孫 偉,李建平,鄭小偉,朱松明,于 勇
?
超高壓增大食品物料的導熱系數(shù)
孫 偉,李建平※,鄭小偉,朱松明,于 勇
(浙江大學生物系統(tǒng)工程與食品科學學院,杭州 310058)
食品物料在超高壓下的導熱系數(shù)是研究超高壓加工過程中傳熱與溫度變化的必要參數(shù),但有關超高壓下食品物料的導熱系數(shù)數(shù)據(jù)和測量方法還十分缺乏。該文基于線熱源法設計了適用于超高壓力環(huán)境下食品物料導熱系數(shù)的測量探針和聚甲醛樣品容器,利用1.5%瓊脂凝膠對熱探針在25℃不同壓力下(0.1~400 MPa)進行標定試驗,結果表明測量值與純水導熱系數(shù)的參考值非常接近且呈良好的線性相關關系(2=0.9997),據(jù)此得到探針的標定系數(shù)為0.9944。在25 ℃測量了蛋清、蛋黃、火腿腸和奶油在0.1~400 MPa壓力下的導熱系數(shù)值。結果發(fā)現(xiàn):在25 ℃條件下,超高壓下食品物料的導熱系數(shù)較常壓下均有一定程度的增大(最大達到28%),且有隨壓力增大而增大的趨勢;一定壓力條件下,食品物料的導熱系數(shù)隨著含水量的增大而增大。建立了25 ℃條件食品物料在一定壓力范圍內(0.1~400 MPa)導熱系數(shù)預測的經驗公式,對研究的幾種食品物料擬合得到的方程回歸系數(shù)在0.91以上。
導熱系數(shù);食品加工;超高壓;探針法;線熱源
超高壓加工(Ultra high pressure processing,UHPP)是一項發(fā)展極為迅速的食品加工新技術,指在常溫或低溫條件下利用100~1 000 MPa壓力處理食品物料,以達到殺菌[1-3]、鈍酶[4-5]和改善食品理化特性[6-7]的目的。在對食品物料進行超高壓加工時會產生壓縮升溫(compression heating)效應,壓縮升溫值在2.4~12.8 ℃/100 MPa(取決于食品成分、壓力以及初始溫度)[8-11]。在超高壓處理過程中,由于腔體、物料以及傳壓介質具有不同的壓縮升溫特性,高壓容腔內部的溫度差及其傳熱的變化不可避免。這一壓縮過程中建立起來的溫度梯度會引起超高壓作用的非均勻性(如對微生物、酶的鈍化)[12]。
數(shù)學模擬是研究復雜系統(tǒng)的傳熱與溫度變化的一種有效手段,已有不少學者做過超高壓系統(tǒng)的傳熱模擬研究[13-16]。但由于缺乏物料在超高壓下的熱特性數(shù)據(jù),模擬研究受到很大的限制。物料的導熱系數(shù)是研究傳熱與溫度變化的必要參數(shù),但是物料在超高壓下的導熱系數(shù)是隨著壓力的變化而變化的,有關超高壓下食品物料導熱系數(shù)的數(shù)據(jù)還十分缺乏。目前國際上只有少數(shù)幾個實驗室能進行這方面的測試研究,如比利時的Leuven大學[17]、美國的Ohio州立大學[18-19]、加拿大的McGill大學[20-21]。國內還未見到這方面研究的報道,多為綜述[22-23],其原因是缺乏適用于超高壓條件下的測試技術[24]。
本文在經過改造后加裝溫度檢測和通電裝置的超高壓設備的基礎上,利用自行設計的熱探針和聚甲醛傳壓容器對超高壓下食品物料的導熱系數(shù)進行測試,研究食品物料的導熱系數(shù)隨壓力變化的規(guī)律。
1.1 探針法原理
探針法測量物料的導熱系數(shù)是基于線熱源瞬態(tài)傳熱模型,通過對插入無限大均勻樣品中的探針輸入一恒定功率的熱量,測量一段時間內探針的溫度變化。被測樣品的導熱系數(shù)可由下式求得[25-27]
式中為導熱系數(shù)值,W/(m·℃),為輸入熱量的功率,W/m,和0為分別為測量結束的時間和測量開始的時間,s,和0為分別為測量結束和測量開始時的探針溫度,℃,為檢測到的探針內溫度對時間的自然對數(shù)的線性回歸系數(shù)。
1.2 熱探針和樣品容器的設計
熱探針和樣品容器的結構如圖1所示。探針管使用不銹鋼毛細管(長72 mm,外徑1.2 mm,壁厚0.1 mm)制作。探針的長度與外徑比例較大(60∶1),使得其軸向傳熱很小,可以忽略不計[28]。加熱絲采用康銅絲(直徑0.076 mm,TFCC-003,美國Omega Stamford公司)制作,因為康銅的電阻率較大(48.9Ω·cm,20 ℃)而電阻的溫度系數(shù)較小(0.1×10-4℃-1,0~100 ℃),可以保證試驗過程中加熱絲的電阻恒定,從而保證加熱絲的功率恒定。加熱絲對折后裝入整個探針內,上端露出3~5 mm的引線用于外接導線,加熱絲表面涂有聚四氟乙烯絕緣層以防止短路。探針溫度通過K型熱電偶(美國Omega Stamford公司)測量,因為在試驗所測溫度范圍內,超高壓力不會影響K型熱電偶的讀數(shù)[29-30],測溫點(即熱電偶探頭)布置在探針管內表面的中間位置。探針的下端通過焊接密封,以避免在高壓下樣品進入探針內,探針的上端無需密封,使得傳壓介質水能進入探針,可以防止探針在高壓下被壓縮變形[17]。
試驗采用自制的聚甲醛(導熱系數(shù)較低,滿足試驗對于保溫效果的要求,同時具有良好的機械性能,在高壓下不易變形)套筒(內徑60 mm,外徑80 mm,高度200 mm)作為樣品容器。套筒頂端密封蓋與套筒通過螺紋連接,可以打開裝填樣品,密封蓋中間開有通孔便于熱探針的安裝。底部可滑動活塞起到傳壓作用,活塞兩側面積相等,可以實現(xiàn)等壓傳遞,保證了在超高壓下,容器內樣品所受壓力與高壓容腔的壓力相等。在試驗過程中,每次超高壓處理前后都檢查活塞的位置,結果發(fā)現(xiàn)處理前后活塞的位置沒有發(fā)生變動,說明容器在超高壓下的密封效果良好。
1.3 超高壓試驗裝置
試驗采用的超高壓處理設備(HPP/600 MPa/5 L)由包頭科發(fā)高壓科技有限責任公司提供,并通過改造在高壓容腔中加裝溫度檢測單元和通電裝置。如圖2所示。設備的最大工作壓力為600 MPa,有效處理容積為5 L(內徑120 mm),有效工作溫度為5~80 ℃,傳壓介質為純凈水。該設備的增壓速率約為160 MPa/min,卸壓時間小于5 s。傳壓介質容器(水箱)中安裝有溫度傳感器和電加熱棒,高壓容腔外的保溫夾層中安裝有溫度傳感器和電加熱帶,傳壓介質水的溫度和高壓容腔的溫度控制可以通過儀器設置中的水箱溫度和容腔溫度設定來實現(xiàn)。
高壓容腔的下堵頭處開有小孔,熱電偶線和導線得以穿入容腔內部,導線外部連接直流穩(wěn)壓電源(DC 36V-3A,臺灣LAOA公司)。試驗過程中系統(tǒng)的壓力、探針內熱電偶的溫度以及通過加熱絲的電流利用Agilent 34970A型數(shù)據(jù)采集儀(美國Agilent公司)在計算機上記錄(每秒1次)。
1.4 熱探針的標定
用探針法測量物料在超高壓下的導熱系數(shù)必須考慮到實際模型與理論模型之間存在一定的差異。差異產生的主要原因有:探針具有一定的直徑和熱容量,實際上存在軸向導熱;探針與被測物質之間存在接觸熱阻,當然高壓可以使探針與被測試樣的間隙消除,在一定程度上減小了接觸熱阻;實際測試中無法保證被測試樣為無限大的邊界條件;高壓對導線以及加熱絲電阻的影響;以及當試樣為流體時,加熱時會發(fā)生對流傳熱。實際測試中超高壓系統(tǒng)壓力的波動也會對試驗結果產生一定影響。因此,有必要用已知導熱系數(shù)的標準樣品對探針進行標定。
試驗中選用1.5%(質量分數(shù))瓊脂凝膠(瓊脂水溶液)作為標定的標準樣品,因為低濃度瓊脂凝膠的導熱系數(shù)與純水的導熱系數(shù)(可通過NIST/ASME數(shù)據(jù)庫查詢[31])非常接近,而它的凝膠化結構可以避免測試中對流傳熱的發(fā)生[17,20]。將瓊脂粉(國藥集團化學試劑有限公司)和蒸餾水按1.5%(質量分數(shù))比例在燒杯中混合,在磁力攪拌器上使混合液在接近沸點的溫度下完全溶解,冷卻至70 ℃時,倒入樣品容器中,將容器上端蓋子擰緊。隨后將其于4 ℃冰箱中放置一夜形成凝膠狀態(tài)。
在(25±1) ℃條件分別測量瓊脂凝膠在不同壓力下(0.1、50、100、150、200、250、300、350和400 MPa)的導熱系數(shù)。高壓下樣品會因絕熱壓縮升溫產生溫度的變化,試驗過程中先將樣品冷卻至一定溫度,利用高壓產生的絕熱壓縮升溫使得樣品達到所需初始溫度(25±1) ℃,穩(wěn)定一段時間后打開穩(wěn)壓電源的開關,對探針進行加熱,加熱時間>2 min。傳壓介質和高壓容腔的溫度設置為25 ℃。
圖3是試驗過程中的一個實例。圖3a為將瓊脂凝膠加壓至350 MPa時測量其導熱系數(shù)過程中的探針溫度和壓力曲線。瓊脂凝膠在加壓前的溫度為17.5 ℃,加壓階段,其溫度隨著壓力的增大而升高。當壓力達到設定的350 MPa時,溫度升高至24.8 ℃,保持30 s,發(fā)現(xiàn)壓力和溫度都沒有發(fā)生變化。30 s后開始打開穩(wěn)壓電源,加熱絲中通過恒定的直流電流(=0.188 A)時,探針內的溫度呈現(xiàn)對數(shù)曲線上升,2 min內溫度升高了約4 ℃。作出加熱2 min時間內探針溫度隨加熱時間的自然對數(shù)的變化曲線如圖3b所示,線性擬合良好(2=0.998)。
1.5 食品物料導熱系數(shù)的測量
用于測試的食品物料蛋清、蛋黃、火腿腸和奶油購于當?shù)匚譅柆敵?,它們的組成成分如表1所示。在(25±1) ℃條件分別測量樣品物料在不同壓力下(同標定試驗)的導熱系數(shù)。不同物料在超高壓下的絕熱壓縮升溫值不同,故物料在加壓前的溫度不同。測量方法同熱探針的標定試驗。
表1 食品物料的組成成分
測量過程中探針內加熱絲的加熱功率是一個重要因素。如果加熱功率太大,測量過程中溫度的變化會波及物料的邊緣地帶,無法保證被測樣品為無限大的邊界條件;加熱功率太小,探針溫升較小,溫度測量的誤差會增大,測量結果誤差較大。經過預試驗確定加熱絲功率范圍在6.7~13.3 W/m是合適的,高壓對導線和加熱絲的電阻影響很小,可以忽略不計。
1.6 數(shù)據(jù)統(tǒng)計與分析
所有試驗至少重復3次,以“平均值±標準差”形式表示,試驗數(shù)據(jù)采用Excel 2010和Origin 8.0 進行統(tǒng)計與分析。
2.1 熱探針標定結果
瓊脂凝膠在不同壓力的導熱系數(shù)測量值如圖4a所示,測量值與NIST/ASME數(shù)據(jù)庫給出的參考值比較接近。熱探針在不同壓力下的標定系數(shù)用公式(2)求得
f=k/(2)
式中為標定系數(shù),k為瓊脂凝膠導熱系數(shù)的測量值,W/(m·℃),為瓊脂凝膠導熱系數(shù)的參考值,W/(m·℃)。探針標定系數(shù)隨壓力的變化如圖4b示,從圖4b中可以看出,標定系數(shù)隨壓力的變化總體上在1.0左右,壓力對標定系數(shù)幾乎沒有影響。將標定系數(shù)與壓力值作線性回歸分析,回歸分析的結果如下
1.018?1.3×10-4(2=0.162,=30) (3)
式中為壓力,MPa。2值較小,表明標定系數(shù)與壓力的相關性較低。
瓊脂凝膠在25 ℃不同壓力(0.1~400 MPa)條件下的導熱系數(shù)的測量值關于參考值的線性回歸分析結果如圖5所示。從圖5中可以看出測量值與參考值之間呈較好的線性相關(2=0.9997)。從線性回歸分析得到的標定系數(shù)值為0.9944,此標定系數(shù)將用于食品導熱系數(shù)試驗測量結果的標定。
2.2 食品物料在超高壓下的導熱系數(shù)
試驗中不同壓力下食品物料的導熱系數(shù)測量結果(標定后)如圖6所示(其中水的導熱系數(shù)為參考值)。從中可以看出食品的導熱系數(shù)隨著壓力的變化而變化,超高壓下所測食品的導熱系數(shù)較常壓下均有一定的增大,增大率最大達到28%(火腿腸,400 MPa)。常壓下關于食品的導熱系數(shù)已有不少研究,其值與食品物料的組分(主要是含水量)有關[32]。Sweat曾提出根據(jù)食品物料的組成成分來估算其導熱系數(shù)的方法,公式如下[33]
=0.58m+0.155m+0.25m+0.16m+0.135m (4)
式中m、m、m、m、m分別為食品物料中水分、蛋白質、碳水化合物、脂肪和灰分的質量分數(shù),%。由表1中食品的組成成分數(shù)據(jù)計算得到試驗中幾種食品物料在常壓下的導熱系數(shù)依次為:蛋清0.53 W/(m·℃),蛋黃0.40 W/(m·℃),火腿腸0.43 W/(m·℃),奶油0.41 W/(m·℃)。與本試驗測量結果比較,蛋黃、火腿腸和奶油的測量值(依次為0.43,0.45和0.49 W/(m·℃))與估算值之間較為接近,而蛋清的測量值(達到0.65 W/(m·℃))顯著大于估算值,也大于常壓下純水的導熱系數(shù)。根據(jù)Sweat的經驗公式,食品的導熱系數(shù)不會高于純水的導熱系數(shù)。試驗中測量的蛋清的導熱系數(shù)卻高于純水的導熱系數(shù),這可能是因為蛋清的流動性較大,試驗過程中除了有熱傳導,還存在一定的對流傳熱,加快了傳熱速率,表現(xiàn)出測量的導熱系數(shù)值偏大。
隨著壓力的增加,食品的導熱系數(shù)總體上呈增大的趨勢,這與Denys等[17],Zhu等[21]測試得到的趨勢一致。食品的導熱系數(shù)的大小主要受其含水量的影響,水是大多數(shù)食品物料的最主要成分,目前在超高壓下水的物理屬性是已知的,其導熱系數(shù)隨著壓力的增大而增大[31],因而食品物料的導熱系數(shù)也表現(xiàn)出類似的趨勢。壓力在300 MPa以下時,蛋清的導熱系數(shù)隨著壓力的增大而增大,但300 MPa以后,繼續(xù)增加壓力,其導熱系數(shù)反而顯著降低。這可能是由于300 MPa以上高壓處理蛋清時使得其中的蛋白質發(fā)生了一定程度的凝結[34]。楊昆等[35]經過測量發(fā)現(xiàn)完全凝固后的蛋清導熱系數(shù)較凝固前平均上升了6.60%。發(fā)生凝結之后的蛋清的導熱系數(shù)應該增大,但應該考慮到蛋白質發(fā)生凝結以后,蛋清就失去了流動性,測量過程中因局部溫度升高導致的對流傳熱的影響大大降低,因此表現(xiàn)出蛋清導熱系數(shù)的測量值下降。從公式(4)中可以看出,常壓下食品的導熱系數(shù)值隨著食品的含水量的增大而增大,而高壓下這樣的規(guī)律依然存在,導熱系數(shù)總體上滿足關系:蛋清>火腿腸>奶油>蛋黃。
食品在超高壓下的導熱系數(shù)的測量過程較為復雜,加之目前中國超高壓設備的高壓處理倉在出產時并未安裝有溫度檢測設備,使得測量難度加大。建立合適的數(shù)學模型將有助于合理預測食品物料在不同壓力下的導熱系數(shù)。為了得到試驗中幾種食品物料的導熱系數(shù)關于壓力的函數(shù)關系,測試數(shù)據(jù)用來擬合以下經驗公式
=(5)
對于蛋清、蛋黃、火腿腸和奶油在溫度為25 ℃,壓力在0.1~400 MPa范圍內,公式(5)被展開到四階形式
>=0+1+22+33+44(6)
擬合得到的參數(shù)結果如表2所示,回歸系數(shù)均在0.91以上,說明上述經驗公式能較好地擬合這些物料的導熱系數(shù)隨壓力(0.1~400 MPa,溫度為25 ℃)的變化情況。
表2 超高壓下食品物料導熱系數(shù)預測經驗公式的參數(shù)
1)在現(xiàn)有超高壓設備上改造加裝了溫度檢測和通電裝置,將導熱系數(shù)測量探針接入超高壓腔體中用于食品物料在超高壓力條件下導熱系數(shù)的測量,測量系統(tǒng)在超高壓力環(huán)境下能穩(wěn)定工作。
2)利用1.5%瓊脂凝膠對設計的導熱系數(shù)測量探針在不同壓力下進行了標定試驗,結果表明測量值與參考值之間非常接近且呈高度線性相關關系,探針的標定系數(shù)為0.9944。
3)測量了多種食品物料在不同壓力條件下的導熱系數(shù),常壓下的測量值與估算值之間較為接近,高壓下食品物料的導熱系數(shù)較常壓均有一定程度的增大。隨著壓力的增大,食品物料的導熱系數(shù)總體上呈增大的趨勢。食品的含水量對其導熱系數(shù)影響較大,一般來說,含水量越高的食品導熱系數(shù)越大,高壓條件下也是如此。
4)建立了25 ℃條件食品物料在一定壓力范圍內(0.1~400 MPa)導熱系數(shù)預測的經驗公式,對研究的幾種食品物料擬合效果良好。
[1] 劉野,趙曉燕,胡小松,等.超高壓對鮮榨西瓜汁殺菌效果和風味的影響[J]. 農業(yè)工程學報,2011,27(7):370-376.
Liu Ye, Zhao Xiaoyan, Hu Xiaosong, et al. Effect of high hydrostatic pressure on microorganism and flavor of fresh water melon juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 370-376. (in Chinese with English abstract)
[2] 胡菲菲,朱瑞,楊楠,等.胡蘿卜汁中大腸桿菌脈沖式超高壓殺菌動力學研究[J]. 農業(yè)機械學報,2014,45(1):178-183,190.
Hu Feifei, Zhu Rui, Yang Nan, et al. Pulse mode high-pressure destruction kinetics of Ein carrot juice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 178-183, 190. (in Chinese with English abstract)
[3] Georget E, Sevenich R, Reineke K, et al. Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review[J]. Innovative Food Science and Emerging Technology, 2015, 27: 1-14.
[4] 蘇光明,朱松明,胡菲菲,等.超高壓對醬曲多酚氧化酶激活和鈍化動力學研究[J]. 農業(yè)機械學報,2015,46(10):257-265.
Su Guangming, Zhu Songming, Hu Feifei, et al. Kinetics of polyphenoloxidase activation and inactivation in soybean paste by ultra-high pressure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 257-265. (in Chinese with English abstract)
[5] 鄧倩琳,劉書成,劉蒙娜,等.超高壓聯(lián)合高密度CO2處理鈍化對蝦多酚氧化酶[J]. 農業(yè)工程學報,2016,32(14):265-271.
Deng Qianlin, Liu Shucheng, Liu Mengna, et al. Inactivation of polyphenol oxidase fromtreated by ultra high pressure combined dense phase carbon dioside[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 265-271. (in Chinese with English abstract)
[6] Yu Y, Lin Y, Zhan Y, et al. Effect of high pressure processing on the stability of anthocyanin, ascorbic acid and color of Chinese bayberry juice during storage[J]. Journal of Food Engineering, 2013, 119(3): 701-706.
[7] 王瑋,葛毅強,王永濤,等.超高壓處理保持豬背最長肌冷藏期間肉色穩(wěn)定性[J]. 農業(yè)工程學報,2014,30(10);248-253.
Wang Wei, Ge Yiqiang, Wang Yongtao, et al. High pressure treatment to maintain color stability of porcinemuscle during refrigeration storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 248-253. (in Chinese with English abstract)
[8] Rasanayagam V, Balasubramaniam V M, Ting E, et al. Compression heating of selected fatty food materials during high-pressure processing[J]. Journal of Food Science, 2003, 68(1): 254-259.
[9] Patazca E, Koutchma T, Balasubramaniam V M. Quasi-adiabatic temperature increase during high pressure processing of selected foods[J]. Journal of Food Engineering, 2007, 80(1): 199-205.
[10] 王標詩,李汴生,曾慶孝,等.超高靜壓下食品壓致升溫規(guī)律的研究[J]. 農業(yè)工程學報,2009,25(2):246-250.
Wang Biaoshi, Li Biansheng, Zeng Qingxiao, et al. Compression heating characteristics of foods during ultra high hydrostatic pressure processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 246-250. (in Chinese with English abstract)
[11] 孫偉,李建平,都基睿,等.超高壓加工過程食品物料絕熱壓縮升溫特性研究[J]. 農業(yè)機械學報,2016,47(3):200-206.
Sun Wei, Li Jianping, Du Jirui, et al. Adiabatic compression heating characteristics of selected food materials during high pressure processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 200-206. (in Chinese and English)
[12] 葉久東,李汴生,阮征,等.食品超高壓處理過程中傳熱模型和相轉變的研究進展[J]. 食品研究與開發(fā),2006,27(3):142-145.
Ye Jiudong, Li Biansheng, Ruan Zheng, et al. The advances of research on heat transfer modeling and phase transitions in ultrahigh pressure food processing[J]. Food Research and Development, 2006, 27(3): 142-145. (in Chinese with English abstract)
[13] Denys S, Ludikhuyze L R, Van Loey A M, et al. Modeling conductive heat transfer and process uniformity during high-pressure processing of foods[J]. Biotechnology Progress, 2000, 16(1): 92-101.
[14] Ousegui A, Zhu S, Ramaswamy H S, et al. Modeling of a high pressure calorimeter: application to the measurement of the latent heat of a model food (tylose)[J]. Journal of Thermal Analysis and Calorimetry, 2006, 86(1): 243-248.
[15] Chen C R, Zhu S, Ramaswamy H S, et al. Computer simulation of high pressure cooling of pork[J]. Journal of Food Engineering, 2007, 79(2): 401-409.
[16] Juliano P, Konerzer K, Fryer P, et al. C. botulinum inactivation kinetics implemented in a computational model of a high pressure sterilization process[J]. Biotechnology Progress, 2009, 25(1): 163-175.
[17] Denys S, Hendrickx M E. Measurement of the thermal conductivity of foods at high pressure[J]. Journal of Food Science, 1999, 64(4): 709-713.
[18] Ramaswany R, Balasubramaniam V M, Sastry S K. Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa[J]. Journal of Food Engineering, 2007, 83(3): 444-451.
[19] Nguyen L T, Balasubramaniam V M, Sastry S K. Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure[J]. International Journal of Food Properties, 2012, 15(1/2): 169-187.
[20] Zhu S, Ramaswamy H S, Marcotte M, et al. Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method[J]. Journal of Food Science, 2007, 72(2): 49-56.
[21] Zhu S, Marcotte M, Ramaswamy H, et al. Evaluation and comparison of thermal conductivity of food materials at high pressure[J]. Food and Bioproducts Processing, 2008, 86(C3): 147-153.
[22] 王標詩,李汴生,黃娟,等.超高靜壓對食品熱力學特性的影響[J]. 食品工業(yè)科技,2007,28(9):209-212.
[23] 王標詩,曾慶孝,李汴生,等. 食品超高靜壓處理中熱效應問題的研究進展[J]. 農業(yè)工程學報,2007,23(6):285-290.
Wang Biaoshi, Zeng Qingxiao, Li Biansheng, et al. Research advances in thermal effect in high hydrostatic pressure (HHP) processing of food[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 285-290. (in Chinese with English abstract)
[24] 張曉,王永濤,李仁杰,等.我國食品超高壓技術的研究進展[J]. 中國食品學報,2015,15(5):157-165.
Zhang Xiao, Wang Yongtao, Li Renjie, et al. Advances of high hydrostatic pressure for food processing in China[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(5): 157-165. (in Chinese with English abstract)
[25] 黃國綱,周國燕,李彩俠,等.探針法測量低溫下食品導熱系數(shù)研究[J]. 制冷學報,2006,27(4):23-25.
Huang Guogang, Zhou Guoyan, Li Caixia, et al. Study on probe to measure thermal conductivity of food materials at low temperature[J]. Journal of Refrigeration, 2006, 27(4): 23-25. (in Chinese with English abstract)
[26] 張敏,趙惠忠,謝晶,等.蘋果導熱系數(shù)影響因素的實驗研究[J]. 農業(yè)工程學報,2006,22(3):162-165.
Zhang Min, Zhao Huizhong, Xie Jing, et al. Experimental study on influence factors of thermal conductivities of apple juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(3): 162-165. (in Chinese with English abstract)
[27] 陸森,任圖生,楊泱,等.多針熱脈沖技術測定土壤熱導率誤差分析[J]. 農業(yè)工程學報,2010,26(6):20-25.
Lu Sen, Ren Tusheng, Yang Yang, et al. Error analysis of multi-needle heat pulse probe for soil thermal conductivity measurement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 20-25. (in Chinese with English abstract)
[28] Murakami E G, Sweat V E, Sastry S K, et al. Recommended design parameters for thermal conductivity probes for non-frozen food materials[J]. Journal of Food Engineering, 1996, 27(2): 109-123.
[29] Bundy F P. Effect of pressure on emf of thermocouples[J]. Journal of Applied Physics, 1961, 32(3): 483-488.
[30] Balasubramaniam V M, Ting E Y, Stewart C M, et al. Recommended laboratory practices for conducting high-pressure microbial inactivation experiments[J]. Innovative Food Science & Emerging Technologies, 2004, 5(3): 299-306.
[31] Harvey A H, Lemmon E W. NIST standard reference database 10: NIST/ASTM steam properties (version 3.0)[S]. Applied Chemicals and Division National Institute of Standards and Technology, U.S. Department of Commerce, 2013.
[32] 彭海柱,王剛,陶樂仁,等.熱線法測量食品熱導率的實驗研究[J]. 食品科學,2001,22(1):27-30.
[33] 華澤釗,李云飛,劉寶林.食品冷凍冷藏原理與設備[M]. 北京:機械工業(yè)出版社,1999.
[34] Lee D U, Heinz V, Knorr D. Evaluation of processing criteria for the high pressure treatment of liquid whole egg: rheological study[J]. LWT-Food Science and Technology, 1999, 32(5): 299-304.
[35] 楊昆,劉偉,楊金國.熱凝固對生物組織熱物性影響的實驗研究[J]. 工程熱物理學報,2004,25(2):314-316.
Yang Kun, Liu Wei, Yang Jinguo. An experiment study for effects of thermal coagulation on the thermal properties of biological tissue[J]. Journal of Engineering Thermophysics, 2004, 25(2): 314-316. (in Chinese with English abstract)
Ultra high pressure increasing thermal conductivity of food materials
Sun Wei, Li Jianping※, Zheng Xiaowei, Zhu Songming, Yu Yong
(310058)
During high pressure processing, the adiabatic compression increase of food materials would cause non-uniform temperature distribution and heat transfer, which would also influence the inactivation of bacteria, spore, enzyme and the quality of foods. Thermal conductivity of food materials at high pressure is a very important parameter for understanding heat transfer and temperature variation during high pressure processing. Available data and measuring method of thermal conductivity of food materials under high pressure are still scarce. In this study, a thermal conductivity probe developed based on the line heat source theory was installed in a high pressure chamber to measure thermal conductivity of food materials under high pressure. The thermal conductivity probe was calibrated using 1.5% agar gel whose thermal conductivity was very close to that of pure water but the convective effect during the measurement was eliminated due to the gel network at pressure from 0.1 to 400 MPa with a pressure increment of 50 MPa. The results of calibration experiment indicated that thermal conductivity values of 1.5% agar gel measured under different pressures using the thermal conductivity probe were very close to that of reference data of pure water. Calibration factors defined as the ratio of measured and reference values of the thermal conductivity of 1.5% agar gel were found almost no effect by pressure. A general calibration coefficient value of 0.9944 (square was 0.9997, observation number was 30) was obtained by linear regression analysis (zero intercept) of measured thermal conductivity values of 1.5% agar gel against reference values of pure water. The coefficient value was used for the correction of all experimental results in the following. Thermal conductivities of egg white, egg yolk, ham sausages and cream were measured at pressure from 0.1 to 400 MPa with a pressure increment of 50 MPa. The results demonstrated that the thermal conductivities of these selected food materials at high pressure conditions were higher (up to 28%) than that of the sample at the atmospheric pressure conditions and had a tendency to increase with increasing pressure. Results at atmospheric pressure in this study were compared to estimate values using empirical equation based on water content. The measured thermal conductivities of egg yolk (0.43 W/(m·℃)), ham sausages (0.45 W/(m·℃)) and cream (0.49 W/(m·℃)) were very close to the estimated values (egg yolk 0.40 W/(m·℃), ham sausages 0.43 W/(m·℃), cream 0.41 W/(m·℃)) , while the measured value of egg white (0.65 W/(m·℃)) was significantly higher than that of the estimated value (0.53 W/(m·℃)) as well as that of pure water. The reason probably was that the flowability of egg white caused the generation of convective heat transfer. Measured thermal conductivities of egg white decreased at pressure higher than 300 MPa which was different from other three materials. The reason probably was that the pressure processing more than 300 MPa induced coagulation of egg white resulting in decrease of flowability as well as convective heat transfer. The water content of food materials had a significant effect on thermal conductivity. In general, the higher the water content, the higher the thermal conductivity. This rule was also confirmed at high pressure as the thermal conductivity from highest to lowest in order being egg white (83.1% water) > ham sausages (63.5%) > cream (57.5%) > egg yolk (50.7%). An empirical equation was established for prediction of the thermal conductivity of food materials at high pressure. The fourth-order polynomial was used to fit the thermal conductivity values of egg white, egg yolk, ham sausages and cream at pressure range from 0.1 to 400 MPa with temperature of 25 ℃. The regression coefficients of these equations were all above 0.91. This study could provide basic scientific datas for high pressure processing of food materials.
thermal conductivity; food processing; ultra high pressure; thermal conductivity probe; line heat source
10.11975/j.issn.1002-6819.2016.24.039
TS201.1
A
1002-6819(2016)-24-0291-06
2016-07-04
2016-11-20
國家自然科學基金資助項目(31171779)
孫 偉,男,安徽池州人,博士生,研究方向:農產品超高壓加工技術與裝備。杭州 浙江大學生物系統(tǒng)工程與食品科學學院,310058。Email:wsun@zju.edu.cn
李建平,男,浙江杭州人,教授,博士,博士生導師,研究方向:農產品加工技術與裝備,設施農業(yè)裝備。杭州 浙江大學生物系統(tǒng)工程與食品科學學院,310058。Email:jpli@zju.edu.cn