宋培煜,馬 強(qiáng),龐歡欣,李玉輝,何 峰,2,謝峻林,2
(1.武漢理工大學(xué)材料科學(xué)與工程學(xué)院,武漢 430070;2.武漢理工大學(xué)硅酸鹽建筑材料國家重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
?
第一步離子交換時(shí)間對(duì)化學(xué)鋼化玻璃的性能影響
宋培煜1,馬強(qiáng)1,龐歡欣1,李玉輝1,何峰1,2,謝峻林1,2
(1.武漢理工大學(xué)材料科學(xué)與工程學(xué)院,武漢430070;2.武漢理工大學(xué)硅酸鹽建筑材料國家重點(diǎn)實(shí)驗(yàn)室,武漢430070)
本文主要研究化學(xué)鋼化玻璃中第一步離子交換的時(shí)間對(duì)化學(xué)鋼化玻璃的性能影響。制備出不同的離子交換時(shí)間的化學(xué)鋼化玻璃。分析第一步交換時(shí)間對(duì)鋼化玻璃的彎曲強(qiáng)度、Weibull模數(shù)、表面應(yīng)力大小、深度以及K+離子擴(kuò)散所產(chǎn)生的影響。結(jié)果表明:隨著第一步離子交換時(shí)間的延長,彎曲強(qiáng)度逐漸降低,Weibull先升高后降低,在40h時(shí)達(dá)到最高值;表面應(yīng)力大小會(huì)隨著時(shí)間的延長而降低,應(yīng)力深度會(huì)增加;K+離子擴(kuò)散曲線符合菲克第二定律的擬合曲線。擴(kuò)散深度隨著時(shí)間增加而增加,并且會(huì)在玻璃內(nèi)部產(chǎn)生富集峰。
化學(xué)鋼化; 離子交換時(shí)間; 韋伯模數(shù); 表面應(yīng)力; 離子擴(kuò)散
通過離子交換法所制備的化學(xué)鋼化玻璃其實(shí)是一種預(yù)應(yīng)力玻璃,為提高玻璃的強(qiáng)度,在玻璃表面形成壓應(yīng)力,玻璃承受外力時(shí)首先抵消表層應(yīng)力,從而提高了承載能力,增強(qiáng)玻璃自身抗風(fēng)壓性,寒暑性,沖擊性等。玻璃透光性良好,可廣泛用于汽車、手機(jī)、航天航空等領(lǐng)域[1]。但由于其脆性表現(xiàn)以及表面微裂紋的存在,使得玻璃的實(shí)際強(qiáng)度會(huì)比理論強(qiáng)度低2~3個(gè)數(shù)量級(jí)[2]。目前,有關(guān)提高玻璃強(qiáng)度的方法較多[3-6],而離子交換法是一種簡單的玻璃表面處理方法[7,8],其原理是把玻璃浸入熔鹽中,玻璃中的Na+(或Li+)與熔鹽中的K+、Cs+發(fā)生交換,玻璃表面產(chǎn)生壓應(yīng)力,抑制微裂紋擴(kuò)展,可提高玻璃強(qiáng)度。為此,通過離子交換而獲得的工程應(yīng)力分布玻璃(Engineered stress profile glass,簡稱ESP玻璃)便為工藝生產(chǎn)帶來了極大的便捷[9,10]。ESP玻璃能夠通過在玻璃表面施加壓應(yīng)力從而提高裂紋擴(kuò)展的阻力,這種現(xiàn)象稱為“R曲線行為”[11-14]?!癛曲線”斜率的提高可以提高Weibull模數(shù)的數(shù)值,即提高材料斷裂集中性,材料的可靠程度更高[15,16]。
不同組分玻璃的適宜的交換時(shí)間和交換溫度是不同的,對(duì)一種玻璃的低溫兩步離子交換法工藝進(jìn)行研究須先從其單步離子交換過程的研究入手。本文的目的在于研究玻璃獲取較大K+擴(kuò)散深度、應(yīng)力層厚度以及較高表面壓應(yīng)力的工藝參數(shù),確定一個(gè)比較適宜的時(shí)間在獲得足夠深的K+深度的同時(shí),獲取比較高的彎曲強(qiáng)度和高的Weibull模數(shù),可為今后的兩步離子交換化學(xué)鋼化工藝研究打下基礎(chǔ)。
本文主要針對(duì)二步法離子交換中的第一步的交換工藝及離子交換時(shí)間對(duì)離子交換深度、玻璃性能的影響進(jìn)行探究。
實(shí)驗(yàn)所采用的鈉鋁硅系統(tǒng)玻璃為康寧2318號(hào)玻璃。玻璃成分如表1所示。
表1 康寧玻璃成分
根據(jù)鈉鋁硅玻璃的熱膨脹曲線確定轉(zhuǎn)變溫度為623 ℃,依據(jù)離子交換溫度比Tg低 100 ℃以上的原則,確定試驗(yàn)溫度??紤]到溫度和強(qiáng)度的關(guān)系以及500 ℃左右KNO3的揮發(fā)、分解對(duì)玻璃表面產(chǎn)生的侵蝕,實(shí)驗(yàn)溫度范圍應(yīng)為420~480 ℃之間,確定離子交換溫度為450 ℃,時(shí)間分別為12 h,16 h,24 h,40 h,48 h。交換介質(zhì)是質(zhì)量比為97∶1∶1∶1的KNO3、KOH、K2CO3及硅藻土的混合熔融鹽。由INSTRON1341電液伺服材料試驗(yàn)機(jī)進(jìn)行有關(guān)力學(xué)性能測試和Weibull模數(shù)的分析。利用MHV-1000型顯微硬度儀測試其50 gf與300 gf下的顯微硬度。FSM-6000測得表面應(yīng)力和應(yīng)力深度。試樣利用日本JEOL-JXA--8230型電子探針,采用線掃描方法,測試垂直于玻璃表面,沿離子擴(kuò)散方向Na+、K+分布情況[17]。
3.1離子交換時(shí)間對(duì)彎曲強(qiáng)度及Weibull模數(shù)的影響
對(duì)上述試樣進(jìn)行彎曲強(qiáng)度測試,表征其機(jī)械強(qiáng)度。為了更加科學(xué)地表征玻璃斷裂的集中程度和分布情況,引入了Weibull統(tǒng)計(jì)方法[9],Weibull模量表征了材料強(qiáng)度的均勻性和可靠性,Weibull模數(shù)值越大,強(qiáng)度離散性越小,變異系數(shù)越小,可靠性越好。對(duì)其結(jié)果進(jìn)行Weibull統(tǒng)計(jì),其結(jié)果如圖1所示。
圖1 單步鋼化時(shí)間對(duì)彎曲強(qiáng)度和Weibull模數(shù)的影響Fig.1 Effect of single step time on bendingstrength and Weibull modulus
對(duì)比玻璃原片的彎曲強(qiáng)度測試,其彎曲強(qiáng)度為81.63 MPa,Weibull模數(shù)為6.97。可見單步鋼化對(duì)玻璃的彎曲強(qiáng)度有著極為重要的作用。
圖1中,單步離子交換對(duì)玻璃強(qiáng)度的提升極為顯著,相比提升了5~7倍。但隨著單步離子交換時(shí)間的增長,玻璃彎曲強(qiáng)度逐漸降低。玻璃強(qiáng)度在處理12 h時(shí)為534.47 MPa,16 h時(shí)為523.4 MPa,降低2%。一般來說,對(duì)于玻璃材料,強(qiáng)度波動(dòng)在5%以內(nèi)時(shí),認(rèn)為其強(qiáng)度變化不大,此時(shí)可認(rèn)為強(qiáng)度基本不變。根據(jù)離子交換增強(qiáng)原理中關(guān)于離子“擠塞”增強(qiáng)效應(yīng)和應(yīng)力松弛效應(yīng)與時(shí)間關(guān)系的論述,12~16 h時(shí)離子交換處于應(yīng)力松弛與“擠塞”效應(yīng)接近平衡的階段;當(dāng)交換時(shí)間為24 h及超過24 h時(shí)其彎曲強(qiáng)度均低于450 MPa,相比12~16 h時(shí)彎曲強(qiáng)度降低20%以上,在40 h時(shí)為397.72 MPa,相比降低了26%。在48 h時(shí),強(qiáng)度相比降低高達(dá)31%,說明此時(shí)在離子鋼化超過24 h后,玻璃弛豫導(dǎo)致的應(yīng)力松弛效應(yīng)明顯,擠塞效應(yīng)引起的強(qiáng)度增大作用降低。
圖1中的Weibull模數(shù)統(tǒng)計(jì)可以看出,相比原片玻璃,單步離子交換對(duì)斷裂集中程度的提升較為顯著。當(dāng)交換時(shí)間達(dá)到12 h以上時(shí),隨著時(shí)間的延長,Weibull模數(shù)先增加后減小,且在40 h時(shí),Weibull模數(shù)達(dá)到最大值,為35.82,已經(jīng)具有了較高的斷裂集中性。這說明單步離子交換法也對(duì)玻璃的斷裂集中性起到了一定的提升作用,但是這種提升是以延長交換時(shí)間,應(yīng)力松弛加劇,損失一部分玻璃強(qiáng)度為前提的。
3.2離子交換時(shí)間對(duì)表面應(yīng)力的影響
對(duì)交換時(shí)間不同的玻璃試樣進(jìn)行表面應(yīng)力測試,其應(yīng)力大小CS(MPa)與應(yīng)力深度DOL(μm)如圖2所示。
對(duì)圖2中的應(yīng)力大小進(jìn)行分析,隨著離子交換時(shí)間的延長,玻璃表面應(yīng)力逐漸降低。由12 h時(shí)的586.45 MPa,逐漸降低至48 h時(shí)的356.86 MPa。這說明在450 ℃下,超過12 h的離子交換,在玻璃內(nèi)部,由結(jié)構(gòu)弛豫造成的應(yīng)力松弛效應(yīng)相比離子的“擠塞”增強(qiáng)作用起主要作用,并隨時(shí)間的延長更為顯著。
對(duì)圖2中的應(yīng)力深度進(jìn)行分析,隨著離子交換時(shí)間的延長,應(yīng)力深度不斷增大。12 h時(shí)其應(yīng)力深度為80.82 μm,隨著時(shí)間延長至40 h時(shí),其應(yīng)力深度達(dá)到145.86 μm。離子交換時(shí)間為48 h時(shí),其應(yīng)力深度與40 h時(shí)相比變化不大,說明玻璃的應(yīng)力層深度在時(shí)間小于40 h時(shí),受離子交換時(shí)間的影響顯著,當(dāng)時(shí)間達(dá)到到40 h以上時(shí),玻璃內(nèi)部應(yīng)力松弛加劇,并不能顯著提升應(yīng)力層深度。
3.3離子交換時(shí)間對(duì)K+離子擴(kuò)散的影響
使用EPMA對(duì)玻璃沿厚度方向進(jìn)行線掃描分析,可以測得K+在厚度方向上的特征X射線的強(qiáng)度,與之相對(duì)應(yīng)是沿著擴(kuò)散方向K+濃度變化。距表面距離越遠(yuǎn),K+濃度逐漸降低,并逐漸穩(wěn)定于玻璃本身的K+濃度。同時(shí)玻璃本身的K+濃度可以通過X熒光光譜儀精確測得,假定檢測強(qiáng)度為0時(shí)K+濃度為0,以比例形式計(jì)算出玻璃表面區(qū)域的K+的分布情況。
圖2 單步離子交換時(shí)間對(duì)應(yīng)力大小和應(yīng)力深度的影響Fig.2 Effect of single step time on surface stress and stress depth
圖3 450 ℃下不同離子交換時(shí)間的K+離子擴(kuò)散分布情況Fig.3 K+ ion diffusion distribution of different ion exchangetime of 450 ℃
對(duì)K+離子擴(kuò)散分布曲線進(jìn)行Boltzmann擬合之后的結(jié)果進(jìn)行分析,可以得到不同試樣的K+離子擴(kuò)散深度。為了K+離子擴(kuò)散深度的判定標(biāo)準(zhǔn)統(tǒng)一,特規(guī)定其判定依據(jù):其Boltzmann擬合曲線的斜率的絕對(duì)值如果在距表面距離大于某一值后一直小于0.05,則此距玻璃表面的距離為離子擴(kuò)散深度。圖3為K+離子擴(kuò)散分布的Boltzmann擬合后的曲線。
由圖3可以看出,K+離子濃度在玻璃表面處濃度很高,沿著擴(kuò)散方向,K+濃度逐漸降低,趨于穩(wěn)定,此時(shí)的濃度與玻璃本身的K+濃度相同。
對(duì)圖3進(jìn)行分析,玻璃表面內(nèi)K+曲線下的面積代表的是K+的擴(kuò)散量的大小。分析可知,40 h和48 h時(shí)的K+擴(kuò)散量遠(yuǎn)遠(yuǎn)大于12 h、16 h、24 h,而且隨著時(shí)間的增大,K+擴(kuò)散量逐漸增大。但是40 h時(shí)的K+擴(kuò)散量小于48 h,這與擴(kuò)散動(dòng)力學(xué)規(guī)律不相符。這說明,首先,在交換時(shí)間較短的情況下以強(qiáng)度換算K+摩爾百分比的方式可以對(duì)K+的分布進(jìn)行比較合理的定性分析。其次,當(dāng)時(shí)間超過一定時(shí)間后,提高交換時(shí)間,不能明顯成比例的提高其交換量時(shí),則此種方式很難進(jìn)行應(yīng)用。
依據(jù)前文所述的K+隨著時(shí)間的增大,離子擴(kuò)散深度逐漸增大,分別為116.22 μm、148.53 μm、139.49 μm、195.09 μm和209.07 μm。
使用菲克第二定律[17]可以計(jì)算在450 ℃下的K+離子擴(kuò)散系數(shù)。菲克第二定律公式如下:
圖4 離子擴(kuò)散深度與時(shí)間平方根的關(guān)系Fig.4 Relationship between ion diffusion depth and square root of time
(1)
根據(jù)玻璃中離子擴(kuò)散情況,設(shè)定邊界條件,則式1可表示為:
(2)
將所獲得的DK+帶入式(2),可得:
將時(shí)間t代入式(3)分別與各時(shí)間離子交換曲線進(jìn)行匹配,如圖5所示。
圖5 12 h、16 h、 24 h、40 h、48 h 單步離子交換過程的K+分布曲線及擬合曲線Fig.5 K+ ion distribution curve and fitting curve of single step of 12 h、16 h、24 h、40 h、48 h
圖5中,進(jìn)行不同時(shí)間離子交換的玻璃的K+分布曲線與所推導(dǎo)出的K+分布曲線,基本互相匹配。在離子分布曲線中,在近表面區(qū)域有一個(gè)K+富集峰,隨著深度的增加,離子濃度降低。這是由于在擴(kuò)散過程中熔融鹽中K+進(jìn)入玻璃,K+進(jìn)入玻璃網(wǎng)絡(luò)后才能進(jìn)行離子交換,然而進(jìn)入玻璃網(wǎng)絡(luò)結(jié)構(gòu)所需的活化能大于擴(kuò)散所需的活化能,K+進(jìn)入到玻璃近表面后,K+迅速向玻璃內(nèi)部擴(kuò)散,兩種作用在近表面區(qū)域達(dá)到平衡,K+在玻璃近表面區(qū)域無法富集,而在玻璃內(nèi)部形成K+的富集峰。
(1)超過12 h的離子交換使得彎曲強(qiáng)度隨著時(shí)間的延長而降低,Weibull模數(shù)則先升高后下降;
(2) 隨著離子交換時(shí)間的延長,應(yīng)力大小逐漸降低,主要由于結(jié)構(gòu)弛豫引起應(yīng)力松弛,應(yīng)力深度則隨著時(shí)間的延長而增大,達(dá)到40 h時(shí),應(yīng)力深度不再顯著增大;
(3) 隨著時(shí)間的延長,K+離子擴(kuò)散深度增大,根據(jù)菲克第二定律計(jì)算K+擴(kuò)散系數(shù)為:1.102×10-14m2/s。同時(shí)玻璃近表面區(qū)域存在K+富集峰,是由于K+進(jìn)入玻璃網(wǎng)絡(luò)與K+向玻璃內(nèi)部擴(kuò)散兩種作用平衡形成的。
[1] 許杰,吳云龍,趙芳紅,等.工程應(yīng)力分布玻璃研究進(jìn)展[J].硅酸鹽學(xué)報(bào),2009,37(12):2135-2141.
[2] Griffith A A.The phenomena of rupture and flow in solids[J].PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesA,ContainingPapersofaMathematicalorPhysicalCharacter,1921:163-198.
[3] Zelmon D E,Bayya S S,Sanghera J S,et al.Dispersion of barium gallogermanate glass[J].AppliedOptics,2002,41(7):1366-1367.
[4] Shyu J J,Mai H C.ZrO2-nucleated calcium aluminate glass-ceramics with mid-infrared transparency[J].JournalofMaterialsResearch,2006,21(02):465-472.
[5] Jewell J M,Harbison B B,Aggarwal I D,et al.Germanate glass ceramic[P].U.S.Patent 5,486,495.1996-1-23.
[6] Shen C,Wang Y,Xu J,et al.Preparation and ion exchange properties of egg-shell glass beads with different surface morphologies[J].Particuology,2012, 10(3):317-326.
[7] Luo H,Xiang W,Zhong J,et al.Third-order nonlinearity of lead nanocrystals doped Na2O-B2O3-SiO2glass[J].JournalofTheChineseCeramicSociety,2013,41(10):1447-1452.
[8] Green D J,Tandon R,Sglavo V M.Crack arrest and multiple cracking in glass through the use of designed residual stress profiles[J].Science,1999,283(5406):1295-1297.
[9] Abrams M B,Green D J,Glass S J.Fracture behavior of engineered stress profile soda lime silicate glass[J].JournalofNon-CrystallineSolids,2003,321(1):10-19.
[10] Green D J.An introduction to the mechanical properties of ceramics[M].Cambridge University Press,1998.
[11] Green D J,Sglavo V M,Beauchamp E K,et al.Designing residual stress profiles to produce flaw-tolerant glass[M]//Fracture mechanics of ceramics.Springer US,2002:99-105.
[12] Tandon R,Green D J.The effect of crack growth stability induced by residual compressive stresses on strength variability[J].JournalofMaterialsResearch,1992,7(3):765-771.
[13] Tandon R,Green D J.Crack stabilization under the influence of residual compressive stress[J].J.Am.Ceram.Soc,1991,74(8):1981-86.
[14] Cook R F,Clarke D R.Fracture stability,R-curves and strength variability[J].ActaMetallurgica,1988,36(3):555-562.
[15] Shetty D K,Wang Jr S.Crack stability and strength distribution of ceramics that exhibit rising crack‐growth‐resistance (R-curve) behavior[J].JournaloftheAmericanCeramicSociety,1989,72(7):1158-1162.
[16] 傅光輝,金宗哲.脆性材料強(qiáng)度的Weibull統(tǒng)計(jì)[J].硅酸鹽通報(bào),1986,10(2):28-33.
[17] Xie J L,He F,Xu C.Study of silver diffusion kinetics in ion exchange photochromic glass[J].GlassTechnology,1995,36(4):139-140.
Performance Effect of Chemical Tempered Glass by First-Step Time
SONGPei-yu1,MAQiang1,PANGHuan-xin1,LIYu-hui1,HEFeng1,2,XIEJun-lin1,2
(1.School of Materials Science and Engineering,Wuhan Universtiy of Technology,Wuhan 430070,China;2.State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China)
This paper studies the performance effects of the chemical tempered glass by the time in the first step of ion exchange. Different chemical tempered glass with different time in the first step of ion exchange have been made. The effects of bending strength, Weibull modulus, surface stress, stress depth, and K+ion diffusion by the time have been analysed. The experimental results show that with the extension of the time in the first step of ion exchange, the bending strength decreased gradually. Weibull modulus increased first and then decreased, and the highest Weibull modulus value has appeared when the time of ion exchange is 40 hours; With the extension of the time, surface stress decreased, but stress depth increased; K+ion diffusion curve fitted the fitting curve of Fick's second law. Diffusion depth increased with the extension of the time, and an enrichment peak would be produced inside the glass.
chemical tempered;time of ion exchange;Weibull modulus;surface stress;ion diffusion
宋培煜(1993-),男,碩士.主要從事玻璃材料的研究.
何峰,博士,教授.
TQ172
A
1001-1625(2016)06-1790-05
資助情況:“十二五”國家科技支撐計(jì)劃(2012BAA08B04)資助.