y,et al.Photoinduced insulator-to-metal transition in a perovskite manganite[J].Physical Review Letters,1997,78(22):4257-4260.

        [13]FIEBIG M,MIYANO K,TOMIOKA Y,et al.Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3[J].Science,1998,280(5371):1925-1928.

        [14]HU L,SUN Y P,WANG B,et al.Modulation of insulator-metal transition temperature by visible light in La7/8Sr1/8MnO3thin film[J].Chinese Physical Letters,2010,27(9):097504.

        [15]CAURO R,GILABERT A,CONTOUR J P,et al.Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3-δ thin films[J]. Physical Review B,2001,63(17):174423.

        [16]DAI J M,SONG W H,WANG S G,et al.Visible-light-induced persistent photoconductivity in perovskite manganite films of(La0.3Nd0.7)2/3Ca1/3MnO3[J].Journal of Applied Physics,2001,90(6):3118-3120.

        [17]WANG J F,GAO J.Phase competition induced nonlinear elastoresistance effect in thin films of Pr0.7Sr0.3MnO3[J].Applied Physics Letters,2012,100(13):131903.

        [18]ZHENG R K,WANG Y,CHAN H L W,et al.Determination of the strain dependence of resistance in La0.7Sr0.3MnO3/PMN-PT using the converse piezoelectric effect[J].Physical Review B,2007,75(21):212102.

        [19]THIELE C,DORR K,F(xiàn)AHLER S,et al.Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3(001)films[J].Applied Physics Letters,2005,87(26):262502-262502-3.

        [20]BISWAS A,RAJESWARI M,SRIVASTAVA R C,et al.Strain-driven charge-ordered state in La0.67Ca0.33MnO3[J].Physical Review B,2001,63(18):184424.

        [21]SUN J Z,GUPTA A.Spin-dependent transport and low-field magnetoresistance in doped manganites[J].Annual Review of Materials Science,1998,28(1):45-78.

        [22]PRELLIER W,LECOEUR P,MERCEY B.Colossal-magnetoresistive manganite thin films[J].Journal of Physics:Condensed Matter,2001,13(48):915-963.

        [23]HAGHIRI-GOSNET A M,RENARD J P.CMR manganites:physics,thin films and devices[J].Journal of Physics D:Applied Physics,2003,36(8):R127-R150.

        [24]MERCONE S,PERRONI C A,CATAUDELLA V,et al.Transport properties in manganite thin films[J].Physical Review B,2005,71(6):064415.

        [25]KOO T Y,PARK S H,LEE K B,et al.Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3[J].Applied Physics Letters,1997,71(7):977-979.

        [26]WANG H S,LI Q,LIU K,et al.Low-field magnetoresistance anisotropy in ultrathin Pr0.67Sr0.33MnO3films grown on different substrates[J].Applied Physics Letters,1999,74(15):2212-2214.

        [27]KANKI T,TANAKA H,KAWAI T.Anomalous strain effect in La0.8Ba0.2MnO3epitaxial thin film:Role of the orbital degree of freedom in stabiliz-ing ferromagnetism[J].Physical Review B,2001,64(22):224418.

        [28]WALZ F,BRABERS J,KRONMUELLER H.Magneto-electronic interactions in La0.8Ca0.2MnO3perovskite[J].J Phys:Condens Matter,1999,11:8901-8912.

        [29]郭爾佳.鈣鈦礦氧化物的光電特性及其紫外光探測(cè)器研究[D].北京:中國(guó)科學(xué)院研究生院,2011.

        [30]WU T,OGALE S B,SHINDE S R,et al.Substrate induced strain effects in epitaxial La0.67-xPrxCa0.33MnO3thin films[J].Journal of Applied Physics,2003,93(9):5507-5513.

        [31]KHARTSEV S I,JOHNSSON P,GRISHIN A M.Colossal magnetoresistance in ultrathin epitaxial La0.75Sr0.25MnO3films[J].Journal of Applied Physics,2000,87(5):2394-2399.

        [32]PARK S E,SHROUT T R.Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J].Journal of Applied Physics,1997,82(4):1804-1811.

        [33]FU H,COHEN R E.Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J].Nature,2000,403(6767):281-283.

        [34]ZHENG R K,HABERMEIER H U,CHAN H L W,et al.Effects of substrate-induced strain on transport properties of LaMnO3-δand CaMnO3thin films using ferroelectric poling and converse piezoelectric effect[J].Physical Review B,2010,81(10):104427.

        [35]GUO E J,GAO J,LU H B.Strain-mediated electric-field control of photoinduced demagnetization in La0.8Ca0.2MnO3thin films[J].Applied Physics Letters,2011,98(8):081903.

        [36]WANG J F,JIANG Y C,WU Z P,et al.Modulation of persistent photoconductivity by electric-field-controlled strain in thin films of La0.39Pr0.24Ca0.37MnO3[J].Applied Physics Letters,2013,102(7):071913.

        [37]ZHENG R K,WANG J,ZHOU X Y,et al.Effects of ferroelectric polarization and converse piezoelectric effect induced lattice strain on the electrical properties of La0.7Sr0.3MnO3thin films[J].Journal of Applied Physics,2006,99(12):123714.

        [38]ZHENG R K,WANG Y,HABERMEIER H U,et al.Interface strain coupling and its impact on the transport and magnetic properties of LaMnO3thin films grown on ferroelectrically active substrates[J].Journal of Alloys and Compounds,2012,519:77-81.

        [39]SHENG Z G,GAO J,SUN Y P.Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN-PT structures[J].Physical Review B,2009,79(17):174437.

        [40]ZHENG R K,WANG Y,WANG J,et al.Tuning the electrical properties of La0.75Ca0.25MnO3thin films by ferroelectric polarization,ferroelectricfield effect,and converse piezoelectric effect[J].Physical Review B,2006,74(9):094427.

        [41]GAO J,SHEN S Q,LI T K,et al.Current-induced effect on the resistivity of epitaxial thin films of La0.7Ca0.3MnO3and La0.85Ba0.15MnO3[J].Applied Physics Letters,2003,82(26):4732-4734.

        [42]GAO J,HU F X.Current-induced metastable resistive state in epitaxial thin films of La1-xCaxMnO3(x=0.2,0.3)[J].Applied Physics Letters,2005,86(9):092504.

        [43]ZHENG R K,JIANG Y,WANG Y,et al.Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3thin films grown on ferroelectric single-crystal substrates[J].Physical Review B,2009,79(17):174420.

        [44]ZHENG R K,HABERMEIER H U,CHAN H L W,et al.Effect of ferroelectric-poling-induced strain on the phase separation and magnetotransport properties of La0.7Ca0.15Sr0.15MnO3thin films grown on ferroelectric single-crystal substrates[J].Physical Review B,2009,80(10):104433.

        [45]ZHENG M,LI X Y,YANG M M,et al.Coupling of magnetic field and lattice strain and its impact on electronic phase separation in La0.335Pr0.335Ca0.33MnO3/ferroelectric crystal heterostructures[J].Applied Physics Letters,2013,103(26):263507.

        [46]JIA R R,ZHANG J C,ZHENG R K,et al.Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films[J].Physical Review B,2010,82(10):104418.

        [47]CAURO R,GRENET J C,GILABERT A,et al.Persistent photoconductivity in La0.7CaxBa1-xMnO3thin films[J].International Journal of Modern Physics B,1999,13(29/30/31):3786-3791.

        [48]GILABERT A,CAURO R,MEDICI M G,et al.Photoconductivity in manganites[J].Journal of Superconductivity,2000,13(2):285-290.

        [49]CAURO R,PAPIERNIK R,GILABERT A,et al.Photoconductivity in oxygen deficient La0.7Pbx□0.3-xMnO3-δthin films prepared by chemical route[J].Journal of Superconductivity,2001,14(2):235-244.

        [50]DAI J M,SONG W H,WANG S G,et al.Visible-light induced persistent photoconductivity in trilayered films of perovskite manganites[J].Journal of Applied Physics,2001,89(11):6967-6969.

        [51]DAI J M,SONG W H,DU J J,et al.Cluster-glass state and photon-induced effects in perovskite manganite(La0.3Nd0.7)2/3Ca1/3MnO3films[J].Physical Review B,2003,67(14):144405.

        [52]HUHTINEN H,LAIHO R,ZAKHVALINSKII V.Persistent photoinduced magnetization and hole droplets in La0.9Ca0.1MnO3films[J].Physical Review B,2005,71(13):132404.

        [53]WANG J F,GAO J.Persistent photoconductivity induced by electric currents in epitaxial thin films of Pr0.7Sr0.3MnO3[J].Journal of Applied Physics,2011,109(7):07D701.

        [54]HU L,SUN Y P,WANG B,et al.Modulation of insulator-metal transition temperature by visible light in La7/8Sr1/8MnO3thin film[J].Chinese Physics Letters,2010,27(9):097504.

        [55]HU L,SHENG Z G,HUANG Y N,et al.Remarkable current-enhanced photoconductivity in oxygen-deficient La7/8Sr1/8MnO3-δthin film[J].Applied Physics Letters,2012,101(4):042413.

        [56]MOSHNYAGA V,GISKE A,SAMWER K,et al.Giant negative photoconductivity in La0.7Ca0.3MnO3thin films[J].Journal of Applied Physics,2004,95(11):7360-7362.

        [57]SHENG Z G,SUN Y P,DAI J M,et al.Erasure of photoconductivity by magnetic field in oxygen-deficient La2/3Sr1/3MnO3-δthin films[J].Applied Physics Letters,2006,89(8):082503.

        [58]GUO E J,WANG L,LU H B,et al.Suppression of photoconductivity by magnetic field in epitaxial manganite thin films[J].Applied Physics Letters,2012,100(6):061902.

        Multi-field tuning of perovskite manganites

        YANG Yuanyuan,GAO Ju
        (School of Mathematics and Physics,SUST,Suzhou 215009,China)

        The perovskite manganites are located on the quantum phase boundary and their novel behaviors are associated with the coexistence and competition of quantum states,sensitive to the external fields including magnetic field,electrical field,light and strain.In this review,we summarized the effects of multi-field tuning,and mainly focused on the well-controlled lattice strain and light such as strain-enhanced magnetoresistance,currentenhanced photoconductivity,the erasure of persistent photo-induced resistance.These fantastic effects lead to the development of oxide-based field-effect transistors.Besides,we proposed the development tendency of multi-field tuning in manganites.

        perovskite manganite;multi-field tuning;strongly electron-correlated system;metastable phase

        O469

        A

        1672-0687(2016)01-0045-07

        責(zé)任編輯:李文杰

        2015-01-26

        國(guó)家自然科學(xué)基金資助項(xiàng)目(11374225)

        楊媛媛(1989-),女,江蘇鎮(zhèn)江人,碩士研究生,研究方向:光電材料與器件。*

        高炬(1957-),男,教授,博士,博士生導(dǎo)師,E-mail:jugao@hku.hk。

        猜你喜歡
        光場(chǎng)鈣鈦礦應(yīng)力場(chǎng)
        利用新型光場(chǎng)顯微鏡高速記錄神經(jīng)元活動(dòng)和血流動(dòng)態(tài)變化
        科學(xué)(2020年5期)2020-01-05 07:03:12
        壓縮混沌光場(chǎng)的量子統(tǒng)計(jì)性質(zhì)研究
        當(dāng)鈣鈦礦八面體成為孤寡老人
        鋁合金多層多道窄間隙TIG焊接頭應(yīng)力場(chǎng)研究
        焊接(2016年9期)2016-02-27 13:05:22
        幾種新型鈣鈦礦太陽(yáng)電池的概述
        集成光場(chǎng)三維顯示亮度均勻性校正方法
        鈣鈦礦型多晶薄膜太陽(yáng)電池(4)
        鈣鈦礦型多晶薄膜太陽(yáng)電池(2)
        考慮斷裂破碎帶的丹江口庫(kù)區(qū)地應(yīng)力場(chǎng)與水壓應(yīng)力場(chǎng)耦合反演及地震預(yù)測(cè)
        瘋攝影
        攝影之友(2014年3期)2014-04-21 20:21:38
        国产综合第一夜| 人妻少妇精品视频专区vr| 亚洲国产婷婷香蕉久久久久久| 国产乱人激情h在线观看| 国产剧情麻豆女教师在线观看| 青青青伊人色综合久久亚洲综合 | 精产国品一二三产品蜜桃| 国产精品毛片无码久久| 国产av大片在线观看| 蜜桃国产精品视频网站| 亚洲av成人片色在线观看| 99亚洲男女激情在线观看| 亚洲AV秘 无码二区在线| 青青草原亚洲在线视频| 日本免费久久高清视频| 亚洲中文字幕久久精品蜜桃| 18分钟处破好疼哭视频在线观看| 狠狠干视频网站| 国产一区二区一级黄色片| 国产自拍偷拍精品视频在线观看| 亚洲图片日本视频免费| 亚洲综合色成在线播放| 极品粉嫩小仙女高潮喷水视频| 美女视频黄a视频全免费网站色| 亚洲欧美日韩综合一区二区| 欧美艳星nikki激情办公室| 色欲AV成人无码精品无码| 91久久精品一二三区色| 国产成人自拍高清在线| 日韩精品无码中文字幕电影| 亚洲AⅤ无码国精品中文字慕| 激情视频在线观看免费播放| 亚洲一区二区日韩专区| 亚洲成av人影院| 亚洲成人欧美| 黄色国产一区在线观看| av熟妇一区二区三区| 欧美人妻日韩精品| 亚洲欧美日韩高清中文在线| 亚洲国产丝袜美女在线| 米奇欧美777四色影视在线|