亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        采后園藝產(chǎn)品能量代謝與調(diào)控的研究進(jìn)展

        2016-10-20 05:03:06蔣躍明屈紅霞段學(xué)武
        關(guān)鍵詞:植物水平

        蔣躍明, 王 慧, 易 春, 屈紅霞, 段學(xué)武

        (中國(guó)科學(xué)院華南植物園 植物資源保護(hù)與可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室; 廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510650)

        ?

        采后園藝產(chǎn)品能量代謝與調(diào)控的研究進(jìn)展

        蔣躍明, 王慧, 易春, 屈紅霞, 段學(xué)武

        (中國(guó)科學(xué)院華南植物園 植物資源保護(hù)與可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室; 廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州510650)

        能量供應(yīng)是維持生物體正常生命活動(dòng)的基礎(chǔ),能量物質(zhì)虧損誘發(fā)了園藝作物采后衰老發(fā)生.文章簡(jiǎn)述了采后園藝產(chǎn)品能量代謝與調(diào)控的研究進(jìn)展,并從能量的合成、轉(zhuǎn)運(yùn)和耗散的運(yùn)行與調(diào)控機(jī)制方面進(jìn)行了展望.

        能量; 園藝作物; 采后; 衰老; 病害; 虧損

        1 采后園藝產(chǎn)品能量概述

        生物生命活動(dòng)依賴于能量供應(yīng).能量伴隨物質(zhì)代謝過(guò)程,以腺嘌呤核苷三磷酸(ATP)形式貯存,主要用于生物合成、營(yíng)養(yǎng)物質(zhì)運(yùn)輸、基因信息傳遞、離子載體和通道調(diào)節(jié)等[1].ATP作為能量的直接利用形式,可分為胞內(nèi)ATP和胞外ATP 2種.胞內(nèi)ATP的存在最早發(fā)現(xiàn)于1929年,作為細(xì)胞內(nèi)各種生化反應(yīng)和生理代謝的直接能量來(lái)源,是生命存活的能量基礎(chǔ).近年來(lái)研究還發(fā)現(xiàn),ATP除了作為“能量貨幣”調(diào)節(jié)生命代謝活動(dòng),胞外的ATP分子還承擔(dān)著信號(hào)分子的角色[2-3].

        園藝產(chǎn)品在采后衰老時(shí)常伴隨著物質(zhì)轉(zhuǎn)化、呼吸代謝途徑和呼吸鏈組分的改變.在正常生命活動(dòng)中,園藝產(chǎn)品通常能夠合成足夠能量以維持組織的正常代謝;但當(dāng)處于衰老或在不良環(huán)境脅迫條件下,呼吸鏈?zhǔn)軗p、ATP合成能力降低,細(xì)胞因能量耗竭而出現(xiàn)代謝與功能的紊亂,結(jié)果導(dǎo)致細(xì)胞結(jié)構(gòu)的破壞和細(xì)胞內(nèi)功能組分喪失,最終形成細(xì)胞不可逆損傷而導(dǎo)致細(xì)胞以凋亡方式死亡[1,4].可見(jiàn),維持細(xì)胞內(nèi)能量水平可保持園藝產(chǎn)品的正常生命活動(dòng),從而能維持品質(zhì),延長(zhǎng)采后貯運(yùn)貨架期.

        線粒體一方面是生物體進(jìn)行呼吸作用和能量合成的場(chǎng)所,另一方面是生物體最早表現(xiàn)出功能性衰退的細(xì)胞器[1].由線粒體功能下降而引起的細(xì)胞能量缺乏,可減弱采后園藝產(chǎn)品各種生理應(yīng)激的能力[4].當(dāng)采后園藝產(chǎn)品組織衰老時(shí),線粒體可出現(xiàn)數(shù)量的減少和體積增大,總體積下降,脂質(zhì)過(guò)氧化產(chǎn)物累積,線粒體DNA缺失加重,線粒體膜電位降低,氧化磷酸化耦聯(lián)效率降低、ATP生成下降,導(dǎo)致了細(xì)胞發(fā)生能量虧損.SAQUET等[5]發(fā)現(xiàn)“Conference”梨(Pyrusussuriensis)和“Jonagold”蘋果(MaluspumilaMill.)氣調(diào)貯藏2個(gè)月,“Jonagold”蘋果組織中的ATP含量下降明顯,而“Conference”梨僅略微下降.荔枝果實(shí)采后在衰老過(guò)程中,果皮組織能量水平明顯下降,生理代謝失調(diào),可能是導(dǎo)致果實(shí)衰老、品質(zhì)劣變的一個(gè)重要因素[6]; 與此同時(shí),組織能量虧損,導(dǎo)致了以荔枝(LitchichinensisSonn.)霜疫霉菌為主的病害大量發(fā)生[1].可見(jiàn),維持組織能量代謝水平可明顯保持園藝產(chǎn)品品質(zhì),推遲衰老和抑制病害發(fā)生.

        2 能量與采后園藝作物衰老

        能量虧損可能是決定細(xì)胞死亡的重要因素.對(duì)于整體植株發(fā)育而言,ATP合成體系和利用體系處于相對(duì)動(dòng)態(tài)平衡之中;當(dāng)能荷值(EC)大于一閾值時(shí),生長(zhǎng)發(fā)育順利,當(dāng)EC小于這一閾值時(shí),便意味著生長(zhǎng)停滯或衰老; 而對(duì)于細(xì)胞個(gè)體而言,細(xì)胞中的ATP水平下降是細(xì)胞死亡的決定因素[7].當(dāng)細(xì)胞ATP水平維持在正常范圍時(shí),細(xì)胞存活;一旦低于這一水平,細(xì)胞即走向死亡, 其中ATP水平降低是衰老起始的顯著特征[1].“Jonagold” 蘋果在氣調(diào)貯藏過(guò)程中ATP含量明顯下降[5].荔枝果實(shí)隨著褐變指數(shù)增加,ATP含量和能荷水平也迅速降低[8].香石竹(DianthuscaryophyllusL.)切花花瓣伴隨內(nèi)卷和枯萎等衰老癥狀的發(fā)生,ATP合成下降[9].通過(guò)合適處理可維持園藝作物細(xì)胞核苷酸和能荷水平,有效延緩組織衰老和褐變.例如,氣調(diào)貯藏呼吸代謝低,耗能少,ATP累積[10].經(jīng)純氧處理后“淮枝”荔枝果皮組織中的ATP含量和能荷水平較高,果皮褐變率降低[8].采用低氧(5% O2+95% N2)處理香石竹切花,明顯提高組織中的ATP和能荷水平,延長(zhǎng)花期[11].外加ATP明顯延長(zhǎng)香石竹花期,且相應(yīng)的能量水平較高[12].可見(jiàn),組織能量虧損導(dǎo)致衰老和褐變;反之,維持組織能量代謝水平可明顯推遲衰老和抑制褐變的發(fā)生.普遍認(rèn)為,ATP含量和EC具有一致性,2者水平直接反應(yīng)生命代謝活動(dòng)的強(qiáng)弱.

        細(xì)胞膜是生物體的重要組成部分.在植物衰老過(guò)程中,膜透性增強(qiáng),膜內(nèi)外離子梯度喪失和一些重要膜脂蛋白如離子泵功能下降[13].膜系統(tǒng)的破壞是采后果蔬衰老的原初反應(yīng),它意味著膜完整性的喪失、細(xì)胞離子泄露和去區(qū)域化,表現(xiàn)為膜透性的增加[14].正常植物細(xì)胞能合成足夠能量以維持細(xì)胞內(nèi)膜代謝等的平衡;而處于衰老或環(huán)境脅迫下的植物細(xì)胞表現(xiàn)為ATP合成能力下降,代謝與功能的紊亂,膜結(jié)構(gòu)和完整性、區(qū)域化喪失,底物和酶作用,最終導(dǎo)致細(xì)胞不可逆死亡.膜系統(tǒng)的傷害可能與細(xì)胞內(nèi)能量虧損有關(guān)[15-16].TRIPPI等[9]發(fā)現(xiàn)香石竹切花在瓶插期間細(xì)胞膜透性增加與組織能量虧損呈正相關(guān);提高香石竹切花組織ATP和能荷水平可降低質(zhì)膜透性和減輕細(xì)胞膜劣變發(fā)生[11].荔枝果實(shí)隨著貯藏時(shí)間延長(zhǎng),組織內(nèi)的ATP、ADP和能荷值下降,果皮質(zhì)膜透性增加,細(xì)胞膜完整性遭到破壞[8].脂類是細(xì)胞膜的主要組成部分;而膜脂成分的變化可能會(huì)改變膜的生物物理和生物化學(xué)特性,導(dǎo)致膜區(qū)域化的喪失[17].研究表明,ATP在脂類的合成和細(xì)胞膜的修復(fù)中起重要作用[16].RAWYLER等[18]研究表明,ATP合成與膜脂降解之間存在相關(guān)性:當(dāng)ATP合成速率低于一定閾值時(shí),膜脂水解產(chǎn)物,如自由脂肪酸和N-乙酰磷脂酰乙醇胺含量明顯增加.SAQUET等[19]研究結(jié)果也表明,隨著“Conference”梨在延遲氣調(diào)貯藏期間,組織能量代謝水平增加,多聚不飽和脂肪酸如油酸和亞油酸等含量明顯上升.因此,保持細(xì)胞內(nèi)ATP和能荷水平可影響到細(xì)胞膜結(jié)構(gòu)的完整性,進(jìn)而保持植物正常生命活動(dòng),從而延遲衰老發(fā)生.

        3 能量與采后園藝作物病害

        植物衰老是一個(gè)有序的細(xì)胞程序性死亡過(guò)程,受到能量水平的調(diào)控,而衰老所引起的抗病力下降受ATP調(diào)控.作為代謝過(guò)程,抗毒素和病程相關(guān)蛋白合成等生理過(guò)程都與能量水平緊密相關(guān).在果實(shí)收獲初期,荔枝霜疫霉菌潛伏在荔枝果實(shí)表面,與寄主細(xì)胞之間維持著平衡; 但隨著果實(shí)衰老加劇,細(xì)胞膜被破壞,病原菌-寄主間的平衡被打破,病原菌感受到信號(hào)后萌發(fā)侵入菌絲和產(chǎn)生毒素降解細(xì)胞,果實(shí)細(xì)胞快速走向死亡[20-21].伴隨細(xì)胞膜衰老、膜脂降解和潛伏的病原菌被活化,進(jìn)而侵染果實(shí)組織.在受病菌侵染的植物細(xì)胞中,呼吸速率增強(qiáng),ATP含量相應(yīng)增加; 其代謝變化與植物體對(duì)病原菌反應(yīng)緊密相關(guān),但是寄主細(xì)胞壞死或降解伴隨的生理生化代謝(如氧自由基清除能力降低、酚類物質(zhì)含量下降和膜功能衰退等)與細(xì)胞衰老過(guò)程相似[1,22-24].

        在植物受到病原物侵染后,第一個(gè)明顯的反應(yīng)是寄主的呼吸作用增強(qiáng),能量合成升高,以應(yīng)對(duì)相關(guān)病害響應(yīng)的代謝所需能量,消除病原菌的侵染作用[25].能荷值在感染初期差別較小,但到侵染后期,寄主的氧化磷酸化解偶聯(lián),ATP供應(yīng)不足,細(xì)胞受傷害,寄主抗病能力降低,能荷趨向降低,在寄主死亡時(shí)最終下降至零.在病原菌侵染初期,果實(shí)組織的能荷值保持相對(duì)恒定,說(shuō)明代謝平衡能維持細(xì)胞正常生命活動(dòng)狀態(tài)[26-27].在病害發(fā)生期間,能量對(duì)植物組織的自由基產(chǎn)生、抗氧化和抗病能力有重要影響.因此,“細(xì)胞內(nèi)ATP調(diào)控系統(tǒng)”是植物抗病的機(jī)制之一.

        4 胞外ATP(Extracellular ATP,eATP) 在采后園藝作物衰老中的信號(hào)作用

        自20多a前存在動(dòng)物體質(zhì)膜上嘌呤能受體“Purinocepters”(P2X和P2Y)的發(fā)現(xiàn),已有大量研究證明eATP和eADP能直接與該類受體結(jié)合,激活二次信使,誘導(dǎo)特異基因表達(dá),調(diào)節(jié)神經(jīng)傳遞(神經(jīng)遞質(zhì)功能)、免疫應(yīng)答、細(xì)胞生長(zhǎng)、細(xì)胞凋亡、分泌代謝、離子通道活性等生命活動(dòng)過(guò)程[28-30].盡管早期研究發(fā)現(xiàn),在植物中外施ATP可調(diào)節(jié)誘導(dǎo)機(jī)械運(yùn)動(dòng)[31],改變核酸內(nèi)切酶活性[32], 提高K+攝取量[33], 減弱胞質(zhì)環(huán)流[34], 調(diào)節(jié)氣孔開放[35]和刺激花粉管生殖核分裂[36];但仍認(rèn)為主要通過(guò)調(diào)節(jié)胞內(nèi)能量水平來(lái)改變細(xì)胞生長(zhǎng)代謝或響應(yīng).直到近年, eATP對(duì)第二信使 (胞內(nèi)鈣濃度([Ca2+]cyt)和過(guò)氧化物的影響的研究,發(fā)現(xiàn)eATP也是直接信使物質(zhì),對(duì)細(xì)胞存活具有關(guān)鍵的作用[3,37].

        Apyrase(腺苷三磷酸酶和腺苷二磷酸酶)是水解ATP釋放能量的最有效的一類酶.現(xiàn)在植物中發(fā)現(xiàn)的Ayrase大都是位于質(zhì)膜上,但活動(dòng)位點(diǎn)指向胞外基質(zhì)的胞外酶[38].這是因?yàn)橹参镌谑艿綑C(jī)械刺激、損傷或生長(zhǎng)旺盛的代謝活動(dòng)中,細(xì)胞分泌大量ATP到胞外基質(zhì)[12,37].僅微摩爾級(jí)的eATP便足以引起強(qiáng)烈的細(xì)胞信號(hào)響應(yīng)[3],而Aprase便不斷分解移除過(guò)多ATP分子,維持一定的eATP水平.因此,Aprase作為胞外酶對(duì)控制eATP水平起非常關(guān)鍵作用.

        TANG等[39]發(fā)現(xiàn),當(dāng)胞外ATP濃度大量增加時(shí),生長(zhǎng)素的運(yùn)輸被阻斷,大量積累在生長(zhǎng)位點(diǎn)中.由于生長(zhǎng)素的兩重性,反而抑制了根系生長(zhǎng);而植物細(xì)胞胞外存在微摩爾級(jí)的eATP即可誘導(dǎo)植物細(xì)胞信號(hào)傳遞,激發(fā)嘌呤能受體以轉(zhuǎn)換傳遞途徑[3,12];而濃度過(guò)高反而影響生長(zhǎng)素等生長(zhǎng)調(diào)節(jié)因子抑制生長(zhǎng).WU等報(bào)道,在Aprase受抑制的根系中,eATP水平大大提高.因此,根系生長(zhǎng)受到胞外ATP含量調(diào)節(jié),eATP水平又受到Aprase的調(diào)控[40].另一方面,eATP對(duì)于生長(zhǎng)發(fā)育甚至細(xì)胞存活必不可缺;Apyrase活性增加導(dǎo)致胞外ATP的匱乏,抑制了馬鈴薯(SolanumtuberosumL.)的生長(zhǎng)[41].目前,關(guān)于胞外ATP在采后園藝作物的生理生化作用與機(jī)制還不明確,特別是在調(diào)控衰老方面.因而,深入揭示eATP在采后園藝作物中的作用,可促進(jìn)對(duì)采后園藝作物衰老機(jī)制的進(jìn)一步認(rèn)識(shí).

        5 果蔬產(chǎn)品采后能量代謝的調(diào)控

        在采后園藝作物組織中,高能損耗會(huì)導(dǎo)致線粒體的呼吸活性增強(qiáng),氧化磷酸化和ATP合成速率升高,繼而活性氧產(chǎn)生增加; 但過(guò)量的自由基積累和活性氧產(chǎn)生可影響線粒體上的酶和電子傳遞鏈而導(dǎo)致線粒體損傷,阻斷能量產(chǎn)生進(jìn)程而引起能量供給不足[4,42].不過(guò), 在一定范圍內(nèi),植物組織可通過(guò)增強(qiáng)交替氧化酶(AOX)和解耦聯(lián)蛋白(UCP)活性及其表達(dá)水平,調(diào)控氧化磷酸化和ATP合成速率,從而維持能量供需動(dòng)態(tài)平衡[43-44].在香蕉(Musaparadisiaca)、芒果(MangiferaindicaL.)、番木瓜(CaricapapayaL.)、菠蘿(Ananascomosus)、蘋果和草莓(FragariadaltonianaCay)等果實(shí)成熟衰老過(guò)程中,均發(fā)現(xiàn)AOX和UCP的表達(dá)[45-46].AOX和UCP可使果實(shí)在逆境(高氧、厭氧和低溫等)下調(diào)節(jié)能量平衡,抵抗氧化脅迫,保持三羧酸循環(huán)的運(yùn)行,降低線粒體電子傳遞鏈中活性氧產(chǎn)生水平[47-48].結(jié)合前面提到的電子傳遞鏈與氧化磷酸化和末端氧化系統(tǒng),可初步認(rèn)為果蔬產(chǎn)品在采后過(guò)程中能量代謝存在著多種多樣的調(diào)控方式或途徑.

        線粒體膜上存在多種能量載體蛋白,其中ADP/ATP載體蛋白(AAC)和ATP轉(zhuǎn)運(yùn)蛋白(ANT)負(fù)責(zé)ATP在線粒體和胞質(zhì)之間的運(yùn)輸[42].AAC介導(dǎo)線粒體中高濃度的ATP運(yùn)入細(xì)胞質(zhì),同時(shí)反向交換運(yùn)出等量的ADP,是線粒體ATP濃度的主要調(diào)節(jié)者[49-50].敲除AAC導(dǎo)致擬南芥根(Arabidopsisthaliana(L.) Heynh)呼吸速率降低,根的生長(zhǎng)放緩[51].可見(jiàn),ATP轉(zhuǎn)運(yùn)功能在減少能量損耗、維持生物體內(nèi)細(xì)胞器功能具有特別意義.

        蔗糖非酵解型蛋白激酶(Sucrose non-fermenting related protein kinase,SnRK)是細(xì)胞內(nèi)的“能量調(diào)節(jié)器”,參與植物體內(nèi)多種信號(hào)途徑的轉(zhuǎn)導(dǎo),對(duì)植物的抗逆性起到重要作用[42,52].生物體在熱休克和缺氧等脅迫條件下,ATP合成受到干擾或ATP消耗可激活腺苷酸活化蛋白激酶(AMP-activatedprotein kinase, AMPK),關(guān)閉消耗ATP的代謝活動(dòng)(如脂類、蛋白質(zhì)的合成),同時(shí)激活產(chǎn)生ATP相關(guān)的代謝途徑(如葡萄糖和脂肪酸的氧化)[42].AMPK不僅通過(guò)磷酸化調(diào)控酶的活性產(chǎn)生直接效應(yīng),而且通過(guò)調(diào)控轉(zhuǎn)錄水平對(duì)代謝過(guò)程產(chǎn)生長(zhǎng)遠(yuǎn)的影響[53].可見(jiàn),生物體SnRK可能感知ATP虧損信號(hào)從而調(diào)控能量合成、轉(zhuǎn)運(yùn)和耗散相關(guān)基因的轉(zhuǎn)錄,從而維持組織能量動(dòng)態(tài)平衡;而持續(xù)脅迫或過(guò)度脅迫,則超出組織自身能量調(diào)控范圍,不能修復(fù)脅迫所造成的傷害,細(xì)胞、組織或整個(gè)植物最終出現(xiàn)功能性衰老[42,54].

        生物能量調(diào)控涉及到能量合成(ATP合成酶)、轉(zhuǎn)運(yùn)(AAC和ANT)、耗散(AOX和UCP)以及感知調(diào)控的蔗糖非酵解型蛋白激酶(SnRK)等.以采后荔枝果實(shí)為材料,發(fā)現(xiàn)荔枝果實(shí)在采后衰老過(guò)程中,SnRK可能感知衰老及ATP虧缺信號(hào),調(diào)控ATP合成、轉(zhuǎn)運(yùn)、耗散基因的表達(dá),維持能量平衡,其中LcAtpB可作為荔枝衰老起始的標(biāo)記基因,LcAOX1表達(dá)上升和AOX活性增強(qiáng)可能是導(dǎo)致采后荔枝果實(shí)能量虧缺的重要原因(圖1).

        圖1 荔枝果實(shí)采后衰老過(guò)程可能的能量調(diào)控機(jī)制

        6 展 望

        生物體能量的產(chǎn)生和利用是一個(gè)高度協(xié)調(diào)的生命活動(dòng).在園藝作物采后過(guò)程中能量代謝存在著多種多樣的調(diào)控方式,包括能量合成、耗散和轉(zhuǎn)運(yùn)等過(guò)程,并且相互之間影響著細(xì)胞內(nèi)能量的供應(yīng).另外,因能量調(diào)控元件的多樣性和能量調(diào)控體系的復(fù)雜性,在生物體內(nèi)如何精細(xì)調(diào)控細(xì)胞能量水平和有效利用?特別是有關(guān)能量信號(hào)分子、UCP、ACC與SnRK的分子調(diào)控方式還不清楚.在采后園藝作物中,解析能量調(diào)控的關(guān)鍵途徑和能量信號(hào)啟動(dòng)園藝產(chǎn)品采后衰老的原初過(guò)程具有重要意義;同時(shí),對(duì)于從能量角度出發(fā)為研發(fā)園藝產(chǎn)品采后品質(zhì)控制新技術(shù)提供理論指導(dǎo).

        [1]易春. 能量對(duì)采后荔枝果實(shí)的衰老和抗病性的調(diào)控作用[D]. 北京:中國(guó)科學(xué)院, 2009.

        YI C. Regulation role of energy in senescence and disease resistance of harvested litchi fruit[D]. Beijing: Chinese Academy of Sciences, 2009.

        [2]RALEVIC V, BURNSTOCK G. Receptors for purines and pyrimidines[J]. Pharmcol Rev, 1998, 50: 413-492.

        [3]DEMIDCHIK V, NICHOLS C, OLIYNYK M, et al. Is ATP a signaling agent in plants?[J]. Plant Phys, 2003, 133: 456-461.

        [4]JIANG Y M, JIANG Y L, QU H X, et al. Energy aspects in ripening and senescence of harvested horticultural crops[J]. Stewart Postharv Rev,2007, 2: 5.

        [5]SAQUET A A, STREIF J, BANGERTH F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in ‘Conference’ pears and ‘Jonagold’ apples during controlled atmosphere storage[J]. J Hort Sci Biotech, 2000, 75: 243-249.

        [6]LIU H, SONG L L, JIANG Y M, et al. Short-term anoxia treatment maintains tissue energy levels and membrane integrity and inhibits browning of harvested litchi fruit[J]. J Sci Food Agr, 2007, 87: 1767-1771.

        [7]RITCHER C, SCHWEIZER M, COSSARIZZA A, et al. Control of apoptosis by the cellular ATP level[J]. FEBS Lett, 1996, 378: 107-110.

        [8]DUAN X W, JIANG Y M, SU X G, et al. Role of pure oxygen treatment in browning of litchi fruit after harvest[J]. Plant Sci, 2004, 167: 665-668.

        [9]TRIPPI V S, PAULIN A. The senescence of cut carnations: a phasic phenomenon[J]. Phys Plant, 1984, 60: 221-226.

        [10]XUAN H, STREIF J, SAQUET A, et al. Application of boron with calcium affects respiration and ATP/ADP ratio in ‘Conference’ pears during controlled atmosphere storage[J]. J Hort Sci Biotech, 2005, 80: 633-637.

        [11]TRIPPI V S, PAULIN A, PRADET A. Effect of oxygen concentration on the senescence and energy metabolism of cut carnation flowers[J]. Phys Plant, 1988, 73: 374-379.

        [12]SONG L L, JIANG Y M, GAO H Y, et al. Effects of adenosine triphosphate on browning and quality of harvested litchi fruit[J]. Amer J Food Tech, 2006, 1(2): 173-178.

        [13]BROWN D J, BEEVERS H. Fatty acid of rice coleoptiles in air and anoxia[J]. Plant Phys,1987, 84: 555-559.

        [14]蔣躍明, 傅家瑞, 徐禮根. 膜對(duì)采后園藝作物衰老的影響[J]. 廣西植物, 2002, 22:160-166.

        JIANG Y M, FU J R, XU L G. Membrane effects in postharvest senescence of horticultural crops[J]. Guihaia, 2002, 22: 189-195.

        [15]HARWOOD J L. Fatty acid metabolism[J]. Annu Rev Plant Phys Mol Biol, 1988, 39: 101-138.

        [16]OHLROGGE J, BROWSE J. Lipid biosynthesis[J].Plant Cell, 1995, 7: 957-970.

        [17]MARANGONI A G, PALMA T, SANLEY D W. Membrane effects in postharvest physiology[J]. Posth Biol Tech, 1996, 7: 193-217.

        [18]RAWYLER A, BRAENDLE R. N-Acylphosphatidylethanolamine accumulation in potato cells upon energy shortage caused by anoxia or respiratory inhibitors[J]. Plant Phys, 2001, 127: 240-251.

        [19]SAQUET A A, STREIF J, BANERTH F. Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage[J]. Posth Bio Tech, 2003, 30: 123-132.

        [20]YI C, QU H X, JIANG Y M, et al. ATP-induced changes in energy status and membrane integrity of harvested litchi fruit and its relation to pathogen resistance[J]. J Phyt, 2008, 156: 365-371.

        [21]YI C, JIANG Y M, SHI J, et al. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process[J]. Food Chem, 2010, 118: 42-47.

        [22]PRUSKY D. Pathogen quiescence in postharvest diseases[J]. Annu Rev Phytop, 1996, 34: 413-434.

        [23]FENG L Y, WU F W, LI J, et al. Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo[J]. Posth Biol Tech, 2011, 61: 160-164.

        [24]Yi C, JIANG Y M, SHI J, et al. Effect of adenosine triphosphate on changes of fatty acids in harvested litchi fruit infected byPeronophythoralitchii[J]. Posth Bio Tech, 2009, 54: 59-164.

        [25]BAYLEY J, MERRETT M J. Adenosine triphosphate concentration in relation to respiration and resistance to infection in tissues infected by virus[J]. New Phyt, 1968, 68: 257-263.

        [26]CAO S F, CAI Y T, YANG Z F, et al. Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit[J]. Food Chem, 2013, 145: 86-89.

        [27]CHEN M Y, LIN H T, ZHANG S, et al. Effects of adenosine triphosphate (ATP) treatment on postharvest physiology, quality and storage behavior of longan fruit[J]. Food Bio Tech, 2015, 8: 971-982.

        [28]BODIN P, BURNSTOCK G. Purinergic signaling: ATP release[J]. Neurochem Res, 2001, 26: 959-969.

        [29]BURNSTOCK G. Purinergic nerves[J]. Pharmacol Rev, 1972, 24: 509-581.

        [30]BURNSTOCK G, KNIGHT G E. Cellular distribution and functions of P2 receptor subtypes in different systems[J]. Int Rev Cytol, 2004, 240:31-51.

        [31]JAFFE M J. The role of ATP in mechanically stimulated rapid closure of the Venus’s flytrap[J]. Plant Physiol, 1973, 51:17-18.

        [32]UDVARDY J, FARKAS G L. ATP stimulates the formation of nucleases in excised Avena leaves[J]. Z Pflanzenphys, 1973, 69: 394-401.

        [33]LüTTGE U, SCH?CH EV, BALL E. Can externally applied ATP supply energy to active ion uptake mechanisms of intact plant cells?[J]. Aust J Plant Phys, 1974, 1: 211-220.

        [34]WILLIAMSON R E. Cytoplasmic streaming in chara: A cell model activated by ATP and inhibited by cytochalasin B[J]. J Cell Sci, 1975, 17:655-668.

        [35]NEJIDAT A, ITAI C, ROTH-BEJERANO N. Stomatal response to ATP mediated by phytochrome[J]. Plant Phys, 1983, 57: 367-370.

        [36]KAMIZYO A, TANAKA N. Studies on the generative nuclear divisions. III. Effects of exogenous ATP on the generative nuclear divisions inLiliumlongiflorum[J]. Cytologia, 1982, 47: 195-205.

        [37]JETER C, TANG W, HENAFF E, et al. Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates inArabidopsis[J]. Plant Cell, 2004, 16: 2652-2664.

        [38]THOMAS C, SUN Y, NAUS K, et al. Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP[J]. Plant Phys, 1999, 119: 543-551.

        [39]TANG W, BRADY S R, SUN Y, et al. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport[J]. Plant Phys, 2003, 131: 147-154.

        [40]WU J, STEINEBRUNNER I, SUN Y, et al. Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control inArabidopsis[J]. Plant phys, 2007, 144: 961-975.

        [41]KIM S Y, SIVAGURU M, STACEY G. Extracellular ATP in Plants. Visualization, localization, and analysis of physiological significance in growth and signaling[J]. Plant Phys, 2006, 142:984-982.

        [42]王慧. 荔枝果實(shí)采后衰老的能量合成、轉(zhuǎn)運(yùn)、耗散的運(yùn)行與調(diào)控機(jī)制[D]. 北京:中國(guó)科學(xué)院, 2015.

        WANG H. Characteristics and regulation mechanisms of energy synthesis, translocation and dissipation in postharvest senescent fruit of litchi (LitchichinensisSonn.)[D]. Beijing: Chinese Academy of Sciences, 2015.

        [43]ALMEIDA A M, JARMUSZKIEWICZ W, KHOMSI H, et al. Cyanide-resistant, ATP-synthesis-sustained, and uncoupling-protein-sustained respiration during postharvest ripening of tomato fruit[J]. Plant Phys, 1999, 119: 1323-1329.

        [44]VERCESI A E, BORECKY J, GODOY MAIA I D, et al. Plant uncoupling mitochondrial proteins[J]. Annu Rev Plant Biol, 2006, 57: 383-404.

        [45]BORECKY J, NOGUEIRA F T S, OLIVEIRA K A P, et al. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots[J]. J Exp Bot, 2006, 57: 849-864.

        [46]CONSIDINE M J, GOODMAN M, ECHTAY K S, et al. Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein[J]. J Biol Chem, 2003, 278: 22298-22302.

        [47]TIAN M, GUPTA D, LEI X Y, et al. Effects of low temperature and ethylene on alternative oxidase in green pepper (CapsicumannuumL.)[J]. J Hort Sci Biotech, 2004, 79: 493-499.

        [48]PURVIS A C, SHEWFELT R L, GEGOGEINE J W. Superoxide production by mitochondria isolated from green bell pepper fruit[J]. Phys Plant, 1995, 94: 743-749.

        [49]KLINGENBERG M. The ADP and ATP transport in mitochondria and its carrier[J]. Biochim Biophys Acta, 2008, 1778:1978-2021.

        [50]PALMIERI F, PIERRI C L, DE GRASSI A, et al. Evolution, structure and function of mitochondrial carriers: a review with new insights[J]. Plant J, 2011, 66: 161-181.

        [51]PALMIERI L, SANTORO A, CARRARI F, et al. Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter fromArabidopsis[J]. Plant Phys,2008, 148: 1797-1808.

        [52]LIU M S, LI H C, LAI Y M, et al. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing[J]. J Prot, 2013, 93: 133-144.

        [53]BAENA-GONZALEZ E. Energy signaling in the regulation of gene expression during stress[J]. Molec Plant, 2010, 3: 300-313.

        [54]CROZET P, MARGALHA L,BUTOWT R,et al. SUMOylation represses SnRK1 signaling inArabidopsis[J]. Plant J, 2016, 85: 120-133.

        【責(zé)任編輯: 陳鋼】

        Advance in energy generation and control of harvested horticultural crop

        JIANG Yue-ming, WANG Hui, YI Chun, QU Hong-xia, DUAN Xue-wu

        (Key Laboratory of Plant Resources Conservation and Sustainable Utilization; Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China)

        Cellular energy supply is a key factor in controlling senescence and disease while the senescence and disease of postharvest horticultural crops may be attributed to limited availability of energy or low energy generation. The paper reviewed the recent advance in energy generation and control and then proposed the regulation mechanism of energy availability based on the synthesis, translocation and dissipation of harvested horticultural crops.

        energy; horticultural crop; postharvest; senescence; disease; deficit

        2016-06-10;

        2016-06-29

        國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃資助項(xiàng)目(973計(jì)劃);國(guó)家自然科學(xué)基金資助項(xiàng)目(31271971);中國(guó)科學(xué)院重點(diǎn)部署資助項(xiàng)目(KSZD-EW-Z-021-3-3)

        蔣躍明(1963-),男,研究員,博士.E-mail:ymjiang@scbg.ac.cn

        1671- 4229(2016)04-0001-07

        X 17

        A

        猜你喜歡
        植物水平
        張水平作品
        作家葛水平
        火花(2019年12期)2019-12-26 01:00:28
        加強(qiáng)上下聯(lián)動(dòng) 提升人大履職水平
        植物的防身術(shù)
        把植物做成藥
        哦,不怕,不怕
        將植物穿身上
        老虎獻(xiàn)臀
        植物罷工啦?
        植物也瘋狂
        jlzzjlzz全部女高潮| 亚洲一区二区三区av色婷婷| 大香蕉视频在线青青草| 久久精品国产69国产精品亚洲| 欧美国产激情二区三区| 无码人妻丰满熟妇区五十路百度| 午夜a福利| 麻豆三级视频网站在线观看| 国产精品国产自产拍高清| 亚洲精品动漫免费二区| 嫩草影院未满十八岁禁止入内| 久久综合网天天 | 亚洲国产欲色有一二欲色| 国产精品专区第一页天堂2019| 国模丽丽啪啪一区二区| 久久久久成人亚洲综合精品 | 国产香蕉尹人在线视频你懂的| 日本按摩偷拍在线观看| 人妻插b视频一区二区三区| 夜夜未满十八勿进的爽爽影院| 中文亚洲爆乳av无码专区| 日韩一区二区中文字幕视频| 久久婷婷五月综合色奶水99啪| 精品人妻伦九区久久aaa片69| 国产三级黄色在线观看| 亚洲精品中文字幕乱码无线| 日韩精品第一区二区三区| 一本一道av无码中文字幕﹣百度 | 国产在线视频一区二区三| 给你免费播放的视频| 超碰cao已满18进入离开官网 | 综合激情五月三开心五月| 亚洲精品成人网站在线播放| 亚洲香蕉成人AV网站在线观看| 亚洲精品日本久久久中文字幕| 男人的天堂一区二av| 欧美国产精品久久久乱码| 久久久精品免费国产四虎| 一区二区三区日韩精品视频| 曰欧一片内射vα在线影院| 久久人妻AV无码一区二区|