閆 波,周 婷,王輝民,陳竹君,曹京陽,劉淑敏,周建斌
(1西北農林科技大學資源環(huán)境學院/農業(yè)部西北植物營養(yǎng)與農業(yè)環(huán)境重點實驗室,陜西楊凌 712100;2楊陵區(qū)農業(yè)技術推廣服務中心,陜西楊凌 712100)
日光溫室栽培番茄鎂缺乏與土壤陽離子平衡的關系
閆波1,周婷1,王輝民1,陳竹君1,曹京陽2,劉淑敏2,周建斌1
(1西北農林科技大學資源環(huán)境學院/農業(yè)部西北植物營養(yǎng)與農業(yè)環(huán)境重點實驗室,陜西楊凌 712100;2楊陵區(qū)農業(yè)技術推廣服務中心,陜西楊凌 712100)
【目的】北方石灰性土壤鈣、鎂含量豐富,鎂素供應充足,缺鎂主要發(fā)生在南方高度風化的酸性土壤,但近年來北方日光溫室栽培番茄等作物缺鎂現(xiàn)象頻發(fā)。因此,解析導致石灰性土壤日光溫室栽培番茄缺鎂的主要因素,可為日光溫室番茄鎂素缺乏的矯正和合理施肥提供科學依據(jù)?!痉椒ā吭陉兾魇盍枋痉秴^(qū)大寨鎮(zhèn)日光溫室栽培基地,于秋冬茬栽培番茄普遍發(fā)生缺鎂的盛果期(11月份),選擇番茄定植時間和品種一致,葉片形態(tài)呈現(xiàn)不同程度缺鎂癥(不缺鎂:外觀未觀察到番茄缺鎂失綠癥狀;中度缺鎂:上部1/2葉片未表現(xiàn)缺鎂失綠癥狀;嚴重缺鎂:上、下葉片均表現(xiàn)缺鎂失綠癥狀)的日光溫室,分別采集溫室0—20 cm耕層土樣和番茄第2穗與第3穗果間的葉片(下部葉片)以及上部完全展開的新生葉片(上部葉片)樣品;測定土壤pH、電導率、有機質、NO3--N、NH4
+-N、有效磷、速效鉀以及交換性鉀、鈣、鎂離子含量,番茄葉片鉀、鈣、鎂含量,計算土壤交換性鉀、鈣、鎂離子飽和度和K/Mg、Ca/Mg、Ca/K離子比例,并調查番茄產量;分析番茄缺鎂程度不同的日光溫室土壤基本性質差異,交換性鉀、鈣、鎂離子含量及平衡狀況與番茄葉片養(yǎng)分含量和產量的關系?!窘Y果】番茄缺鎂程度不同的溫室土壤性質存在差異,番茄缺鎂嚴重的土壤電導率、NO3--N、速效鉀顯著增加。番茄缺鎂和不缺鎂的土壤交換性鎂含量均高于缺鎂臨界值(0.5 cmol·kg-1);隨番茄缺鎂程度加劇,鉀離子飽和度增加,鈣、鎂離子飽和度降低,Ca/Mg和K/Mg離子比例升高,Ca/K離子比例下降;與不缺鎂相比,番茄中度缺鎂的土壤交換性鉀離子飽和度、K/Mg離子比例均增加了22%,嚴重缺鎂的則分別顯著增加了56%和88%;番茄嚴重缺鎂的土壤Ca/Mg比例較未缺鎂的升高了17%;番茄中度缺鎂和嚴重缺鎂的土壤Ca/K比未缺鎂的分別降低了19%和37%。番茄中度缺鎂的土壤Ca/Mg略高于適宜值上限(7.0),K/Mg則高于適宜上限(0.6)47%,番茄嚴重缺鎂的土壤Ca/Mg和K/Mg分別高于適宜值上限28%和125%。番茄上、下部葉片鎂含量和番茄產量分別與土壤速效鉀含量、交換性鉀含量、鉀離子飽和度、K/Mg均呈極顯著或顯著負相關,與土壤有機質和Ca/K呈極顯著或顯著正相關,而與土壤交換性鎂含量、鎂離子飽和度及Ca/Mg比例間未達顯著相關性;隨番茄缺鎂程度加劇,產量顯著降低,中度和嚴重缺鎂的番茄產量分別降低了38%和60%?!窘Y論】番茄缺鎂程度不同的溫室土壤交換性鎂含量均在豐富水平,而鎂離子飽和度偏低;番茄表現(xiàn)缺鎂的土壤Ca/Mg和K/Mg均呈養(yǎng)分比例失調狀態(tài),特別是K/Mg嚴重失調。土壤中鉀離子過高造成陽離子比例失調是誘導番茄缺鎂癥的主要因素,溫室高集約栽培下過量施肥影響陽離子養(yǎng)分平衡是值得關注的問題。
日光溫室;番茄缺鎂;土壤性質;陽離子平衡;養(yǎng)分含量
【研究意義】目前,中國已成為世界上設施栽培面積最大的國家[1],占世界設施園藝面積的80%,面積超過606.7萬hm2。其中日光溫室蔬菜栽培成為北方地區(qū)反季節(jié)蔬菜生產的主要方式,也是許多地區(qū)農民增收和農業(yè)增效的有效方式和支柱產業(yè)之一。但日光溫室栽培生產中過量不平衡施肥問題突出,養(yǎng)分過量累積帶來諸多問題[2-4],近年來北方日光溫室栽培番茄等作物缺鎂現(xiàn)象頻發(fā)就是其中突出問題之一[5-8]。據(jù)筆者在陜西楊凌農業(yè)高新技術產業(yè)示范區(qū)2009年建設的萬畝設施栽培基地的調查顯示,從2012年開始,70%以上日光溫室番茄出現(xiàn)典型缺鎂癥狀[9],中等和嚴重缺鎂番茄分別減產40%和60%。山東的調查數(shù)據(jù)表明[6],中等缺鎂大棚番茄減產30%—40%,嚴重的減產80%—90%,制約了溫室栽培的可持續(xù)健康發(fā)展。因此,有必要探明日光溫室高度集約種植制度下影響石灰性土壤鎂生物有效性的原因。【前人研究進展】雖然對植物鎂素營養(yǎng)研究已有近200年的歷史,但與其他大、中量營養(yǎng)元素的研究相比,對鎂營養(yǎng)機理的研究相對較少[10]。因此,有學者認為,至少近10年來鎂的重要性被科學家低估,稱鎂為“被遺忘的元素”[11-13]。作物缺鎂癥的發(fā)生一般由兩方面的原因引起,土壤鎂絕對量的缺乏(直接缺乏)和養(yǎng)分失調產生的陽離子拮抗作用引起的間接缺乏[14-16]。絕對量的缺乏因成土礦物鎂含量低、成土過程鎂遷移淋溶損失或長期不平衡施肥導致作物對土壤鎂的吸收耗竭而產生,一般高度風化的酸性土壤鎂含量較少,CEC小,易發(fā)生作物缺鎂。北方石灰性土壤鈣、鎂含量高[17-18],鎂素供應豐富,一般來說不會導致鎂的直接缺乏。對植物鎂吸收產生競爭作用的主要是鉀和鈣離子的影響,其中以鉀對鎂離子的拮抗作用最為突出[19],也有報道錳和鋁過量導致鎂的吸收降低。而關于北方石灰性土壤作物鎂缺乏原因及施用鎂肥的研究較少[8,18]。陳竹君等[8]從土壤化學角度研究了石灰性土壤日光溫室栽培番茄不同程度缺鎂的土壤水溶鹽分中離子組成、比例及鎂、鈣、鉀離子活度等的變化及關系,認為鹽分累積使鎂離子活度大幅降低,以及鉀富集對植物吸收鎂的拮抗作用是石灰性土壤上番茄缺鎂的主要誘因。【本研究切入點】日光溫室栽培氮磷鉀肥過量施用引起的土壤鹽分累積、土壤退化及環(huán)境問題已引起普遍關注,但對交換性鈣、鎂離子變化特征及鉀與鈣、鎂陽離子平衡狀況研究尚不多見,特別是土壤交換性鉀、鈣、鎂陽離子平衡與溫室番茄鎂缺乏分析研究鮮見報道?!緮M解決的關鍵問題】本研究通過分析番茄缺鎂程度不同的日光溫室土壤基本性質差異,交換性鉀、鈣、鎂平衡狀況與番茄養(yǎng)分吸收和產量間的關系,解析導致石灰性土壤日光溫室番茄缺鎂的主要因素,為日光溫室番茄缺鎂癥矯正和科學施肥提供依據(jù)。
1.1供試材料
研究區(qū)位于陜西省楊凌示范區(qū)大寨鎮(zhèn)日光溫室栽培基地,日光溫室建于2009年,主要種植制度為一年兩季(秋冬茬-春茬),秋冬茬番茄定植時間一般為8月份,拉秧期為次年1月份,隨后定植下茬作物。種植模式包括番茄-番茄或番茄-黃瓜、番茄-小型西瓜等,土壤類型均為土(系統(tǒng)分類為土墊旱耕人為土)。
于2014年11月15日(11月份為當?shù)厍锒绶眩āF觀音’)盛果期,此時,從果實葉片開始陸續(xù)向上蔓延出現(xiàn)典型缺鎂失綠癥)。選擇定植時間(2014年8月5日)一致,根據(jù)番茄葉片是否出現(xiàn)典型缺鎂癥狀及嚴重程度(圖1),劃分為不缺鎂、中度缺鎂和嚴重缺鎂(不缺鎂:外觀未觀察到番茄缺鎂癥狀;中度缺鎂:上部1/2葉片未表現(xiàn)缺鎂失綠癥狀;嚴重缺鎂:上下葉片均表現(xiàn)缺鎂失綠癥狀)的溫室各3個,采集各溫室0—20 cm耕層多點混合土樣;同時采集每個溫室第2穗和第3穗果間的番茄葉片(下部葉片)以及上部完全展開的新生葉片(上部葉片),清洗后殺青,60℃烘干。此外,調查采樣溫室當季施肥、灌溉量(表1)以及番茄總產量。當?shù)赜袡C肥主要施用干雞糞和干羊糞,種植期間地面全覆蓋聚乙烯薄膜,灌溉和追肥采用滴灌+文丘里施肥器的水肥一體化系統(tǒng)。
圖1 缺鎂程度不同的番茄葉片F(xiàn)ig. 1 Tomatoes with different degrees of Mg deficiency
表1 番茄不同缺鎂程度的日光溫室當季施肥灌水量Table 1 Fertilization and irrigation rates with different degrees of Mg deficiency of tomato in solar greenhouse
1.2分析測定
分析土壤樣品pH、電導率、有機質、硝態(tài)氮、銨態(tài)氮、有效磷、速效鉀以及交換性鉀、鈣、鎂含量。其中pH用雷磁PHS-3C型pH計測定;電導率用雷磁DDS-307A型電導率儀測定(5∶1水土比);有機質為重鉻酸鉀-外加熱法測定。硝態(tài)氮和銨態(tài)氮用鮮土壤樣以1 mol·L-1氯化鉀溶液浸提,流動分析儀測定;有效磷用鉬銻抗比色-分光光度法測定;速效鉀用1 mol·L-1醋酸銨浸提,火焰光度法測定。土壤交換性鉀、鈣、鎂采用1 mol·L-1pH 8.2的醋酸鈉反復交換至膠體上無鈣離子[20],交換溶液分別用火焰光度法測定鉀,原子吸收分光光度法測定鈣、鎂。由于石灰性土壤交換性陽離子主要為K+、Ca2+、Mg2+,分別以K+/(Ca2++Mg2++K+)、Ca2+/(Ca2++Mg2++K+)和Mg2+/(Ca2++Mg2++K+)百分率代表交換性鉀、鈣、鎂離子飽和度(cation percent saturation,分別用CPSCa2+、CPSMg2+和CPSK+表示)。
番茄葉片全鉀、鈣、鎂含量采用干灰化法灰化,火焰光度法測鉀,原子吸收分光光度法測定鈣、鎂[20]。
1.3數(shù)據(jù)分析
試驗數(shù)據(jù)采用Microsoft Excel和SAS軟件進行統(tǒng)計分析,Sigma Plot 12.0作圖。
2.1番茄缺鎂程度不同的土壤理化性質
番茄缺鎂程度不同的土壤pH、NH4+-N和有效磷含量無顯著差異(表2),番茄嚴重缺鎂的土壤電導率、NO3--N含量顯著高于番茄中度缺鎂和不缺鎂的土壤,番茄嚴重缺鎂的土壤速效鉀含量也顯著高于番茄未缺鎂的土壤。番茄嚴重缺鎂的土壤NO3--N含量高于蔬菜生長土壤適宜上限值(150 mg·kg-1)[21],番茄缺鎂土壤速效鉀含量則均大于設施菜地的過量值(350 mg·kg-1)[22]。
2.2番茄缺鎂程度不同的土壤交換性陽離子組成及
比例
隨著番茄缺鎂程度加劇,土壤交換性K+含量呈增加趨勢,番茄嚴重缺鎂的土壤交換性K+含量顯著高于番茄不缺和中度缺鎂的土壤,而番茄嚴重缺鎂的土壤交換性Mg2+含量顯著低于番茄不缺和中度缺鎂的土壤(表3);番茄不同缺鎂程度間土壤交換性Ca2+含量和交換性K++Ca2++Mg2+總量無顯著差異。
表2 番茄缺鎂程度不同的土壤基本理化性質Table 2 Physical and chemical properties of soils where tomatoes displayed different degrees of magnesium deficiency
土壤交換性離子飽和度是評價土壤養(yǎng)分離子供應狀況的另一重要指標,表3可知,番茄缺鎂程度不同的土壤交換性離子飽和度變化與含量變化規(guī)律一致,K+飽和度增加,Ca2+、Mg2+飽和度下降。與番茄不缺鎂相比,番茄中度缺鎂的土壤交換性K+飽和度增加了22%,Ca2+、Mg2+飽和度沒有明顯降低;番茄嚴重缺鎂的土壤K+飽和度增加了56%,Ca2+飽和度下降了3.0%,Mg2+飽和度下降了17%。
表3 番茄缺鎂程度不同的土壤交換性陽離子組成Table 3 Compositions of exchangeable cations in soils where tomatoes displayed different degrees of magnesium deficiency
隨番茄缺鎂程度加劇,土壤交換性離子Ca/Mg和K/Mg比例升高(圖1),番茄嚴重缺鎂的土壤Ca/Mg比未缺的土壤顯著升高了17%;番茄中度缺鎂的土壤比未缺鎂的K/Mg升高22%,嚴重缺鎂的則顯著升高88%;Ca/K則隨番茄缺鎂程度加劇顯著降低,番茄中度缺鎂和嚴重缺鎂的的土壤Ca/K比未缺鎂的分別降低了約19%和37%。
2.3缺鎂程度不同番茄葉片養(yǎng)分含量及產量
圖2 番茄缺鎂程度不同的土壤陽離子比例Fig. 2 Ratios of Ca/Mg, K/Mg and Ca/ K in soils where tomatoes displayed different degrees of Mg-deficiency
表4 番茄缺鎂程度不同的葉片養(yǎng)分含量及番茄產量Table 4 Leave nutrient contents and fruit yields of tomatoes displayed different degrees of magnesium deficiency
隨著缺鎂程度加劇番茄上部葉片和下部葉片中鉀、鈣、鎂含量均呈下降趨勢(表4),且番茄中度和嚴重缺鎂的上、下部葉片鉀、鈣、鎂含量均顯著低于番茄未表現(xiàn)缺鎂癥的葉片。隨缺鎂程度加劇番茄產量顯著降低,與未表現(xiàn)缺鎂癥相比,中度和嚴重缺鎂番茄產量分別降低了約38%和60%。
2.4番茄葉片養(yǎng)分含量和產量與土壤性質的關系
番茄葉片鎂含量和產量與土壤性質相關性分析表明,上、下部葉片鎂含量及番茄產量與土壤速效鉀、交換性鉀、鉀離子飽和度、K/Mg均呈極顯著或顯著負相關(表5),與有機質和Ca/K呈極顯著或顯著正相關,而與交換性鎂、鎂離子飽和度及Ca/Mg間未達到顯著相關性;此外,上、下部葉片鉀含量及下部葉片鈣含量與土壤速效鉀、交換性鉀、鉀離子飽和度、K/Mg亦均呈極顯著或顯著負相關。
表5 番茄葉片養(yǎng)分含量和產量與土壤理化性質的相關性Table 5 Correlation between leaf nutrient contents, fruit yield of tomato and soil physical-chemical properties
3.1番茄缺鎂程度不同的土壤有效鎂含量及陽離子平衡
一般采用有效鎂含量、離子飽和度以及鎂與其他陽離子間的平衡關系等3個指標來評價土壤鎂的有效性[23]。以土壤交換性鎂豐缺指標看,番茄缺鎂和不缺鎂的土壤交換性鎂含量均高于以往認為的缺鎂臨界值(0.5 cmol·kg-1)4倍以上[24],說明石灰性土壤溫室栽培番茄缺鎂不是土壤有效鎂含量缺乏所造成的。土壤養(yǎng)分離子飽和度反映了養(yǎng)分的供應強度,KOPITTKE等[23]提出,理想的土壤交換性鈣、鎂、鉀離子飽和度為65%、10%和5%,WHITE[25]認為,土壤膠體上陽離子飽和度適宜的比例關系應為80%的Ca2+、15%的Mg2+及K+、Na+和NH4+等其他陽離子占5%。顯然這兩個指標適宜不同的土壤,前者適宜鹽基不飽和的酸性土壤,后者適宜于鹽基飽和的中性和石灰性土壤。也有研究認為,土壤交換性鎂的飽和度低于10%[24]就有缺乏的可能。因此,從番茄缺鎂程度不同的土壤交換性鎂離子飽和度判斷,鎂素供應強度并不高,番茄嚴重缺鎂的土壤鎂離子飽和度處于缺乏狀態(tài)。
陽離子比例失調產生的拮抗作用[25-27]是影響?zhàn)B分離子生物有效性的重要因素。研究表明,土壤鉀、鈣離子過多會抑制植物對鎂的吸收,特別是鉀對鎂、鈣二價離子吸收具有較強競爭作用。TISDALE等[27]提出,溫室作物適宜的土壤交換性K/Mg比應小于0.6;也有學者研究表明,當K/Mg比例大于0.4,鉀會明顯抑制鎂的吸收,當Ca/Mg比例大于7.0時,鈣會抑制作物鎂的吸收[28]。中國目前尚未提出針對不同土壤、作物及栽培環(huán)境適宜的鈣、鎂、鉀比例。番茄未表現(xiàn)缺鎂的土壤Ca/Mg和K/Mg分別為7.7和0.7,均略高于臨界值7.0和0.6,說明番茄外觀形態(tài)雖未表現(xiàn)出缺鎂癥,但可能存在潛在相對缺乏;番茄中度缺鎂的土壤Ca/Mg略高于適宜值上限,K/Mg則比適宜值上限(0.6)高47%;番茄嚴重缺鎂的土壤Ca/Mg和K/Mg與適宜值上限7.0和0.6相比分別高出的28%和125%。從鉀、鈣、鎂離子間比例變化看,土壤膠體上吸附的K+過高,是導致陽離子比例失調的主要因素,這一結果也與溫室栽培過量的鉀肥投入,造成土壤鉀素大量盈余相一致[29-30]。
3.2日光溫室番茄缺鎂因素分析
本研究相關性分析顯示,番茄葉片鎂含量及產量與反映土壤鉀素供應狀況的指標(土壤速效鉀、交換性鉀、鉀離子飽和度、K/Mg和K/Ca)均呈極顯著或顯著負相關(表5),而與土壤交換性鎂含量并無相關性,鉀、鈣、鎂離子平衡關系亦表明,番茄表現(xiàn)缺鎂的土壤K/Mg失調。綜合上述結果,說明土壤中有效鉀過高造成離子比例失調是影響番茄葉片鎂含量和產量降低的主要因素。
目前,溫室高集約栽培中過量氮、磷肥施用帶來的養(yǎng)分盈余和環(huán)境問題引起人們的關注,鉀肥過量施用雖然對環(huán)境無明顯影響,但鉀肥過量施用造成的陽離子平衡失調,進而影響作物對其他養(yǎng)分吸收及產量的降低并未引起足夠重視。特別是鉀、鈣、鎂豐富且易于在土壤中累積的北方石灰性土壤地區(qū),溫室栽培番茄等作物鉀肥的過量施用在一些地區(qū)尚有嚴重化趨勢,許多沖施肥為高鉀含量型肥料,2015年筆者對楊凌58座溫室土壤速效鉀含量測定結果顯示,平均含量高達735 mg·kg-1,最高達1 423 mg·kg-1,含量超過土壤供鉀過量臨界值(350 mg·kg-1)的占94%。因此,鉀肥過量引起的土壤膠體上陽離子組成改變和平衡失調,進而影響其他養(yǎng)分離子吸收、轉運等所造成的作物生理紊亂值得關注和重視。
(1)番茄缺鎂嚴重的土壤電導率、NO3--N、速效鉀、交換性鉀、鉀離子飽和度、Ca/Mg和K/Mg比例均顯著增加,土壤有機質含量,交換性Mg、Mg離子飽和度和Ca/K顯著低于番茄未表現(xiàn)缺鎂的土壤。
(2)根據(jù)已有土壤鎂素豐缺指標判斷,番茄缺鎂程度不同的溫室土壤鎂含量均在豐富水平,而鎂離子飽和度偏低。番茄表現(xiàn)缺鎂的土壤Ca/Mg和K/Mg均呈陽離子比例失調狀態(tài),特別是K/Mg嚴重失調。
(3)隨番茄缺鎂程度加劇,產量顯著降低,中度和嚴重缺鎂的番茄產量分別降低約38%和60%。土壤中鉀離子過高造成離子比例失調是誘導番茄生理紊亂出現(xiàn)缺鎂癥和產量降低的主要因素。
References
[1] 喻景權. "十一五"我國設施蔬菜生產和科技進展及其展望. 中國蔬菜, 2011, 2: 11-23.
YU J Q. Progress in protected vegetable production and research during ‘The Eleventh Five-year Plan' in China. China Vegetables,2011, 2: 11-23. (in Chinese)
[2] 李天來, 楊麗娟. 作物連作障礙的克服——難解的問題. 中國農業(yè)科學, 2016, 49(5): 916-918.
LI T L, YANG L J. Overcoming continuous cropping obstacles-the difficult problem. Scientia Agricultura Sinica, 2016, 49(5): 916-918.(in Chinese)
[3] 李若楠, 武雪萍, 張彥才, 王麗英, 李孝蘭, 陳麗莉, 翟鳳芝. 滴灌氮肥用量對設施菜地硝態(tài)氮含量及環(huán)境質量的影響. 植物營養(yǎng)與肥料學報, 2015, 21(6): 1642-1651.
LI R N, WU X P, ZHANG Y C, WANG L Y, LI X L, CHEN L L, ZHAI F Z. Nitrate nitrogen contents and quality of greenhouse soil applied with different N rates under drip irrigation. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1642-1651. (in Chinese)
[4] 王麗英, 武雪萍, 張彥才, 李若楠, 陳麗莉, 陳 清. 適宜施氮量保證滴灌日光溫室黃瓜番茄產量降低土壤鹽分及氮殘留. 農業(yè)工程學報, 2015, 31(17): 91-98.
WANG L Y, WU X P, ZHANG Y C, LI R L, CHEN L L, CHEN Q. Optimal nitrogen application rate to ensure cucumber and tomatoyield with drip irrigation in greenhouse and to reduce soil salinity and nitrate residue. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 91-98. (in Chinese)
[5] 楊軍芳, 周曉芬, 馮偉. 土壤與植物鎂素研究進展概述. 河北農業(yè)科學, 2008, 12(3): 91-93.
YANG J F, ZHOU X F, FENG W. Summary of research advance between soil and magnesium nutrition in plants. Journal of Hebei Agricultural Sciences, 2008, 12(3): 91-93. (in Chinese)
[6] 張西森. 溫棚番茄缺鎂危害與防治. 現(xiàn)代農業(yè)科技, 2007, 12: 75-76.
ZHANG X S. Magnesium deficiency harm and prevention of greenhouse tomato. Modern Agricultural Science and Technology,2007, 12: 75-76. (in Chinese)
[7] 趙春年. 設施蔬菜缺鎂癥狀與施肥技術. 河北農業(yè)科技, 2008(2): 49-50.
ZHAO C N. Symptom of magnesium deficiency and fertilization technology in facility vegetable. Hebei Agricultural Science and Technology, 2008(2): 49-50. (in Chinese)
[8] 陳竹君, 趙文艷, 張曉敏, 周從從, 周建斌. 日光溫室番茄缺鎂與土壤鹽分組成及離子活度的關系. 土壤學報, 2013, 50(2): 388-395.
CHEN Z J, ZHAO W Y, ZHANG X M, ZHOU C C, ZHOU J B. Relationship of magnesium deficiency of tomato with salt composition and ion activities in greenhouse soil. Acta Pedologica Sinica, 2013, 50(2): 388-395. (in Chinese)
[9] 馬國瑞,石偉勇. 蔬菜營養(yǎng)失調癥原色圖譜. 北京: 中國農業(yè)出版社, 2002: 49-64.
MA G R, SHI W Y. Colour Pictures of Nutritional Disorders of Vegetable Crops. Beijing: China Agriculture Press, 2002: 49-64. (in Chinese)
[10] CAKMAK I. Magnesium in crop production, food quality and human health. Plant and Soil, 2013, 368: 1-4.
[11] CAKMAK I, YAZICI A M. Magnesium: a forgotten element in crop production. Better Crops, 2010, 94: 23-25.
[12] GRANSEE A, FüHRS H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 2013, 368: 5-21.
[13] NATHALIE V, CHRISTIAN H. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil, 2013, 368: 87-99.
[14] DIEM B, GODBOLD D L. Potassium, calcium and magnesium antagonism in clones of popolus trichocarpa. Plant and Soil, 1993,155(156): 411-414.
[15] 魯如坤. 土壤-植物營養(yǎng)學原理和施肥. 北京: 化學工業(yè)出版社,1998: 287-295. LU R K. Principles of Soil Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998: 287-295. (in Chinese)
[16] MENGELK, KIRKBY E A. Principles of Plant Nutrition. 5th ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001: 541-552.
[17] 白由路, 金繼運, 楊俐蘋. 我國土壤有效鎂含量及分布狀況與含鎂肥料的應用前景研究. 土壤肥料, 2004(2): 3-5.
BAI Y L, JIN J Y, YANG L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soil and Fertilizer Sciences in China, 2004(2): 3-5. (in Chinese)
[18] 丁玉川, 焦曉燕, 聶督, 程濱, 趙瑞芬, 劉平. 山西農田土壤交換性鎂含量、分布特征及其與土壤化學性質的關系. 自然資源學報,2012, 27(2): 311-321.
DING Y C, JIAO X Y, NIE D, CHENG B, ZHAO R F, LIU P. Contents and distribution of exchangeable magnesium and their relationship with the chemical properties of main farm soils in Shanxi province, China. Journal of Natural Resources, 2012, 27(2): 311-321.(in Chinese)
[19] FARHAT N, RABHI M, FALLEH H LENGLIZ K, SMAOUI A,ABDELLY C, LACHA?L M, KARRAY-BOURAOUI N. Interactive effects of excessive potassium and Mg deficiency on safflower. Acta Physiologiae Plantarum, 2013, 35: 2737-2745.
[20] 鮑士旦. 土壤農化分析. 第3版. 北京: 中國農業(yè)出版社, 2000: 191-193.
BAO S D. Soil Agriculture Chemical Analysis. 3rd ed.Beijing: China Agriculture Press, 2000: 191-193. (in Chinese)
[21] 湯麗玲, 陳清, 李曉林, 陳永智,丁光國. 日光溫室秋冬茬番茄氮素供應目標值的研究. 植物營養(yǎng)與肥料學報, 2005, 11(2): 230-235.
TANG L L, CHEN Q, LI X L, CHEN Y Z, DING G G. Studies on the target value of nitrogen supply for greenhouse tomato growth during autumn-winter season. Journal of Plant Nutrition and Fertilizer, 2005,11(2): 230-235. (in Chinese)
[22] MILLER R W, DONAHUE R L. Soils in Our Environment. New Jersey: Prentice-Hall Inc, 1995: 357-359.
[23] KOPITTKE P M, MENZIES N W. A review of the use of the basic cation saturation ratio and the ‘ideal' soil. Soil Science Society of America Journal, 2007, 71: 259-265.
[24] 袁可能. 植物營養(yǎng)元素的土壤化學. 北京: 科學出版社, 1983: 85-124.
YUAN K N. Soil Chemistry of Plant Nutrient Elements. Beijing: Science Press, 1983: 85-124. (in Chinese)
[25] WHITE R E. Principle and Practice of Soil Science. 4rd ed. Victoria,Australia: Blackwell Publishing, 2006: 140-141.
[26] MARSCHNER H. Mineral Nutrition of Higher Plants. 3rd ed. New York: Academic Press, 2012: 315-330.
[27] TISDALE S L, NELSON W L, BEATON J D. Soil Fertility and Fertilizers. 5rd ed. New York: Macmillan Publishing Co., 1993: 432-436.
[28] MORTON A R, TROLOVE S N, KERCKHOFFS L H J. Magnesium deficiency in citrus grown in the Gisborne district of New Zealand. New Zealand Journal of Crop and Horticultural Science, 2008, 36(3): 199-213.
[29] 白新祿, 高佳佳, 陳竹君, 雷金繁, 周建斌. 新建日光溫室土壤養(yǎng)分平衡與累積特性. 中國土壤與肥料, 2014(2): 1-5.
BAI X L, GAO J J, CHEN Z J, LEI J F, ZHOU J B. Nutrient accumulation and balances in soils of the new-established greenhouses. Soil and Fertilizer Sciences in China, 2014(2): 1-5. (in Chinese)
[30] GAO J J, BAI X L, ZHOU B, ZHOU J B, CHEN Z J. Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutrient Cycling in Agroecosystems, 2012, 94: 63-72.
(責任編輯趙伶俐)
The Relationships Between Magnesium Deficiency of Tomato and Cation Balances in Solar Greenhouse Soil
YAN Bo1, ZHOU Ting1, WANG Hui-min1, CHEN Zhu-jun1, CAO Jing-yang2, LIU Shu-min2, ZHOU Jian-bin1
(1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi;2Yangling Agricultural Technology Extension Station, Yangling 712100, Shaanxi)
【Objective】It is generally considered that the contents of calcium and magnesium (Mg) in calcareous soil are rich. Therefore, Mg deficiency usually occurs in acidic soil in south China, where the weathering is very strong. However, Mg deficiency of tomato under solar greenhouses in calcareous soil in north China becomes common. It is urgent to understand the reason of Mg deficiency of tomato under solar greenhouses in the region, which will provide scientific knowledge to solve the Mg deficient problem in the solar greenhouse. 【Method】The different degrees of Mg deficiency of tomatoes with the same transplanting times and varieties in the greenhouses in Dazhai, Yangling, Shaanxi were chosen. The degrees of tomato Mg deficiency were divided into three types based on the severity of the symptoms. The three types of Mg deficiency included the leaves without Mg deficiency, the leaves with moderate (half of the upper leaves showed deficiency) and severe (all leaves showed deficiency) Mg deficiency. The soil samples (0-20 cm), lower leaves samples (the leaves between the second and third fruit sets) and upper leaves samples (the fully developed leaves on the top plant) were taken from different greenhouses. The basic soil properties were determined, including soil pH, electric conductivity (EC), organic matter, available nitrogen, phosphorus, and potassium, and soil exchangeable K+, Ca2+, and Mg2+, and their contents in tomato leaves. The ratios of exchangeable K+, Ca2+, and Mg2+ions, and their saturation percentages in soil colloid were calculated. The fruit yields of different greenhouses were also surveyed. The relationships between Mg deficiency of tomato and the parameters determined were analyzed.【Result】There were significant differences in soil properties between the greenhouses with different degrees of Mg deficiency. The soil EC, contents of nitrate, readily available K in soil of tomato with severe Mg deficiency were significantly increased. The content of exchangeable Mg ions in soils was higher than the critical value of Mg deficiency both in tomatoes with and without Mg deficient symptoms. With the severity of Mg deficiency of tomato, the saturation percentage of K ion was increased and the ratios of Ca/Mg, and K/Mg also increased. On the contrary, the saturation percentages of Ca2+and Mg2+ions, and the ratio of Ca/K were decreased. Compared with tomatoes without Mg deficiency, the saturation percentage of K+and the ratio of K/Mg in soil with moderate Mg deficiency were increased both by 22%, and soil with severe Mg deficiency increased by 56% and 88%, respectively. Compared to soil without tomato Mg deficiency, the ratios of Ca/Mg in soil with severe Mg deficiency was increased by 17%, and the ratios of Ca/K in soil with moderate and severe Mg deficiency were decreased by 19% and 37%, respectively. The soil Ca/Mg ratio of tomato with moderate Mg deficiency was slightly higher than optimum value of Ca/Mg ratio (7.0), and K/Mg ratios was higher than optimum value (0.6) by 47%. The ratios of soil Ca/Mg, and K/Mg were higher than optimum value by 28% and 125%, respectively. The Mg contents in both upper and lower leaves and fruit yield of tomato were significantly and negatively correlated with the readily available K, exchangeable K+, saturation percentages of K+, and K/Mg ratio, and positively correlated with soil organic matter content and Ca/K ratio; and their correlations with exchangeable Mg2+and its saturation percentages, and the ratio of Ca/Mg were not significant. With the severity of Mg deficiency,the tomato fruit yields were decreased rapidly. The decreasing rates of fruit yields in moderate and severe Mg deficiency were 38% and 60%.【Conclusion】 The contents of soil exchangeable Mg2+was at optimum levels for tomatoes with or without Mg deficiency;however, the Mg2+saturation percentages was lower. The ratios of Ca/Mg, and K/Mg in soil with different Mg deficiency were imbalance, especially for the K/Mg ratio. The high level of K resulted in imbalances of cation ions was the main reason of Mg deficiency in solar greenhouse of calcareous soil. Therefore, more attentions are needed to deal with this problem.
solar greenhouse; magnesium deficiency of tomato; soil properties; balances of cations; nutrient contents
2016-04-19;接受日期:2016-08-12
國家“十二五”科技支撐計劃(2012BAD15B04)、陜西省農業(yè)攻關項目(2014K01-14-03)、中英農業(yè)生產中養(yǎng)分資源可持續(xù)利用合作項目
聯(lián)系方式:閆波,E-mail:sdyanbo@163.com。通信作者陳竹君,E-mail:zjchen@nwsuaf.edu.cn