侯利民,侯利鋒,衛(wèi) 歡,衛(wèi)英慧, 2
?
銅合金層錯(cuò)能的熱力學(xué)計(jì)算
侯利民1,侯利鋒1,衛(wèi) 歡1,衛(wèi)英慧1, 2
(1. 太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原 030034;2. 山西工程技術(shù)學(xué)院,陽泉 045000)
層錯(cuò)能是金屬材料重要的本征參數(shù),對(duì)金屬材料變形機(jī)制和力學(xué)性能有著重要的影響。特別是在強(qiáng)烈塑性變形過程中,層錯(cuò)能的變化對(duì)金屬變形機(jī)制和晶粒細(xì)化機(jī)制有著決定性作用。層錯(cuò)能的測(cè)定或計(jì)算方法有很多種,熱力學(xué)法能夠方便快捷地計(jì)算出層錯(cuò)能的值,可以直觀地判斷溫度、成分等對(duì)合金層錯(cuò)能的影響。采用熱力學(xué)方法計(jì)算純Cu及Cu-Ti、Cu-Zn合金的層錯(cuò)能,計(jì)算結(jié)果表明:在室溫條件下,Cu-Ti和Cu-Zn合金的層錯(cuò)能都隨溶質(zhì)元素含量的增加而降低,兩種合金中添加相同含量的溶質(zhì)元素,溶質(zhì)元素Ti對(duì)合金層錯(cuò)能的影響更大;兩種合金偏聚自由能隨溶質(zhì)元素含量的增加而升高。
銅合金;層錯(cuò)能;熱力學(xué)
隨著工業(yè)發(fā)展的需求,人們采用多種方法來強(qiáng)化金屬材料,其中利用嚴(yán)重塑性變形方法制備的納米晶金屬材料由于具有極高的強(qiáng)度而受到材料學(xué)界的廣泛關(guān)注。目前研究的重點(diǎn)已從材料的制備和結(jié)構(gòu)表征逐漸深入到顯微組織的調(diào)整和新變形機(jī)制的探索。層錯(cuò)能作為材料重要的本征參數(shù)對(duì)其變形機(jī)制和力學(xué)性能有著重要的影響[1],特別是在強(qiáng)烈塑性變形中,層錯(cuò)能的大小對(duì)金屬晶粒細(xì)化機(jī)制有著重要的作用[2?5]。研究發(fā)現(xiàn),隨著層錯(cuò)能的降低,材料的變形方式由位錯(cuò)為主轉(zhuǎn)變?yōu)閷\生為主,同時(shí)隨著層錯(cuò)能的降低,材料的加工硬化速率會(huì)提高。因此,確定合金層錯(cuò)能大小,特別是不同合金元素及其含量對(duì)層錯(cuò)能的影響,對(duì)預(yù)測(cè)合金的變形機(jī)制及性能,超細(xì)晶材料組織與性能的控制優(yōu)化具有重要意義[6?8]。層錯(cuò)能的測(cè)定方法如 下[9?10]:加工硬化法、臨界切應(yīng)力法和低溫蠕變等,實(shí)驗(yàn)工作量大,測(cè)量數(shù)值分散,結(jié)果可靠性低;第一性原理法[11?12]模型設(shè)計(jì)要求精,計(jì)算軟件要求高,計(jì)算量大。而熱力學(xué)法計(jì)算得到的層錯(cuò)能是某一特定溫度的函數(shù),方便快捷,并能直接得到溫度、成分等因素對(duì)合金層錯(cuò)能的影響,計(jì)算結(jié)果和實(shí)驗(yàn)結(jié)果基本一致[13?15]。目前采用熱力學(xué)模型計(jì)算層錯(cuò)能主要應(yīng)用于面心立方[16?18]和六方系[19]合金。Cu合金作為面心立方結(jié)構(gòu)的金屬,具有較好的塑性變形能力。建立可靠的層錯(cuò)能熱力學(xué)計(jì)算[20?22]模型可達(dá)到控制其塑性變形行為,調(diào)整顯微組織的目的。
基于此,本文作者采用層錯(cuò)能的熱力學(xué)計(jì)算模型,以Cu-Ti和Cu-Zn合金為例,分析Ti、Zn含量對(duì)Cu層錯(cuò)能的影響,以期為后續(xù)研究Cu合金變形機(jī)理提供理論支持。
1.1 FCC結(jié)構(gòu)層錯(cuò)能
在面心立方結(jié)構(gòu)中,/6á112?不全位錯(cuò)的滑移面為{111}原子密排面,形成的層錯(cuò)破壞了密排面的正常堆垛順序,相當(dāng)于在FCC結(jié)構(gòu)中形成了由兩層HCP組成的結(jié)構(gòu)[23]。對(duì)于純金屬,可以認(rèn)為層錯(cuò)能SF是具有兩層HCP結(jié)構(gòu)原子與具有兩層HCP結(jié)構(gòu)原子的吉布斯自由能差[16],即
(2)
式中:0是阿伏伽德羅常數(shù);表示單位面積的FCC相和HCP相之間的吉布斯自由能差;指由于偏聚等原因使合金元素在層錯(cuò)區(qū)和基體區(qū)中濃度不同而引起的能量變化;為磁疇轉(zhuǎn)化對(duì)層錯(cuò)能的貢獻(xiàn)。本研究中銅合金中不存在磁疇的變化,所以其層錯(cuò)能可由式(3)表示:
(4-1)
(4-3)
(4-4)
(4-6)
(4-7)
,(4-9)
而超額熵與焓又有以下關(guān)系:
(6)
(8)
由式(9)可得,溶質(zhì)發(fā)生偏聚所引起的自由能[26]的變化為
(10)
表1 Cu及Ti和Zn元素的計(jì)算參數(shù)[24, 27]
式中:參數(shù)表示摩爾氣體常數(shù);s?M和b?M分別表示組元M在層錯(cuò)區(qū)和基體區(qū)的摩爾分?jǐn)?shù)。
2.1 自由能的計(jì)算
根據(jù)上述計(jì)算模型,應(yīng)用計(jì)算機(jī)軟件編程進(jìn)行計(jì)算,計(jì)算所用參數(shù)見表1。根據(jù)式(4)計(jì)算Cu-Ti與Cu-Zn合金在室溫(298K)下,不同溶質(zhì)含量下的自由能的變化,計(jì)算結(jié)果如圖1所示。從圖1可以看出,隨著溶質(zhì)元素含量的增加Cu-Zn 和Cu-Ti合金由置換原子組成的體系自由能逐漸減小:隨Ti含量從0增加到10%(摩爾分?jǐn)?shù)),Cu-Ti合金體系自由能從567.7 J下降到了?227.4 J;Cu-Zn合金體系自由能隨Zn含量從0增加到30%從628.9 J減小到了?269.7 J。兩種合金的體系自由能隨溶質(zhì)元素含量的變化呈線性關(guān)系,其中Cu-Ti合金體系斜率較大,Cu-Zn合金體系斜率較小。對(duì)本研究中合金體系而言,體系自由能均隨著合金元素含量增大而降低,然而隨著合金元素含量的增加,溶質(zhì)元素偏聚增大,由此引起能量變化對(duì)層錯(cuò)能的影響不能忽略。
2.2 元素偏聚引起的能量變化
圖2所示為偏聚自由能隨溶質(zhì)元素添加含量的變化趨勢(shì),從圖2上可以看出,Cu-Ti和Cu-Zn合金的偏聚自由能都是隨著溶質(zhì)含量的增加而增大的,前者由82.3 J增大到了531.4 J,后者從30.1 J上升到了518.2 J。這說明隨著溶質(zhì)元素的增加,兩種合金的偏聚自由能對(duì)層錯(cuò)能的影響逐漸加大,結(jié)合圖1的結(jié)果可以得出,隨著溶質(zhì)元素含量的加大,合金層錯(cuò)能中偏聚自由能的作用大大增加。
圖1 自由能隨溶質(zhì)含量的變化趨勢(shì)
圖2 偏聚自由能隨溶質(zhì)元素含量的變化趨勢(shì)
2.3 層錯(cuò)能
結(jié)合前面兩部分的結(jié)果,綜合考慮體系自由能和偏聚自由能對(duì)層錯(cuò)能的影響,Cu-Ti和Cu-Zn合金的層錯(cuò)能隨溶質(zhì)元素含量的變化如圖3所示。從圖3中可以看出,隨著溶質(zhì)元素含量的增加,合金的層錯(cuò)能逐漸減?。浩渲蠧u-Ti合金層錯(cuò)能隨Ti含量(0~10%)的增加從20.82 mJ/m2降到9.75 mJ/m2,Cu-Zn合金層錯(cuò)能則隨Zn含量(0~30%)的增加從21.13 mJ/m2降到7.97 mJ/m2;兩種溶質(zhì)元素的添加均使得合金的層錯(cuò)能有所減小,且添加相同含量的Ti對(duì)合金層錯(cuò)能的影響更大,這是因?yàn)榕cZn相比Ti的化合價(jià)較高,電子濃度較高。
圖4所示為文獻(xiàn)[28?29]中Cu基合金的層錯(cuò)能隨溶質(zhì)含量的變化曲線,表明Cu合金層錯(cuò)能顯著按電子濃度規(guī)則降低,P、Ge、Al等高價(jià)溶質(zhì)元素對(duì)Cu合金影響顯著,Zn影響程度中等,而Mn則影響較小。然而溶質(zhì)Ti、P和Al一樣,屬于高價(jià)溶質(zhì)元素,會(huì)導(dǎo)致銅合金金層錯(cuò)能急劇下降,這個(gè)規(guī)律與本研究的計(jì)算結(jié)果一致。表2列出了Cu及Cu-Zn合金的計(jì)算值與實(shí)驗(yàn)值的對(duì)比,本研究中計(jì)算結(jié)果與CARTER等[30]的結(jié)果相近。CARTER等采用TEM節(jié)點(diǎn)法得到Cu-10%Zn和Cu-30%Zn(摩爾分?jǐn)?shù))的SFE分別為22和7 mJ/m2,而本研究中采用熱力學(xué)方法計(jì)算得到的SFE分別為19.42和7.96 mJ/m2,結(jié)果說明本研究中計(jì)算模型的可靠性。本研究中計(jì)算結(jié)果與文獻(xiàn)[31?32]結(jié)果相差較大,文獻(xiàn)[31?32]中也是采用TEM節(jié)點(diǎn)法,與文獻(xiàn)[30]的區(qū)別在于二者所用TEM像明暗場(chǎng)不同,明暗場(chǎng)的變換就產(chǎn)生了誤差。其次依賴于實(shí)驗(yàn),實(shí)驗(yàn)條件的改變勢(shì)必會(huì)影響SFE值的準(zhǔn)確性;而本研究中所采用熱力學(xué)法在原理上與文獻(xiàn)中不同,參數(shù)的選取依賴于實(shí)驗(yàn),這必將造成兩者結(jié)果存在一定的誤差。此外,本研究計(jì)算基于理想狀態(tài)下進(jìn)行,忽略了晶格畸變和基體和層錯(cuò)區(qū)合金元素濃度不同所引起的自由能變化,這也會(huì)導(dǎo)致合金層錯(cuò)能值略小。
圖3 層錯(cuò)能隨溶質(zhì)含量的變化趨勢(shì)
圖4 Cu基合金的層錯(cuò)能隨溶質(zhì)含量的變化曲線[28]
表2 Cu及Cu-Zn合金層錯(cuò)能計(jì)算值與實(shí)驗(yàn)值對(duì)比(mJ/m2)
1) 利用層錯(cuò)能計(jì)算模型分別研究了Cu-Ti和Cu-Zn合金的層錯(cuò)能隨溶質(zhì)元素含量增加的變化,與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)照,結(jié)果表明Cu-Zn合金的計(jì)算值和實(shí)驗(yàn)值基本一致。
2) 在室溫條件下,Cu-Ti和Cu-Zn合金的層錯(cuò)能都隨溶質(zhì)元素的增加而降低,且高價(jià)溶質(zhì)元素Ti對(duì)Cu合金層錯(cuò)能的影響更大。
3) 隨溶質(zhì)元素含量的增加,溶質(zhì)元素偏聚自由能對(duì)層錯(cuò)能的影響增大。
[1] HIRTH J P, LOTHE J. Theory of dislocations[M]. New York: McGraw-Hill, 1968.
[2] YE Y X, FENG Y Y, LIAN Z C, HUA Y Q. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser[J]. Applied Surface Science, 2014, 309: 240?249.
[3] EL-DANAF E A, AL-MUTLAQ A, SOLIMAN M S. Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression[J]. Materials Science and Engineering A, 2011, 5289(25/26): 7579?7588.
[4] GONG Y L, WEN C E, LI Y C, WU X X, CHENG L P, HAN X C, ZHU X K. Simultaneously enhanced strength and ductility of Cu-Ge alloys through manipulating the stacking fault energy[J]. Materials Science and Engineering A, 2013, 569: 144?149.
[5] CAI Bao-zhuang, TAO Jing-mei, WANG Wei, YANG Xin-cheng, GONG Yu-lan, CHENG Lian-ping, ZHU Xin-kun. The effect of stacking fault energy on equilibrium grain size and tensile properties of ultra?ne-grained Cu-Al-Zn alloys processed by rolling[J]. Journal of Alloys and Compounds, 2014, 610: 224?230.
[6] PETROV Y N, YAKUBYSOV I A. Thermodynamic calculation of stacking fault energy for multicomponent alloys with FCC lattice based on iron[J]. Physics of Metals and Metallography, 1986, 62: 34?38.
[7] 張福州. 廣義層錯(cuò)能的第一性原理計(jì)算及定域性分析[D]. 重慶: 重慶大學(xué), 2008. ZHANG Fu-zhou. Generalized stacking fault energy calculated from first principles and analysis of local approximation[D]. Chongqing: Chongqing University, 2008.
[8] CHETTY N, WEINERT M. Stacking faults in magnesium[J]. Physical Review B, 1997, 56(17): 10844.
[9] 馮 端, 王業(yè)寧. 金屬物理[M],北京: 科學(xué)出版社, 1964. FENG Duan, WANG Ye-ning. Metal physics[M]. Beijing: Science Press, 1964.
[10] 何 剛, 趙恒北, 戎詠華, 敦正洪, 陳世樸, 徐祖耀. 層錯(cuò)幾率峰位移測(cè)定法及在Fe-Mn-Si合金中的應(yīng)用[J]. 上海交通大學(xué)學(xué)報(bào), 1999, 33(7): 765?768. HE Gang, ZHAO Heng-bei, RONG Yong-hua, DONG Zheng-hong, CHEN Shi-pu, XU Zhu-yao. Peak shift method on stacking fault probability determination and its application on Fe-Mn-Si alloys[J]. Journal of Shanghai Jiaotong University, 1999, 33(7): 765?768.
[11] ABBASI A, DICK A, HICKEL T, NEUGEBAUER J. First-principles investigation of the effect of carbon on the stacking fault energy of Fe-C alloys[J]. Acta Materialia, 2011, 59(8): 3041?3048.
[12] WEN Yu-feng, SUN Jian, HUANG Jian. First-principles study of stacking fault energies in Ni3Al intermetallic alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 661?664.
[13] HENDRICKSON A A. Solute segregation to stacking faults[J]. Acta Metallurgica, 1962, 10(9): 900?907.
[14] DORN J E. Thermodynamics of stackine faults in binary alloys[J]. Acta Metallurgica, 1963, 11(3): 218?230.
[15] MIODOWNIK A P. The calculation of stacking fault energies in Fe-Ni-Cr alloys[J]. Calphad, 1978, 2(3): 207?226.
[16] 萬見峰, 陳世樸, 徐祖耀. Fe-30Mn-6Si-N形狀記憶合金層錯(cuò)能的熱力學(xué)計(jì)算[J]. 金屬學(xué)報(bào), 2000, 36(7): 679?684. WAN Jian-feng, CHEN Shi-pu, XU Zu-yao. Thermodynamical calculation of the stacking fault energy in Fe-30Mn-6Si-N shape memory alloys[J]. Acta Metallurgica Sinica, 2000, 36(7): 679?684.
[17] ERICSSON T. On the suzuki effect and spinodal decomposition[J]. Acta Metallurgica, 1966, 14(9): 1073?1084.
[18] 于興福, 田素貴, 杜洪強(qiáng), 王明罡, 孟凡來. 元素W,Co對(duì)Ni-Al合金層錯(cuò)能的影響[J]. 稀有金屬材料與工程, 2007, 36(12): 2148?2151. YU Xing-fu, TIAN Su-gui, DU Hong-qiang, WANG Ming-gang, MENG Fan-lai. Influence of elements W, Co on the stacking fault energy of Ni-Al alloys[J]. Rare Metal Materials and Engineering, 2007, 36(12): 2148?2151.
[19] 馮中學(xué), 張喜燕, 潘復(fù)生. 溶質(zhì)元素及其偏聚對(duì)六方系金屬層錯(cuò)能的影響[J]. 稀有金屬材料與工程, 2012, 41(10): 1765?1769. FENG Zhong-xue, ZHANG Xi-yan, PAN Fu-sheng. Influence of solute and solute segregation on the stacking fault energy in HCP metals[J]. Rare Metal Materials and Engineering, 2012, 41(10): 1765?1769.
[20] 王翠萍, 劉興軍, 馬云慶, 大沼郁雄, 貝沼亮介, 石田清仁. Cu-Ni-Sn三元系相平衡的熱力學(xué)計(jì)算[J]. 中國(guó)有色金屬學(xué)報(bào), 2005, 15(11): 1848?1853. WANG Cui-ping, LIU Xing-jun, MA Yun-qing, OHNUMA I, KAINUMA R, ISHIDA K. Thermodynamic calculation of phase equilibria in Cu-Ni-Sn ternary system[J]. The Chinese Journal of Nonferrous Metals, 2005, 15 (11): 1848?1853.
[21] 劉興軍, 王翠萍, 甘世溪, 大沼郁雄, 貝沼亮介, 石田清仁. 高性能銅合金熱力學(xué)數(shù)據(jù)庫的開發(fā)及其在材料設(shè)計(jì)中的應(yīng)用[J]. 中國(guó)有色金屬學(xué)報(bào), 2011, 21(10): 2511?2522. LIU Xing-jun, WANG Cui-ping, GAN Shi-xi, OHNUMA I, KAINUMA R, ISHIDA K. Development of thermodynamic database for copper base alloy systems and its application in material design[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2511?2522.
[22] 慕思國(guó), 湯玉瓊, 郭富安, 唐謨堂, 彭長(zhǎng)宏. Cu-Cr-Zr系合金非真空熔煉過程的熱力學(xué)分析[J]. 中國(guó)有色金屬學(xué)報(bào), 2007, 17(8): 1330?1335. MU Si-guo, TANG Yu-qiong, GUO Fuan, TANG Mo-tang, PENG Chang-hong. Thermodynamic analysis for non-vacuum melting of Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(8): 1330?1335.
[23] 于興福, 田素貴. 楊景紅. W、Co對(duì)Ni合金層錯(cuò)能影響的熱力學(xué)計(jì)算[J]. 材料與冶金學(xué)報(bào), 2004, 3(4): 294?297. YU Xing-fu, TIAN Su-gui, YANG Jing-hong. Thermodynamic calculation on the influence of W and Co on the stacking fault energy of Ni alloys[J]. Journal of Materials and Metallurgy, 2004, 3(4): 294?297.
[24] MIEDEMA A R, CHATEL P F, BOER F R. Chemical bonding and fermi level pinning at metal-semiconductor interfaces[J]. Physica, 1980, 100: 1?15.
[25] YAKUBTSOV I A, ARIAPOUR A, PEROVIC D D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys[J]. Acta Materialia, 1999, 47(4): 1271?1279.
[26] ISHIDA K. Calculation of lattice defect images for scanning electron microscopy[J]. Direct Physica Status Solidi A(Applied Research), 1976, 36(2): 717?728.
[27] DINSDAL A T. Sgte data for pure elements[J]. CALPHAD, 1991, 15(4): 317?435.
[28] ENGLER O. Deformation and texture of copper-manganese alloys[J]. Acta Materialia, 2000, 48: 4827?4840.
[29] GALLADHER P C J. The influence of alloying, temperature and related effects on the stacking fault energy[J]. Metallurgical Transaction, 1970, 1: 2429?2462.
[30] CARTER C B, RAY I L F. On the stacking-fault energies of copper alloys[J]. Philosophical Magazine, 1977, 35: 189?200.
[31] LORETTO M H, CLAREBROUGH L M, SEGALL R L. Stacking-fault tetrahedra in deformed face-centred cubic metals[J]. Philosophical Magazine, 1965, 11: 459?465.
[32] HOWIE A, SWANN P R. Direct measurements of stacking-fault energies from observations of dislocation nodes[J]. Philosophical Magazine, 1961, 6: 1215?1226.
[33] 楊 鵬. 層錯(cuò)能對(duì)超細(xì)晶銅和銅鋅合金力學(xué)性能和微觀結(jié)構(gòu)的影響[D]. 昆明: 昆明理工大學(xué), 2010. YANG Peng. Effect of stacking-fault energy on the mechanical properties and microstructure of ultrafine-grain Cu and Cu-Zn alloys[D]. Kunming: Kunming University of Technology, 2010.
[34] MA X L, ZHOU H, NARAYAN J, ZHU Y T. Stacking-fault energy effect on zero-strain deformation twinning in nanocrystalline Cu-Zn alloys[J]. Scripta Materialia, 2015, 109: 89?93.
(編輯 王 超)
Thermodynamic calculation of stacking fault energy of copper alloy
HOU Li-min1, HOU Li-feng1, WEI Huan1, WEI Ying-hui1, 2
(1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. Shanxi Institute of Technology, Yangquan 045000, China)
Stacking fault energy (SFE) is an intrinsic parameter of metallic material, which has a significant impact on the plastic deformation mechanism and mechanical property. Especially for severe plastic deformation, the SFE can change the deformation and grain refinement mechanism of metal. There are many measurements or methods for calculating the value of SFE. Thermodynamic method, as one of the widely adopted way, can visually detect the effect of the temperature and alloying elements on the SFE. The thermodynamic method was used to estimate the SFE value of Cu, Cu-Ti and Cu-Zn alloys. The results show that at room temperature, the SFE values of Cu-Ti and Cu-Zn alloys decrease with the concentration of alloying elements increasing. When the same solute element content of two kinds of alloys is added, the solute Ti has more influence on the stacking fault energy of alloy. The segregation free energy for Cu-Zn and Cu-Ti alloy would be raised with the increasing of solute elements.
Cu alloy; stacking fault energy; thermodynamic
Project(51374151) supported by the National Natural Science Foundation of China
2015-10-12; Accepted date: 2016-01-28
HOU Li-feng; Tel: +86-3516018685; E-mail: houlifeng78@126.com
1004-0609(2016)-11-2363-06
TG430.4020
A
國(guó)家自然科學(xué)基金資助項(xiàng)目(51374151)
2015-10-12;
2016-01-28
侯利鋒,博士,副教授;電話:0351-6018685,E-mail:houlifeng78@126.com