亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

        2016-10-13 08:12:21LIUXiusheng
        數(shù)學(xué)雜志 2016年5期
        關(guān)鍵詞:同態(tài)黃石詞數(shù)

        LIU Xiu-sheng

        (School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

        A NOTE ON CYCLIC CODES OVER Fpm+uFpm+u2Fpm

        LIU Xiu-sheng

        (School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China)

        In this paper,we study cyclic codes of length psover the ring Fpm+uFpm+u2Fpm. By establishing the homomorphism from ring Fpm+uFpm+u2Fpmto ring Fpm+uFpm,we give the new classify method for cyclic codes of length psover the ring Fpm+uFpm+u2Fpm.Using the method of the classify,we obtain the number of codewords in each of cyclic codes of length psover ring Fpm+uFpm+u2Fpm.

        local ring;cyclic codes;repeated-root codes;the number of codewords

        2010 MR Subject Classification:94B05;94B15

        Document code:AArticle ID:0255-7797(2016)05-0981-06

        1 Introduction

        Let Fpmbe a finite field with pmelements,where p is a prime and m is an integer number. Let R be the commutative ring Fpm+uFpm+u2Fpm={a+bu+cu2|a,b,c∈Fpm}with u3=0.The ring R is a chain ring,which has a unique maximal ideal〈u〉={au|a∈Fpm}(see[3]).A code of length n over R is a nonempty subset of Rn,and a code is linear over R if it is an R-submodule of Rn.Let C be a code of length n over R and P(C)be its polynomial representation,i.e.,

        The notions of cyclic shift and cyclic codes are standard for codes over R.Briefly,for the ring R,a cyclic shift on Rnis a permutation T such that

        A linear code over ring R of length n is cyclic if it is invariant under cyclic shift.It is known that a linear code over ring R is cyclic if and only if P(C)is an ideal of[5]).

        The following two theorems can be found in[1].

        Theorem 1.1

        Type 1〈0〉,〈1〉.

        Type 2 I=〈u(x-1)i〉,where 0≤i≤ps-1.

        Type 4 I=〈(x-1)i+(x-1)j,u(x-1)w〉,where 1≤i≤ps-1,c1j∈Fpm,w<l and w<T,where T is the smallest integer such that u(x-1)T∈〈(x-1)i+(x-1)j〉;or equivalently,〈(x-1)i+u(x-1)th(x),u(x-1)w〉,with h(x)as in Type 3,and deg(h)≤w-t-1.

        Theorem 1.2 Let C be a cyclic code of length psover Fpm+uFpm,as classified in Theorem 1.1.Then the number of codewords nCof C is determined as follows.

        If C=〈0〉,then nC=1.

        If C=〈1〉,then nC=p2mps.

        If C=〈u(x-1)i〉,where 0≤i≤ps-1,then nC=pm(ps-i).

        If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

        If C=〈(x-1)i+u(x-1)th(x)〉,where 1≤i≤ps-1,0≤t<i,and h(x)is a unit,then

        If C=〈(x-1)i+u(x-1)th(x),u(x-1)κ〉,where 1≤i≤ps-1,0≤t<i,either h(x)is 0 or h(x)is a unit,and

        then nC=pm(2ps-i-κ).

        Recently,Liu and Xu[3]studied constacyclic codes of length psover R.In particular,they classified all cyclic codes of length psover R.But they did not give the number of codewords in each of cyclic codes of length psover R.In this note,we study repeatedroot cyclic codes over R by using the different method from[2],and obtain the number of codewords in each of cyclic codes of length psover R.

        2 Cyclic Codes of Length psover R

        Cyclic codes of length psover R are ideals of the residue ring R1= to prove the ring R1is a local ring with the maximal ideal〈u,x-1〉,but it is not a chain ring.

        We can list all cyclic codes of length psover R1as follows.

        Type 1〈0〉,〈1〉.

        Type 2I=〈u2(x-1)k〉,where 0≤k≤ps-1.

        Type 5I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x),h2(x)are similar to h(x)in Type 3.

        Type 6I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x),h2(x)are similar to h(x)in Type 3,η<i,and η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉.

        Type 8I=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u(x-1)q+u2e2j(x-1)j,u2(x-1)σ〉,where 1≤i≤ps-1,σ<q≤i,0≤t≤i,0≤z≤i,q<T≤i,T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,and σ is the smallest integer such that u2(x-1)σ∈〈u(x-1)q+u2e2j(x-1)j〉,and h1(x),h2(x)are similar to h(x)in Type 3.

        Proof Ideals of Type 1 are the trivial ideals.Consider an arbitrary nontrivial ideal of R1.

        Start with the homomorphism φ:Fpm+uFpm+u2Fpm→Fpm+uFpmwith φ(a+ub+ u2c)=a+ub.This homomorphism then can be extended to a homomorphism of rings of polynomials

        by letting φ(c0+c1x+···+cps-1xps-1)=φ(c0)+φ(c1)x+···+φ(cps-1)xps-1.Note that Kerφ=.

        Now,let us assume that I is a nontrivial ideal of R1.Then φ(I)is an ideal of.But ideals ofare characterized.So we can make use of these results.

        On the other hand,Kerφ is also an ideal of.We can consider it to be u2times a ideal of.This means that we can again use the results in the aforementionedpapers.By using the characterization in[2],we have

        For φ(I),by using the characterization in[1],we shall discuss φ(I)by carrying out the following cases.

        Case 1 φ(I)=0.Then I=〈u2(x-1)k〉,where 0≤k≤ps-1.

        Case 2 φ(I)/=0.We now have seven subcases.

        Case 2a φ(I)=〈u(x-1)l〉,where 0≤l≤ps-1.

        If Kerφ/=0,then Kerφ=〈u2(x-1)w〉,where 0≤w≤ps-1.Hence

        If Kerφ/=0,then

        or

        where 1≤i≤ps-1,c1j,c2j∈Fpm,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x),h2(x)are similar to h(x)in Type 3.

        Case 2c φ(I)=〈(x-1)i+u(x-1)th1(x),u(x-1)q〉,where 1≤i≤ps-1,0≤t≤i,q<T,and T is the smallest integer such that u(x-1)T∈〈(x-1)i+u(x-1)th1(x)〉,h1(x)is similar to h(x)in Type 3.

        Theorem 2.2 Let C be a cyclic code of length psover R,as classified in Theorem 2.1. Then the number of codewords nCof C is determined as follows.

        If C=〈0〉,then nC=1.

        If C=〈1〉,then nC=p3mps.

        If C=〈u2(x-1)k〉,where 0≤k≤ps-1,then nC=pm(ps-k).

        If C=〈(x-1)i〉,where 1≤i≤ps-1,then nC=p2m(ps-i).

        If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,where 1≤i≤ps-1,0≤t<i,0≤z<i and h1(x)is a unit,then

        If C=〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x),u2(x-1)η〉,where 1≤i≤ps-1,0≤t<i,0≤z<i,h1(x)is a unit,η<i,η is the smallest integer such that u2(x-1)η∈〈(x-1)i+u(x-1)th1(x)+u2(x-1)zh2(x)〉,and h1(x)is a unit,then

        then nC=pm(2ps-i-q).

        then nC=p3mps-m(i+q+σ).

        References

        [1]Dinh H Q.Constacyclic codes of length psover Fpm+uFpm[J].J.Alg.,2010,324:940-950.

        [2]Dinh H Q.On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions[J].Finite Field Appl.,2008,14:22-40.

        [3]Liu X S,Xu X.Some classes of repeated-root constacyclic codes over Fpm+uFpm+u2Fpm[J].J. Korean Math.Soc.,2014,51(4):853-866.

        [5]Hammous A,Kumar P V,Calderbark A R,Sloame J A,Sol′e P.The Z4-linearity of Kordock,Preparata,Goethals,and releted codes[J].IEEE Trans.Inform.The.,1994,40:301-319.

        [5]Huffman W C,Pless V.Fundamentals of error-correcting codes[M].Cambridge:Cambridge Univ. Press,2003.

        關(guān)于環(huán)Fpm+uFpm+u2Fpm上循環(huán)碼的注記

        劉修生
        (湖北理工學(xué)院數(shù)理學(xué)院,湖北黃石435003)

        本文研究了環(huán)Fpm+uFpm+u2Fpm上長度為ps的循環(huán)碼分類.通過建立環(huán)Fpm+uFpm+ u2Fpm到環(huán)Fpm+uFpm的同態(tài),給出了環(huán)Fpm+uFpm+u2Fpm上長度為ps的循環(huán)碼的新分類方法.應(yīng)用這種方法,得到了環(huán)Fpm+uFpm+u2Fpm長度為ps的循環(huán)碼的碼詞數(shù).

        局部環(huán);循環(huán)碼;重根循環(huán)碼;碼詞數(shù)

        MR(2010)主題分類號:94B05;94B15O157.4

        date:2015-11-16Accepted date:2016-03-04

        Supported by Scientific Research Foundation of Hubei Provincial Education Department of China(D20144401;B2015096)and the National Science Foundation of Hubei Polytechnic University of China(12xjz14A).

        Biography:Liu Xiusheng(1960-),male,born at Daye,Hubei,professor,major in groups and algebraic coding,multiple linear algebra.

        猜你喜歡
        同態(tài)黃石詞數(shù)
        Adult bees teach their babies how to dance
        騎行吧,Liam!
        黃石國家公園慶祝150年蠻荒歲月——這是怎樣的歷史
        英語文摘(2022年5期)2022-06-05 07:46:42
        奮力創(chuàng)造建設(shè)現(xiàn)代化新黃石的嶄新業(yè)績
        黨員生活(2022年2期)2022-04-24 13:52:19
        黃石俱樂部度假別墅
        關(guān)于半模同態(tài)的分解*
        拉回和推出的若干注記
        黃石高速公路改造項(xiàng)目中互聯(lián)網(wǎng)+工程建設(shè)管理系統(tǒng)的應(yīng)用
        一種基于LWE的同態(tài)加密方案
        HES:一種更小公鑰的同態(tài)加密算法
        美女脱掉内裤扒开下面让人插| 欧美深夜福利网站在线观看| 久久久久人妻精品一区5555| 国产三级av在线精品| 无码av天天av天天爽| 国精品无码一区二区三区在线| 精品亚洲午夜久久久久| 亚洲中文字幕亚洲中文| 久久国产精品亚洲婷婷片| 精品无码久久久久成人漫画| 国产熟女亚洲精品麻豆| 亚洲中文字幕乱码免费看| 大地资源网在线观看免费官网| 欧美日韩一区二区综合| ZZIJZZIJ亚洲日本少妇| 日本高清成人一区二区三区| 蜜桃视频一区二区在线观看| 亚洲色欲色欲www在线播放| 国产真实乱对白在线观看| 日韩av一区二区不卡在线| 日本熟妇色xxxxx日本妇| 色妺妺视频网| 国产麻豆剧传媒精品国产av蜜桃| 亚洲av综合av一区| 亚洲国产成人无码av在线影院| 国产精品短视频| 一区二区三区精品亚洲视频| 国产精品美女久久久网av| 亚洲国产精品sss在线观看av| 免费va国产高清不卡大片 | 亚洲丁香五月激情综合| 少妇高潮精品正在线播放| 三年片在线观看免费观看大全中国| 狠狠色噜噜狠狠狠狠888奇禾| 亚洲第一区二区快射影院| 亚洲免费一区二区三区四区| 国产女人水真多18毛片18精品| 国产精品无码片在线观看| 亚洲av毛片在线播放| 潮喷大喷水系列无码久久精品| 在线播放人成午夜免费视频|