徐潤(rùn)東,盛世英,楊秀芬,劉 勇
(1山東農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,山東泰安 271018;2中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,北京 100081)
寡糖·鏈蛋白對(duì)小麥抗黃花葉病毒的免疫誘抗作用
徐潤(rùn)東1,盛世英2,楊秀芬2,劉勇1
(1山東農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,山東泰安 271018;2中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,北京 100081)
【目的】激發(fā)子可以誘導(dǎo)寄主植物的系統(tǒng)獲得抗病性,具有有效性、持久性和廣譜性的特點(diǎn)。研究旨在明確新型激發(fā)子寡糖·鏈蛋白(oligosaccharins·plant activator protein)對(duì)小麥黃花葉病毒(Wheat yellow mosaic virus,WYMV)的免疫誘抗作用,為該激發(fā)子的研究和大面積推廣應(yīng)用提供技術(shù)支撐?!痉椒ā窟x用小麥黃花葉病感病品種‘矮抗58’,在室內(nèi)將消毒的小麥種子播種于自感病田帶回的病土中,在(27±2)℃下培養(yǎng)。5葉期葉面噴施稀釋1 000倍的6%寡糖·鏈蛋白。噴施7 d后,將麥苗置于(12±1)℃培養(yǎng)箱中接種培養(yǎng)。30 d后取出麥苗,分別測(cè)量小麥株高和葉片的葉綠素含量,計(jì)算病情指數(shù)和防治效果。在田間,同品種小麥種植于小麥黃花葉病常發(fā)地塊,小麥返青后每周噴施1次6%寡糖·鏈蛋白,連續(xù)噴施3次。每周測(cè)量小麥株高和葉綠素含量,計(jì)算病情指數(shù)和防治效果。并于調(diào)查期間,每小區(qū)取20片植株最上部第一片完全展開的葉片,通過qPCR檢測(cè)小麥植株內(nèi)WYMV-CP基因拷貝數(shù)。在小麥?zhǔn)斋@時(shí)測(cè)定千粒重和穗粒數(shù),測(cè)算產(chǎn)量?!窘Y(jié)果】低溫培養(yǎng)30 d后,經(jīng)寡糖·鏈蛋白噴施處理的小麥較對(duì)照組的株高沒有顯著差異,但葉綠素含量則明顯高于對(duì)照組(P<0.05);同時(shí)處理組的病情指數(shù)較對(duì)照組明顯降低,防治效果達(dá)到63.32%。田間經(jīng)寡糖·鏈蛋白處理后,小麥株高和葉綠素含量較對(duì)照沒有顯著差異。小麥返青期,噴施1周后病情指數(shù)與對(duì)照沒有顯著變化;而2周后病情指數(shù)顯著降低,防治效果可達(dá)46.67%。小麥?zhǔn)斋@時(shí)調(diào)查發(fā)現(xiàn),經(jīng)寡糖·鏈蛋白處理后小麥穗粒數(shù)顯著高于對(duì)照組(P<0.05),小麥產(chǎn)量明顯升高(P<0.05)。病株內(nèi)WYMY-CP基因拷貝數(shù)在噴施1周后抑制率達(dá)到69.30%,2周后達(dá)到85.50%,3周后最高達(dá)到99.20%?!窘Y(jié)論】寡糖·鏈蛋白可誘導(dǎo)小麥植株對(duì)小麥黃花葉病毒的抗性,顯著降低小麥植株內(nèi)WYMV-CP基因拷貝數(shù);在田間可以減輕小麥黃花葉病的危害,減少產(chǎn)量損失。
小麥黃花葉病毒;寡糖·鏈蛋白;誘導(dǎo)抗性;激發(fā)子;WYMV-CP
【研究意義】小麥?zhǔn)侵袊?guó)最重要的糧食作物之一,近年來,小麥黃花葉病在中國(guó)局部地區(qū)呈發(fā)展蔓延趨勢(shì),嚴(yán)重影響小麥生產(chǎn)。小麥黃花葉病毒(Wheat yellow mosaic virus,WYMV)屬馬鈴薯Y 病毒科(Potyviridae),大麥黃花葉病毒屬(Bymouirus),是由禾谷多黏菌(Polymyxa graminis)傳播的彎曲線狀病毒。田間癥狀為葉片黃化、退綠,嚴(yán)重時(shí)植株矮小,分蘗減少,引起小麥品質(zhì)和產(chǎn)量下降[1]。自1990年以來,該病在陜西、四川、湖北、山東、河南、安徽、江蘇和浙江等省發(fā)生嚴(yán)重,并隨著全球變暖逐漸向北蔓延,目前在中國(guó)每年發(fā)生面積為66.7萬hm2左右,感病田塊一般減產(chǎn)10%—30%,重病區(qū)減產(chǎn)嚴(yán)重時(shí)達(dá)到70%以上。因而研發(fā)小麥黃花葉病的控制方法和技術(shù)具有重要意義[2]?!厩叭搜芯窟M(jìn)展】小麥黃花葉病最早于1927年在日本發(fā)現(xiàn)并被描述,19世紀(jì)60年代該病在中國(guó)四川首次被報(bào)道[3]。小麥黃花葉病在小麥越冬期病毒呈休眠狀態(tài),小麥返青前后開始表現(xiàn)癥狀,拔節(jié)期危害最重,氣溫升至20℃后,花葉癥狀逐漸消失,出現(xiàn)隱癥[3-5]。病毒主要依靠病土、病根殘?bào)w、病田流水中的帶毒禾谷多黏菌休眠孢子進(jìn)行傳播;也可以通過混雜在種子里的帶毒土壤進(jìn)行遠(yuǎn)距離傳播。發(fā)病嚴(yán)重時(shí),會(huì)造成田間帶毒禾谷多黏菌休眠孢子大量積累,導(dǎo)致病毒蔓延加速,引起病害流行,危害嚴(yán)重。由于該病毒存在于禾谷多黏菌休眠孢子體內(nèi),而禾谷多黏菌休眠孢子堆壁厚,具有很強(qiáng)的抗逆性,很難用化學(xué)方法防治[6]。因而在實(shí)際生產(chǎn)中,采用抗病品種是最經(jīng)濟(jì)和有效的措施。雖然抗病品種在生產(chǎn)中可以發(fā)揮一定的作用,但由于小麥品種資源中小麥土傳病毒的抗源有限,小麥土傳病毒病的防治一直是生產(chǎn)中的一個(gè)難題[7-8]。而且,目前也尚無以基因修飾法培育抗黃花葉病小麥新品種的成功案例。自1901年RAY用接種銹菌的弱毒小種來抵抗銹病病菌侵染以來,研究者發(fā)現(xiàn)在一定條件下,一些物質(zhì)可以激發(fā)或誘導(dǎo)植物的抗性,繼而在這一領(lǐng)域的研究有了長(zhǎng)足的進(jìn)展。如發(fā)現(xiàn)了一系列能夠誘導(dǎo)植物產(chǎn)生抗性的生物和非生物因子[9]。目前將這類能夠刺激植物產(chǎn)生防衛(wèi)反應(yīng)的物質(zhì)統(tǒng)稱為激發(fā)子(activator)[10]。大多數(shù)激發(fā)子在提高作物抗逆性以及抵御有害生物危害上具有潛在的應(yīng)用價(jià)值。如苯并噻二唑(BTH)、β-氨基丁酸(BABA)、2,6-二氯異煙酸(INA)等都可以誘導(dǎo)植物的抗性,并且對(duì)多種植物細(xì)菌、真菌和病毒的侵染具有一定的抗性[11-16]。寡糖·鏈蛋白是基于極細(xì)鏈格孢菌(Alternaria tenuissima)中分離的蛋白激發(fā)子PeaT1(GenBank登錄號(hào)EF030819)和Hrip1(GenBank登錄號(hào)HQ713431)而研制的蛋白質(zhì)生物農(nóng)藥。PeaT1在大腸桿菌中的表達(dá)產(chǎn)物能提高植物體內(nèi)相關(guān)防衛(wèi)基因的表達(dá),誘導(dǎo)抗逆性產(chǎn)生,提高作物的產(chǎn)量與品質(zhì)[17-18]。Hrip1能改善和提高植株的耐鹽抗旱能力[19]。目前在防治煙草和水稻病毒病害上效果明顯[20-23]?!颈狙芯壳腥朦c(diǎn)】針對(duì)小麥黃花葉病難以有效控制的客觀現(xiàn)實(shí),而且使用激發(fā)子誘導(dǎo)植物抗性來防治病毒病在國(guó)內(nèi)外已有成功案例?!緮M解決的關(guān)鍵問題】通過試驗(yàn)室內(nèi)和田間在小麥黃花葉病病株上噴施寡糖·鏈蛋白,并分析其對(duì)小麥植株抵御黃花葉病病毒侵染的免疫誘抗作用,以期為有效控制小麥黃花葉病提供新途徑和科學(xué)依據(jù)。
1.1試驗(yàn)材料
1.1.1供試小麥小麥品種為小麥黃花葉病感病品種‘矮抗58’。
1.1.2主要試劑6%寡糖·鏈蛋白由中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所蛋白質(zhì)農(nóng)業(yè)研究組提供。RNA提取試劑盒為全式金RNA提取試劑盒ER301-01。
1.2室內(nèi)試驗(yàn)設(shè)計(jì)及調(diào)查和評(píng)價(jià)方法
1.2.1試驗(yàn)設(shè)計(jì)與處理每盆(內(nèi)徑20 cm)40粒小麥種子播種于試驗(yàn)田取回的病土中,溫度(27±2)℃,光周期L∶D=16 h∶8 h,5葉期植株用于試驗(yàn)。由于小麥黃花葉病毒為土傳真菌介導(dǎo)傳播,病毒本身為線狀粒子容易斷裂,病毒外殼蛋白極不穩(wěn)定,采用機(jī)械接種比較困難且效率極低,故本試驗(yàn)采用低溫條件下的土傳接種[24]。以1 000倍6%寡糖·鏈蛋白葉面噴施,清水為對(duì)照。3 d后,置于(12±1)℃,光周期L∶D=12 h∶12 h條件下的培養(yǎng)箱中低溫接種[24]。重復(fù)3次。
1.2.2調(diào)查和評(píng)價(jià)方法上述小麥在培養(yǎng)箱內(nèi)生長(zhǎng)30 d后取出,分別調(diào)查小麥植株的發(fā)病級(jí)別,并測(cè)量株高和葉綠素含量。病情分級(jí)標(biāo)準(zhǔn)如下:0級(jí):無癥狀;1級(jí):新葉出現(xiàn)退綠條紋或黃化癥狀;2級(jí):多數(shù)葉片出現(xiàn)退綠條紋或黃化癥狀,有時(shí)會(huì)出現(xiàn)新葉扭曲,植株矮化不明顯;3級(jí):全株呈現(xiàn)嚴(yán)重花葉癥狀,老葉上出現(xiàn)壞死斑,植株明顯矮化,部分分蘗死亡或者全株死亡[8]。小麥的葉綠素含量以AWOS_YL01葉片參數(shù)儀,取小麥最上部第1片完全展開的葉測(cè)定[25]。病情指數(shù)和防治效果計(jì)算公式如下:
1.3田間試驗(yàn)設(shè)計(jì)及調(diào)查和評(píng)價(jià)方法
1.3.1田間試驗(yàn)設(shè)計(jì)田間試驗(yàn)自2014年10月至2015年6月在山東省泰安市徐家樓(117°09′E, 36°09′N)進(jìn)行。試驗(yàn)地多年以冬小麥-玉米的種植模式,地塊平整,水肥條件一致,小麥黃花葉病發(fā)病均勻且嚴(yán)重,而且沒有采取任何防控措施。田間試驗(yàn)設(shè)對(duì)照區(qū)和寡糖·鏈蛋白處理區(qū)。小區(qū)完全隨機(jī)設(shè)計(jì),重復(fù)3次。小區(qū)面積為10 m×10 m,間隔2 m。分別于2015年小麥返青后(3月13日、3月19日和3月30日)噴施(100 g/667 m2),共噴施3次。噴施量為參照在其他作物中的試驗(yàn)使用量確定,播種及生長(zhǎng)期間管理措施一致,小麥生長(zhǎng)期間不使用任何化學(xué)農(nóng)藥[21-23]。
1.3.2調(diào)查和評(píng)價(jià)方法自2015年3月13日開始,每7 d按雙對(duì)角線5點(diǎn)取樣法,每小區(qū)取小麥30株,調(diào)查發(fā)病級(jí)別。發(fā)病分級(jí)及病情指數(shù)和防治效果計(jì)算同1.2.2。2015年3月30日后,小麥黃花葉病開始隱癥,以同樣的方法每小區(qū)取30株小麥測(cè)量植株的株高和葉綠素含量。小麥?zhǔn)斋@時(shí),仍以雙對(duì)角線5點(diǎn)取樣法,每小區(qū)取麥穗50個(gè),剝查穗粒數(shù),并以GB/T5519-88標(biāo)準(zhǔn)測(cè)定千粒重并以穗粒數(shù)和千粒重進(jìn)行產(chǎn)量測(cè)算[26]。
1.4小麥葉片總RNA的提取與WYMV-CP在小麥體內(nèi)蓄積量檢測(cè)
1.4.1小麥葉片總RNA的提取自3月19日開始,每7 d按雙對(duì)角線5點(diǎn)取樣法,每小區(qū)取植株最上部第一片完全展開的葉片20片,帶回實(shí)驗(yàn)室置于-80℃冰箱中保存,用以提取總RNA,檢測(cè)WYMV-CP基因拷貝數(shù)。植物RNA提取參照試劑盒說明書進(jìn)行。測(cè)定各樣品的A260和A260/A280值來計(jì)算RNA濃度和估計(jì)總RNA的純度。RNA的完整性通過在1%瓊脂糖凝膠電泳來評(píng)估。
1.4.2引物設(shè)計(jì)根據(jù)NCBI核酸數(shù)據(jù)庫(kù)中的WYMV-CP基因序列,利用引物設(shè)計(jì)軟件Primers 5.0設(shè)計(jì)WYMV-CP引物F:5′-GCAGAAAACCAGA CCATGCA-3′和R:5′-TTCATCACTGTAGGCTCGCA -3′。
1.4.3標(biāo)準(zhǔn)曲線的制作帶有WYMV-CP的質(zhì)粒(中國(guó)農(nóng)業(yè)大學(xué)韓成貴教授惠贈(zèng))起始濃度為500 ng·μL-1。將帶有基因的質(zhì)粒標(biāo)準(zhǔn)品進(jìn)行10倍系列梯度稀釋,熒光定量PCR體系中加入標(biāo)準(zhǔn)品1 μL,每個(gè)濃度設(shè)置3個(gè)重復(fù)。熒光定量PCR儀(型號(hào)為Biorad IQ5)能自動(dòng)生成基因拷貝數(shù)與Ct值的標(biāo)準(zhǔn)曲線。
1.4.4熒光定量PCR檢測(cè)小麥葉片中的WYMV-CP含量分別取各樣品相同量的總RNA,以RNA為模板在熒光定量PCR儀上進(jìn)行熒光定量RT-PCR擴(kuò)增,反應(yīng)體系為10 μL,PCR程序:45℃ 30 min;95℃ 10 min;然后95℃變性15 s,60℃退火并延伸1 min,44個(gè)循環(huán)。把樣品加入同一塊96孔板中,設(shè)置3個(gè)重復(fù)。PCR擴(kuò)增結(jié)束后,根據(jù)每個(gè)樣品的Ct值以及標(biāo)準(zhǔn)曲線方程式進(jìn)行定量分析。
1.5統(tǒng)計(jì)方法
小麥株高、葉綠素含量、穗粒數(shù)和千粒重的差異性比較采用SPSS 16.0的獨(dú)立樣本T檢驗(yàn)(Independent samples T test)分析。
2.1室內(nèi)寡糖·鏈蛋白處理后小麥的植株特征、病情
指數(shù)和防治效果
低溫培養(yǎng)30 d后,盡管經(jīng)寡糖·鏈蛋白噴施處理的小麥較對(duì)照組的株高沒有顯著差異,而葉綠素含量則明顯高于對(duì)照組(P<0.05)。同時(shí)處理組的病情指數(shù)較對(duì)照組明顯降低,防治效果達(dá)到63.32%(表1)。
表1 室內(nèi)寡糖·鏈蛋白處理對(duì)小麥株高、葉綠素含量、病情指數(shù)的影響及防治效果Table 1 Effects of oligosaccharins·plant activator protein on wheat height, chlorophyll content and disease reduction of WYMV in laboratory
2.2寡糖·鏈蛋白處理對(duì)田間病毒病發(fā)生的影響
田間處理中,3月12日部分小麥開始表現(xiàn)出輕微黃化癥狀,3月19日小麥植株全部出現(xiàn)黃化癥狀,部分出現(xiàn)重度黃花和矮化癥狀,3月30由于氣溫回升,部分癥狀消失,4月8日則完全隱癥。由表2可知,在經(jīng)小麥返青后噴施寡糖·鏈蛋白,至3月30日,處理區(qū)的病情指數(shù)明顯下降,防治效果達(dá)到46.67%。
2.3寡糖·鏈蛋白處理的小麥葉片中病毒外殼蛋白基因的積累
免疫蛋白處理小麥葉片后的不同待檢樣品與標(biāo)準(zhǔn)品在相同條件進(jìn)行qRT-PCR檢測(cè),得到的Ct值根據(jù)標(biāo)準(zhǔn)曲線線性方程計(jì)算出不同樣品中外殼蛋白基因的蓄積量。測(cè)定結(jié)果表明,寡糖鏈蛋白的樣品標(biāo)準(zhǔn)曲線為y= -3.239x+6.696(圖1),其中y為Ct值,x為lgCo,Co為WYMV外殼蛋白起始濃度。由表3可以得知,小麥植株在田間經(jīng)寡糖·鏈蛋白處理7 d后,WYMV-CP的復(fù)制得到明顯抑制,抑制率達(dá)到了69.30%,并且在此后的14 d內(nèi)表現(xiàn)持續(xù)的抑制作用(3月30日:抑制率85.50%;4月8日,抑制率99.20%)。
2.4田間寡糖·鏈蛋白處理對(duì)小麥穗粒數(shù)及產(chǎn)量的影響
田間調(diào)查期間,盡管對(duì)照組和處理組的株高和葉綠素含量均沒有顯著差異,但從圖2得知,經(jīng)過寡糖·鏈蛋白處理的小麥穗粒數(shù)較對(duì)照組明顯增高(P<0.05),而千粒重沒有明顯變化。在最后的產(chǎn)量測(cè)定中經(jīng)寡糖·鏈蛋白處理的小麥產(chǎn)量較對(duì)照組明顯增高。
表2 田間寡糖·鏈蛋白處理對(duì)小麥株高、葉綠素含量、病情指數(shù)的影響及防治效果Table 2 Effects of oligosaccharins·plant activator protein on wheat height, chlorophyll content and disease index and its efficacy in control WYMV in field
圖1 攜帶WYMV-CP標(biāo)準(zhǔn)品的標(biāo)準(zhǔn)曲線Fig. 1 Standard curve of quantitative real-time PCR for WYMV-CP
表3 寡糖·鏈蛋白誘導(dǎo)后對(duì)小麥葉片WYMV-CP基因拷貝數(shù)的影響Table 3 WYMV-CP gene copies with or without oligosaccharins·plant activator protein treatment
圖2 寡糖·鏈蛋白對(duì)小麥黃花葉病病株的穗粒數(shù)、千粒重和產(chǎn)量的影響Fig. 2 Effects of oligosaccharins·plant activator protein on seeds per ear, thousand grain weight and yields of wheat infected by WYMV
植物通過復(fù)雜的調(diào)節(jié)網(wǎng)絡(luò)系統(tǒng)抵御外界不良因子的侵襲,這是植物防衛(wèi)反應(yīng)所特有的。多酚氧化物酶(PPO)、過氧化物酶(POD)、苯丙氨酸解氨酶(PAL)是植物形成多種次生代謝產(chǎn)物的關(guān)鍵酶,這些代謝產(chǎn)物有限制病原生長(zhǎng)和抗菌的功能[27]。同時(shí)病程相關(guān)基因(pathogenesis-related genes,PRs)的表達(dá)上調(diào),在植物的誘導(dǎo)抗病反應(yīng)中發(fā)揮重要作用。PR基因最初發(fā)現(xiàn)主要是由于它們?cè)谥参锸艿讲≡秩緯r(shí)會(huì)大量表達(dá),目前,在所有植物中幾乎都有PR基因的報(bào)道[28-29]。大量證據(jù)表明,PR基因在植物抗病反應(yīng)中不僅發(fā)揮作用,而且也是不同植物系統(tǒng)獲得抗性(system acquired resistance,SAR)啟動(dòng)表達(dá)的重要防衛(wèi)反應(yīng)標(biāo)志基因[30-33]。用寡糖·鏈蛋白誘導(dǎo)煙草對(duì)TMV抗性時(shí)發(fā)現(xiàn),經(jīng)誘導(dǎo)的植株P(guān)PO、POD和PAL酶活增高[32]。同時(shí)用寡糖·鏈蛋白處理小麥植株后,小麥植株體內(nèi)的PR1、PR2、PR5的表達(dá)量在12—24 h內(nèi)均有大幅度上調(diào)(未發(fā)表資料)。所以筆者推測(cè)寡糖·鏈蛋白誘導(dǎo)小麥產(chǎn)生了對(duì)WYMV的系統(tǒng)獲得抗病性。
對(duì)于禾谷多黏菌傳播的小麥黃花葉病,該病發(fā)生的最適溫度為15℃,變動(dòng)范圍為5—17℃,一旦溫度超過20℃就會(huì)發(fā)生隱癥,很難從外觀準(zhǔn)確判斷病狀。同時(shí)小麥黃花葉病發(fā)病時(shí)會(huì)伴隨一定的植株矮化和葉片黃花[7-8]。所以本試驗(yàn)在調(diào)查病情等級(jí)時(shí),也同時(shí)調(diào)查了小麥植株株高和葉片葉綠素含量,用此作為輔助參數(shù)。結(jié)果表明在實(shí)驗(yàn)室內(nèi),對(duì)照組小麥植株發(fā)病嚴(yán)重時(shí),葉綠素含量明顯低于處理組(P<0.05)。盡管田間對(duì)照組與處理組相比小麥葉綠素含量沒有顯著差異,但也有所降低。這表明,對(duì)于小麥黃花葉病的發(fā)病程度,可以通過植株的葉綠素含量來評(píng)價(jià)。
田間施用寡糖·鏈蛋白后,處理植株WYMV-CP基因拷貝數(shù)明顯受到抑制,穗粒數(shù)顯著增加。并且防治效果可達(dá)46.67%,說明寡糖·鏈蛋白可以通過抑制WYMV病毒的復(fù)制,而減輕病害的發(fā)生,提高產(chǎn)量。
激發(fā)子誘導(dǎo)植物對(duì)病原菌的抗性具有時(shí)滯性。間隔期因不同植物和不同誘導(dǎo)子而異。如菜豆(Phaseolus vulgaris)在接種非病原菌Colletotrichum lindemuthianum 24—36 h后顯示出對(duì)Helminthosporium carbonum和Alternaria sp.的過敏反應(yīng)[34-35]。從表3可以得知,寡糖·鏈蛋白在田間處理小麥植株7 d后(2015年3月19日),WYMV-CP基因拷貝數(shù)就明顯受到抑制,抑制率達(dá)到69.30%,但在田間病情等級(jí)調(diào)查中沒有發(fā)現(xiàn)明顯的防治效果。直到2周后(2015年3月30日),外在癥狀上才表現(xiàn)出對(duì)小麥黃花葉病的明顯抗性,防治效果為46.67%。同時(shí),植物的誘導(dǎo)抗性只能使植株對(duì)病原菌表現(xiàn)出相對(duì)的抗性,減輕病原菌對(duì)寄主植物的侵染程度[36]。在誘導(dǎo)抗性的持久性上,經(jīng)誘導(dǎo)的植物并不能永久保持這種因誘導(dǎo)而產(chǎn)生的抗性,通常會(huì)隨著誘導(dǎo)處理時(shí)間的延長(zhǎng)抗性會(huì)減弱[37]。另外,根據(jù)小麥黃花葉病自身的發(fā)病規(guī)律及其與溫度的關(guān)系,建議在小麥黃花葉病發(fā)病的最適溫度前2周噴施。
相對(duì)于穩(wěn)定的室內(nèi)環(huán)境,田間植株要面臨更多的生物和非生物因子的脅迫[38]。田間的小麥植株,在無防控措施的條件下,除受到小麥黃花葉病的侵染,也可能遭受其他有害生物的危害。干旱等非生物因子的脅迫也時(shí)有發(fā)生。這些生物及非生物因子對(duì)激發(fā)子的誘抗作用及防治效果都可能產(chǎn)生不利影響。寡糖·鏈蛋白在實(shí)驗(yàn)室內(nèi)對(duì)于小麥黃花葉病的防治效果好于田間試驗(yàn)(表1、表2),可能是由于田間復(fù)雜的生物及非生物因子的影響所致。
由于植株缺乏與動(dòng)物類似的免疫系統(tǒng),一旦被病毒感染就處于終生受害狀態(tài)。目前仍沒有有效的治療植物病毒的藥劑[37]。通過激發(fā)子誘導(dǎo)植物的抗性是抵抗植物病毒侵害的重要手段,國(guó)際上已經(jīng)有部分激發(fā)子上市,用于控制病毒病的危害[11-13]。激發(fā)子不會(huì)對(duì)病原菌產(chǎn)生選擇壓力,不易產(chǎn)生抗藥性,而且還具有抗非生物脅迫和促進(jìn)作物生長(zhǎng)的特點(diǎn),因此,激發(fā)子生物農(nóng)藥是經(jīng)濟(jì)、安全高效的綠色防控新產(chǎn)品。盡管目前對(duì)激發(fā)子的作用機(jī)理尚需深入研究,但不可否認(rèn),激發(fā)子如寡糖·鏈蛋白在病害防治、提高作物抗逆性等方面可能具有廣闊的應(yīng)用前景。
寡糖·鏈蛋白可誘導(dǎo)小麥植株產(chǎn)生對(duì)小麥黃花葉病的抗性,降低病情指數(shù),提高小麥穗粒數(shù),增加產(chǎn)量。其作用機(jī)理可能與顯著抑制小麥體內(nèi)WYMV-CP基因拷貝數(shù)有關(guān)。在小麥黃花葉病的常發(fā)地塊,可以在小麥返青前2周左右噴施寡糖·鏈蛋白,通過增強(qiáng)植株的抗性,抵御病害,減少產(chǎn)量損失。
References
[1] CLOVER G, HENRY C. Detection and discrimination of Wheat spindle streak mosaic virus and Wheat yellow mosaic virus using multiplex RT-PCR. European Journal of Plant Pathology, 1999,105(9): 891-896.
[2] CHEN J P. Occurrence of fungally transmitted wheat mosaic viruses in China. Annals of Applied Biology, 1993, 123(1): 55-61.
[3] HAN C, LI D, XING Y, ZHU K, TIAN Z, CAI Z, YU J, LIU Y. Wheat yellow mosaic virus widely occurring in wheat (Triticum aestivum) in China. Plant Disease, 2000, 84(6): 627-630.
[4] 王鳴岐, 劉國(guó)士, 陸秀海. 小麥梭斑花葉病毒病在我國(guó)發(fā)生的初步證實(shí). 四川農(nóng)業(yè)科技, 1980(1): 34-35.
WANG M Q, LIU G S, LU X H. A primary confirmation on Wheat spindle streak mosaic virus occurring in China. Sichuan AgriculturalScience and Technology, 1980(1): 34-35. (in Chinese)
[5] 張宗英, 徐建美, 韓成貴, 張振臣, 李大偉, 于嘉林. 小麥黃花葉病毒河南駐馬店分離物的鑒定與全序列分析. 華北農(nóng)學(xué)報(bào), 2010,25(2): 5-11.
ZHANG Z Y, XU J M, HAN C G, ZHANG Z C, LI D W, YU J L. Detective and complete sequence analysis of Wheat yellow mosaic virus from Zhumadian in Henan Province. Acta Agriculturae Boreali-Sinica, 2010, 25(2): 5-11. (in Chinese)
[6] KüHNE T. Soil-borne viruses affecting cereals—Known for long but still a threat. Virus Research, 2009, 141(2): 174-183.
[7] 王錫鋒, 劉艷, 韓成貴, 吳云峰, 趙中華. 我國(guó)小麥病毒病害發(fā)生現(xiàn)狀與趨勢(shì)分析. 植物保護(hù), 2010, 36(3): 13-19.
WANG X F, LIU Y, HAN C G, WU Y F, ZHAO Z H. Present situation and development strategies for the research and control of wheat viral diseases. Plant Protection, 2010, 36(3): 13-19. (in Chinese)
[8] 孫炳劍, 李洪連, 楊新志, 謝聯(lián)輝, 陳劍平. 河南省主要推廣品種對(duì)小麥黃花葉病毒抗性的評(píng)價(jià). 植物保護(hù)學(xué)報(bào), 2011, 38(2): 102-108.
SUN B J, LI H L, YANG X Z, XIE L H, CHEN J P. Evaluation of commercial wheat cultivars for resistance to Wheat yellow mosaic virus in Henan. Acta Phytophylacica Sinica, 2011, 38(2): 102-108. (in Chinese)
[9] CUI H, TSUDA K, PARKER J E. Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology, 2015, 66: 487-511.
[10] HUFFAKER A. Plant elicitor peptides in induced defense against insects. Current Opinion in Insect Science, 2015, 9: 44-50.
[11] BENHAMOU N, BELANGER R R. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiology, 1998, 118: 1203-1212.
[12] ZHU Y J, QIU X H, MOORE P H, BORTH W, HU J, FERREIRA S,ALBERT H H. Systemic acquired resistance induced by BTH in papaya. Physiological and Molecular Plant Pathology, 2003, 63: 237-248.
[13] SLAUGHTER A R, HAMIDUZZAMAN M M, GINDRO K,NEUHAUS J M, MAUCH-MANI B. Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. European Journal of Plant Pathology, 2008, 122: 185-195.
[14] COHEN Y, RUBIN A E, KILFIN G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 2009, 126: 553-573.
[15] DURNER J, KLESSIG D F. Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(24): 11312-11316.
[16] CAO H, LI X, DONG X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6531-6536.
[17] YANG X, QIU D, ZENG H, YUAN J, MAO J. Purification and characterization of a glycoprotein elicitor from Alternaria tenuissima. World Journal of Microbiology and Biotechnology, 2009, 25(11): 2035-2042.
[18] LI G, YANG X, ZENG H, MAO J, LIU H, ZHANG Y, QIU D. Stable isotope labelled mass spectrometry for quantification of the relative abundances for expressed proteins induced by PeaT1. Science China. Life Sciences, 2010, 53(12): 1410-1417.
[19] PENG X, QIU D, ZENG H, GUO L, YANG X, LIU Z. Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis. Transgenic Research, 2015, 24: 135-145.
[20] MAO J, LIU Q, YANG X, LONG C, ZHAO M, ZENG H, LIU H,YUAN J, QIU D. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defense responses in tobacco. Annals of Applied Biology, 2010, 156(3): 411-420.
[21] ZHANG W, YANG X, QIU D, GUO L, ZENG H, MAO J, GAO Q. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Molecular Biology Reports, 2011,38(4): 2549-2556.
[22] KULYE M, LIU H, ZHANG Y, ZENG H, YANG X, QIU D. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima,elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant, Cell and Environment, 2012,35(12): 2104-2120.
[23] 劉見平, 唐濤, 趙明平. 寡糖·鏈蛋白對(duì)南方水稻黑條矮縮病的防治效果及其對(duì)水稻的促長(zhǎng)增產(chǎn)作用. 農(nóng)藥, 2015, 54(8): 606-609.
LIU J P, TANG T, ZHAO M P. Control efficacy on Southern rice black-streaked dwarf virus of oligosaccharins·plant activator protein and its effects on growth promotion and yield increase of rice. Agrochemicals, 2015, 54(8): 606-609. (in Chinese)
[24] 尚巧霞, 韓成貴, 于嘉林, 楊莉莉, 劉儀. 小麥黃花葉病毒人工侵染體系的研究. 華北農(nóng)學(xué)報(bào), 2002, 17(4): 54-58.
SHANG Q X, HAN C G, YU J L, YANG L L, LIU Y. Artificial inoculation of Wheat yellow mosaic virus to wheat. Acta AgriculturaeBoreali-Sinica, 2002, 17(4): 54-58. (in Chinese)
[25] 趙滿興, 周建斌, 翟丙年, 楊絨, 李生秀. 旱地不同冬小麥品種氮素營(yíng)養(yǎng)的葉綠素診斷. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(4): 461-466.
ZHAO M X, ZHOU J B, ZHAI B N, YANG R, LI S X. Chlorophyll diagnoses of N nutrition for different winter wheat cultivars on dry land. Plant Nutrition and Fertilizer Science, 2005, 11(4): 461-466. (in Chinese)
[26] 邢君, 田靈芝. 小麥測(cè)產(chǎn)方法綜述. 安徽農(nóng)學(xué)通報(bào), 2011(8): 94-95.
XING J, TIAN L Z. Summary of calculate wheat yield methods. Anhui Agricultural Science, 2011(8): 94-95. (in Chinese)
[27] GENGER R K, JURKOWSKI G I, MCDOWELL J M, LU H, JUNG H W, GREENBERG J T, BENT A F. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “defense, no death”mutants. Molecular Plant-Microbe Interactions, 2008, 21(10): 1285-1296.
[28] WARD E R, UKNES S J, WILLIAMS S C, DINCHER S S,WIEDERHOLD D L, ALEXANDER D C, AHL-GOY P, METRAUX J P, RYALS J A. Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell, 1991, 3(10): 1085-1094.
[29] UKNES S, MAUCH-MANI B, MOYER M, POTTER S, WILLIAMS S, DINCHER S, CHANDLER D, SLUSARENKO A, WARD E,RYALS J. Acquired resistance in Arabidopsis. The Plant Cell, 1992,4(6): 645-656.
[30] YALPANI N, SILVERMAN P, WILSON T, KLEIER D A, RASKIN I. Salicylic acid is a systemic signal and an inducer of pathogenesisrelated proteins in virus-infected tobacco. The Plant Cell, 1991, 3(8): 809-818.
[31] ALEXANDER D, GOODMAN R M, GUT-RELLA M, GLASCOCK C, WEYMANN K, FRIEDRICH L, MADDOX D, AHL-GOY P,LUNTZ T, WARD E, RYALS J. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(15): 7327-7331.
[32] KOORNNEEF A, VERHAGE A, LEON-REYES A, SNETSELAAR R, VAN LOON L, PIETERSE C M. Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signaling & Behavior, 2008,3(8): 543-546.
[33] 張薇, 楊秀芬, 邱德文, 曾洪梅, 郭立華, 毛建軍. 激活蛋白PeaT1誘導(dǎo)煙草對(duì)TMV的系統(tǒng)抗性. 植物病理學(xué)報(bào), 2010, 40(3): 290-299.
ZHANG W, YANG X F, QIU D W, ZENG H M, GUO L H, MAO J J. Activator protein PeaT1 induced systemic resistance to Tobacco mosaic virus in tobacco. Acta Phytopathologica Sinica, 2010, 40(3): 290-299. (in Chinese)
[34] 趙立尚, 潘正茂, 王夢(mèng)揚(yáng), 范春燕. 小麥黃花葉病的研究. 農(nóng)業(yè)災(zāi)害研究, 2012(2): 12-13.
ZHAO L S, PAN Z M, WANG M Y, FAN C Y. Study on wheat yellow mosaic. Journal of Agricultural Catastrophology, 2012(2): 12-13. (in Chinese)
[35] RAHE J, KUC J, CHUANG C M, WILLIAMS E. Induced resistance in Phaseolus vulgaris to bean anthracnose. Phytopathology, 1969, 59: 1641-1645.
[36] ANDEBRHAN T, WOOD R K S. The effect of ultraviolet radiation on the reaction of Phaseolus vulgaris to species of Colletotrichum. Physiological Plant Pathology, 1980, 17(1): 105-110.
[37] DEAN R A, KUC J. Induced systemic protection in cucumber: Effects of inoculum density on symptom development caused by Colletotrichum lagenarium in previously infected and uninfected plants. Phytopathology, 1986, 76(2): 186-189.
[38] GOUINGUENé S P, TURLINGS T C J. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 2002,129(3): 1296-1307.
(責(zé)任編輯岳梅)
Effect of Induced Resistance of Oligosaccharins·Plant Activator Protein on Wheat to WYMV
XU Run-dong1, SHENG Shi-ying2, YANG Xiu-fen2, LIU Yong1
(1College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong;2Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081)
【Objective】Plant activator could trigger effective, persistent and broad-spectrum resistance in plants. The objective of this experiment is to study the resistance induced by oligosaccharins·plant activator protein against Wheat yellow mosaic virus(WYMV), thus providing a technical basis for the research and promotion of the use of activator proteins on a large scale.【Method】In laboratory, WYMV susceptible wheat cultivar ‘Aikang 58' was sowed in the soil that was collected from the WYMV infested field and grown in the incubator under (27±2)℃. When the wheat grown up to five-leaf stage, the 6% oligosaccharins·plant activator protein that was diluted 1 000 times was sprayed. After 7 days, the wheat was put in incubator for 30 days under (12±1)℃, so as to get WYMV inoculated plants. Then the height of wheat plant, chlorophyll content, disease index, and control efficiency weremeasured or calculated. In filed, wheat was sowed in the plot that infested with WYMV for many years. The oligosaccharins·plant activator protein was sprayed once a week for successive three times of spray when wheat plant was at returning green stage. At the same time, the height of wheat plant, chlorophyll content, disease index, and control efficiency were measured or calculated. Moreover, 20 upper first fully expanded leaves in each plot were taken every week to detect the copy number of WYMV-CP by qPCR during the field investigation. The thousand grain weight, the seeds per ear and the yields were measured and calculated at harvest.【Result】The laboratory experiment showed that after 30 days of the activator spray, the chlorophyll content increased dramatically (P<0.05), the disease index decreased as the result of the control efficiency reached up to 63.32%, but no difference was found in plant height compared to the control. The field experiment showed that no significant control efficiency after one time spray, but the control efficiency reached up to 46.67% after two times of spray. The suppression rate of the copy number of WYMV-CP reached up to 69.30% in the first week, 85.50% in the second week, and the highest suppression reached up to 99.20% in the third week. However, the chlorophyll content and the height of wheat plants showed no significant differences. Although the seed numbers per ear significantly increased, but no difference was observed in thousand grain weight. As a result, the yields were significantly increased.【Conclusion】Oligosaccharins·plant activator protein could induce wheat plant resistance to WYMV. The copy number of WYMV-CP dramatically decreased in activator protein treated plants. It was showed that the activator could relieve WYMV damage and reduce yield loses in wheat fields.
Wheat yellow mosaic virus (WYMV); oligosaccharins·plant activator protein; induced resistance; activator;WYMV-CP
2016-03-15;接受日期:2016-05-25
科技部國(guó)際科技合作專項(xiàng)(2014DFG32270)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503130)
聯(lián)系方式:徐潤(rùn)東,E-mail:aphid@sdau.edu.cn。通信作者劉勇,E-mail:liuyong@sdau.edu.cn