亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

        2016-10-13 08:12:18WANGQiWANGXiaomingCHENXuesong
        數(shù)學(xué)雜志 2016年5期
        關(guān)鍵詞:方法

        WANG Qi,WANG Xiao-ming,CHEN Xue-song

        (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

        NUMERICAL STABILITY ANALYSIS FOR EQUATION x')t)=ax)t)+bx)3[)t+1)/3])

        WANG Qi,WANG Xiao-ming,CHEN Xue-song

        (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

        2010 MR Subject Classification:65L07;65L20

        Document code:AArticle ID:0255-7797(2016)05-0955-08

        1 Introduction

        We are interested in the numerical stability of the Euler-Maclaurin method for the following differential equation with piecewise constant arguments(EPCA):

        where t>0,a/=0,b and x0are real constants and[·]denotes the greatest integer function.

        EPCA belongs to one special kind of delay differential equations[1-3].They described hybrid dynamical systems and combine properties of both differential and difference equations.So EPCA had many applications in science and engineering.In the past twenty years,many researchers investigated the properties of the exact solution of EPCA(see[4-6]and the references therein).In particularly,stability of solutions of EPCA received much attention(see[7-9]and the extensive bibliography therein).For more information on this type of equations,the interested readers can refer Wiener's book[10].Recently,special interest was shown to the properties of numerical solution of EPCA,such as stability[11,12],dissipativity[13]and oscillation[14].In this paper,we will study the stability of the numericalsolution in the Euler-Maclaurin method for(1.1).Whether the numerical method preserves stability of the exact solution is considered.Two numerical examples for demonstrating the theoretical results are also provided.

        The following results give the definition and stability of exact solution for(1.1).

        Definition 1.1(see[10])A solution of(1.1)on[0,∞)is a function x(t)which satisfies the conditions

        (i)x(t)is continuous on[0,∞);

        (ii)the derivative x'(t)exists at each point t∈[0,∞),with the possible exception of the points t=3n-1 for n∈N,where one-sided derivatives exist;

        (iii)(1.1)is satisfied on each interval[3n-1,3n+2)for n∈N.

        Theorem 1.2(see[10])Assume that a,b and x0∈R,then(1.1)has on[0,∞)a unique solution x(t)given by

        where

        Theorem 1.3(see[10])The solution x(t)=0 of(1.1)is asymptotically stable(x(t)→0 as t→∞)if and only if any one of the following conditions is satisfied

        whereˉa is the nonzero solution of equation φ(x)=e3x-2ex+1=0.

        2 Stability of Numerical Solution

        2.1 The Euler-Maclaurin Method

        Let h be a given stepsize,m≥1 be a given integer and satisfies h=1/m.The gridpoints tibe defined by ti=ih(i=0,1,2,···).Applying the Euler-Maclaurin formula to(1.1),we have

        which is equivalent to

        where

        Thus

        Similar to Theorem 2.2 in[14],we have the following result for convergence.

        Theorem 2.1For any given n∈N,the Euler-Maclaurin method is of order 2n+2. 2.2 Stability Analysis

        Definition 2.2 The Euler-Maclaurin method is called asymptotically stable at(a,b)if there exists a constant M0such that xndefined by(2.3)tends to zero as n→∞for all h=1/m and any given x0.

        Lemma 2.3(see[15])If|z|<1,then Φ(z)≥1/2 for z>0 and Φ(z)≥1 for z<0.

        Lemma 2.4(see[15])If|z|<1,then

        for n is even and

        for n is odd.

        Theorem 2.5The Euler-Maclaurin method is asymptotically stable if any one of the following conditions is satisfied

        ProofLet

        and

        so we need to verify

        Then(2.6)is equivalent to

        Then(2.6)is equivalent to

        The proof is completed.

        The following two lemmas are given naturally.

        Lemma 2.6 Let f(r)=r3-2r+1,r>0,then

        (a)the function f(r)has a minimum at r1=,and f(r)is decreasing in[0,r1) and increasing in[r1,+∞);

        (b)the function f(r)has a unique solution 1>r0/=1;

        (c)f(r)<0 if r∈[r0,1)and f(r)>0 if r∈[0,r0)or r∈[1,+∞).

        Lemma 2.7 Let

        then

        (a)the function g(ω)has extremum at ω1=

        (b)g(ω)is increasing in(0,r0)and(r0,ω1);

        (c)g(ω)is decreasing in(ω1,1)and(1,+∞).

        By Lemmas 2.6 and 2.7,we obtain

        Corollary 2.8 Assume that r0/=1 is a unique solution of the function f(r)=r3-2r+1,then r0<ω1<r1<1.

        So we have the following result.

        Theorem 2.9Assume that(1.1)is asymptotically stable,then the Euler-Maclaurin method is asymptotically stable if one of the following conditions is satisfied

        (a)R(z)m≤ea(a≤lnω1);

        (b)R(z)m≥ea(lnω1<a<0);

        (c)R(z)m≤ea(a≥0).

        ProofIn view of Theorems 1.2 and 2.5,we will prove that condition(2.5)is satisfied under condition(1.2).

        If(a)holds,then we know from Lemmas 2.3 and 2.4 that f(r)is decreasing and g(ω)is increasing.Henceˉa<a0and

        From Lemmas 2.3,2.4 and Theorem 2.9,we have the following main result in this paper.

        Theorem 2.10The Euler-Maclaurin method preserves the stability of(1.1)if one of the following conditions is satisfied

        (a)n is odd if ea>ω1,

        (b)n is even if ea≤ω1.

        3 Numerical Experiments

        Consider the following two problems

        and

        In Figures 1 and 2,we plot the exact solution and the numerical solution for(3.1),respectively.Moreover,for(3.2),we also plot the exact solution and the numerical solution in Figures 3 and 4,respectively.We can see from these figures that the Euler-Maclaurin method preserves the stability of(3.1)and(3.2),which is coincide with Theorem 2.10.

        AcknowledgementsThe authors would like to thank the anonymous reviewers for their careful reading.Many thanks to Professors Mingzhu Liu,Minghui Song and Zhanwen Yang for their great help and valuable suggestions.

        Figure 1:the exact solution of(3.1)

        Figure 2:the numerical solution of(3.1)with n=3 and m=50

        Figure 3:the exact solution of(3.2)

        Figure 4:the numerical solution of(3.2)with n=2 and m=40

        References

        [1]Cheng Shengmin,Zhou Shaobo.Convergence and stability of numerical methods for stochastic differential delay equation[J].J.Math.,2014,34(6):1073-1084.

        [2]Wang Xiao,Cui Cheng,Xiao Li,et al.Existence and uniqueness of solutions for differential equations with time delay and impulsive differential equations with time delay[J].J.Math.,2013,33(4):683-688.

        [3]Ashyralyev A,Agirseven D.On convergence of difference schemes for delay parabolic equations[J]. Comput.Math.Appl.,2013,66(7):1232-1244.

        [4]Cooke K L,Wiener J.Retarded differential equations with piecewise constant delays[J].J.Math. Anal.Appl.,1984,99(1):265-297.

        [5]Wiener J,Aftabizadeh A R.Differential equations alternately of retarded and advanced type[J].J. Math.Anal.Appl.,1988,129(1):243-255.

        [6]Liang Haihua,Wang Genqiang.Oscillation criteria of certain third-order differential equation with piecewise constant argument[J].J.Appl.Math.,2012,2012:1-18.

        [7]Alwan M S,Liu Xinzhi,Xie Weichau.Comparison principle and stability of differential equations with piecewise constant arguments[J].J.Franklin I.,2013,350(2):211-230.

        [8]Akhmet M U.Stability of differential equations with piecewise constant arguments of generalized type[J].Nonl.Anal.,2008,68(4):794-803.

        [9]Li Huaixing,Muroya Y,Nakata Y,et al.Global stability of nonautonomous logistic equations with a piecewise constant delay[J].Nonl.Anal.,RWA,2010,11(3):2115-2126.

        [10]Wiener J.Generalized solutions of functional differential equations[M].Singapore:World Scientific,1993.

        [11]Song Minghui,Yang Zhanwen,Liu Mingzhu.Stability of θ-methods for advanced differential equations with piecewise continuous arguments[J].Comput.Math.Appl.,2005,49(9-10):1295-1301.

        [12]Liang Hui,Liu Mingzhu,Yang Zhanwen.Stability analysis of Runge-Kutta methods for systems u'(t)=Lu(t)+Mu([t])[J].Appl.Math.Comput.,2014,228(1):463-476.

        [13]Wang Wansheng,Li Shoufu.Dissipativity of Runge-Kutta methods for neutral delay differential equations with piecewise constant delay[J].Appl.Math.Lett.,2008,21(9):983-991.

        [14]Liu Mingzhu,Gao Jianfang,Yang Zhanwen.Preservation of oscillations of the Runge-Kutta method for equation x'(t)+ax([t])+a1x([t-1])=0[J].Comput.Math.Appl.,2009,58(6):1113-1125.

        [15]L¨u Wanjin,Yang Zhanwen,Liu Mingzhu.Stability of the Euler-Maclaurin methods for neutral differential equations with piecewise continuous arguments[J].Appl.Math.Comput.,2007,186(2):1480-1487.

        In this paper,we investigate the numerical stability of Euler-Maclaurin method for differential equation with piecewise constant arguments x'(t)=ax(t)+bx(3[(t+1)/3]).By the method of characteristic analysis,the sufficient conditions of stability for the numerical solution are obtained.Moreover,we show that the Euler-Maclaurin method preserves the stability of the exact solution.Finally,some numerical examples are given.

        Euler-Maclaurin method;piecewise constant arguments;stability;numerical solution

        方程x')t)=ax)t)+bx)3[)t+1)/3])的數(shù)值穩(wěn)定性分析

        王琦,汪小明,陳學(xué)松
        (廣東工業(yè)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院,廣東廣州510006)

        date:2014-08-30Accepted date:2015-03-16

        Supported by National Natural Science Foundation of China(11201084);China Postdoctoral Science Foundation(2013M531842)and Science and Technology Program of Guangzhou (2014KP000039).

        本文研究了分段連續(xù)型微分方程x'(t)=ax(t)+bx(3[(t+1)/3])Euler-Maclaurin方法的數(shù)值穩(wěn)定性問題.利用特征分析的方法,獲得了數(shù)值解穩(wěn)定的充分條件,進(jìn)而證明了Euler-Maclaurin方法保持了精確解的穩(wěn)定性.最后給出了一些數(shù)值例子.

        Euler-Maclaurin方法;分段連續(xù)項(xiàng);穩(wěn)定性;數(shù)值解

        MR(2010)主題分類號(hào):65L07;65L20O241.81

        Biography:Wang Qi(1978-),male,born at Yichun,Heilongjiang,associate professor,major in numerical computation of differential equation.

        猜你喜歡
        方法
        中醫(yī)特有的急救方法
        中老年保健(2021年9期)2021-08-24 03:52:04
        高中數(shù)學(xué)教學(xué)改革的方法
        化學(xué)反應(yīng)多變幻 “虛擬”方法幫大忙
        變快的方法
        兒童繪本(2020年5期)2020-04-07 17:46:30
        學(xué)習(xí)方法
        可能是方法不對(duì)
        用對(duì)方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        最有效的簡單方法
        山東青年(2016年1期)2016-02-28 14:25:23
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        亚洲av噜噜狠狠蜜桃| 99久久人人爽亚洲精品美女 | 偷拍一区二区三区四区| 特黄做受又粗又长又大又硬| 少妇激情av一区二区| 97色综合| 国产人妖伦理视频在线观看| 亚洲熟女综合色一区二区三区| 手机在线看永久av片免费| 91久久国产综合精品| 国产黄色一区二区三区,| 国产亚洲精品久久久久久国模美| 国产精品天天在线午夜更新| 中文字幕日产人妻久久| 国产一区二区三区四区在线视频 | 久久久精品国产sm调教网站| 中文文精品字幕一区二区| 女同国产日韩精品在线| 国产精品美女久久久网站三级| 毛片a级毛片免费观看| 亚洲成av人片天堂网九九| 亚洲国产一区二区精品| 久久久99精品成人片| 精品国内自产拍在线观看| 偷拍区亚洲区一区二区| 久久精品国产亚洲av一般男女| 巨大巨粗巨长 黑人长吊| 久青草国产视频| 美女草逼视频免费播放| 无码av天天av天天爽| 国产超碰人人做人人爱ⅴa| 成人国产精品免费网站| 亚洲av高清一区二区在线观看 | 日本一级二级三级在线| 少妇真人直播免费视频| 2019最新国产不卡a| 巨臀精品无码AV在线播放| 蜜桃视频在线观看网址| 真人新婚之夜破苞第一次视频| 思思99热| 亚洲av熟女传媒国产一区二区|