吳 星 星, 馬 木 提 江·吐 爾 遜, 孫 興 濤, 王 新 平*
( 1.大連理工大學 精細化工國家重點實驗室, 遼寧 大連 116024;2.喀什大學 化學與環(huán)境科學學院, 新疆 喀什 844006 )
?
高活性N2O 分解催化劑BaCo6Al2.3研究
吳 星 星1,馬 木 提 江·吐 爾 遜2,孫 興 濤1,王 新 平*1
( 1.大連理工大學 精細化工國家重點實驗室, 遼寧 大連116024;2.喀什大學 化學與環(huán)境科學學院, 新疆 喀什844006 )
用共沉淀法制備了BaCO3修飾的NiO和Co3O4,用于N2O分解反應的催化劑.研究發(fā)現(xiàn),有最佳組成的BaCo6催化劑比BaxNi6(x=0~2)催化劑活性更高.對于BaCo6催化劑,加入了適量作為黏結劑的勃姆石以增加催化劑的力學強度.所得BaCo6Al2.3催化劑,既有很好的力學強度又有較高的催化活性.在450 ℃,該BaCo6Al2.3催化劑在含0.2% N2O、5% O2、2% H2O、0.01% NO的Ar氣氛中,表現(xiàn)出非常穩(wěn)定的催化活性.
N2O分解;催化穩(wěn)定性;力學強度;雜質氣體
氧化亞氮(N2O)在地球大氣條件下的存在壽命可達150 a,且為很強的溫室效應氣體.相應溫室效應潛能分別為CO2和CH4的310和21倍[1-4].這意味著N2O的排放如得不到有效的控制,其對大氣層的污染將變得越來越嚴重.
因為N2O的分解反應是強放熱和自發(fā)的,因而在理論上說,通過N2O的催化分解消除N2O是一個相當方便和經濟的方法[5-6].該方法已成功地應用于含有高濃度N2O(25%~40%)工業(yè)尾氣的處理過程.通過反應熱,可將反應溫度提高到650 ℃以上.這樣,由于反應溫度的大幅度自提升,即便催化劑的低溫活性不是很高,也能滿足催化作用的要求,達到N2O的完全催化分解.該工業(yè)尾氣包括己二酸、丙烯腈、乙二醛、己內酰胺和其他使用硝酸作為氧化劑或試劑的生產過程的尾氣[7-9].但是,迄今為止,該N2O的催化分解尚未用到硝酸生產過程的尾氣處理及燃燒過程的尾氣處理中.這是因為,這些尾氣中所含的N2O濃度很低(一般在0.05%~0.20%)[10-12],相應N2O的分解放熱幾乎不改變反應溫度.此外,這些尾氣中還含有各種雜質氣體,例如O2、NO和H2O.這些雜質氣體會導致催化劑的活性大幅度降低[7,12-13].因此,可用于處理低濃度N2O的催化劑必須具有下述兩個屬性:(1)在較低的溫度下具有較高的催化活性;(2)在雜質氣體存在下具有穩(wěn)定的催化活性.
從硝酸生產過程導出的煙道氣,通常含有0.02%~0.20% 的氮氧化物.因此,硝酸生產過程的煙道氣一般首先用氨為還原劑進行氮氧化物的選擇催化還原(NH3-SCR).經過該NH3-SCR過程后,煙道氣中一般含有0.002%~0.080%的N2O[14-20]、5% O2、2% H2O、0.002%~0.010% 的氮氧化物.為得到可適用于處理這些雜質氣體存在下低濃度N2O分解的催化劑,本文選擇Co3O4和NiO作為主催化劑組分進行研究[21].通過引入BaCO3,改進催化劑活性和穩(wěn)定性.在此基礎上,又添加勃姆石組分提高催化劑的力學強度,從而得到一個低溫活性較好、力學強度較好、催化穩(wěn)定性較高的BaCo6Al2.3催化劑.
1.1催化劑制備及表征
純Co3O4、NiO,及BaxCo6和BaxNi6(x=0~2)催化劑采用沉淀或共沉淀法制備[22].首先稱取一定量的硝酸鹽(Co(NO3)2·6H2O,Ni(NO3)2·6H2O或Ba(NO3)2)配成濃度為0.5 mol/L的溶液或混合溶液.然后在水浴鍋中40 ℃ 下強烈攪拌的同時將0.2 mol/L的Na2CO3溶液逐滴加到硝酸鹽溶液中直至pH=9.3.隨后將所得的懸浮液在40 ℃下繼續(xù)攪拌3 h,抽濾并洗滌至pH=7.然后將沉淀物轉移至烘箱中在110 ℃下過夜烘干,最后在馬弗爐中空氣氣氛下 500 ℃煅燒3 h.為了獲得具有較好力學強度和高活性的催化劑,在BaxCo6、BaxNi6的碳酸鹽前驅體沉淀物中加入了適量勃姆石水溶膠,充分研磨后,在110 ℃下干燥過夜,然后在500 ℃煅燒3 h.所得催化劑依據其原子組成表示為Co6Al1.7或BaCo6Al2.3.
催化劑樣品的XRD圖譜在Empyrean多用途衍射儀(PANalytical公司)上測定,以CuKα為放射源(λ=0.154 06 nm),管電壓為40 kV,管電流為40 mA.掃描步長為0.039°(2θ),掃描速度為40.03 s/0.039°.依據Scherrer公式,催化劑中過渡金屬氧化物的微晶平均尺寸用XRD圖譜中最強衍射峰的半峰寬估算.對于純NiO和BaNi6,相應衍射峰位于43.28°(200),而對于純Co3O4、BaCo6、Co6Al1.7以及BaCo6Al2.3,相應衍射峰位于36.81°(311).
催化劑樣品的紅外圖譜在Bruker TENSOR 27型紅外光譜儀上測定,采用KBr 支撐片紅外譜圖測定的方法,將樣品與KBr按照質量比為1∶50混合,研磨后壓片、測試.紅外光譜測量范圍為4 000~400 cm-1,紅外儀的分辨率為4 cm-1,掃描累加次數(shù)為16.
1.2活性測定和動力學研究
N2O催化分解的活性測定(見圖1)在一個固定床連續(xù)流動石英反應器(內徑4 mm)中進行.0.2% N2O/Ar混合氣體,或含有一些雜質氣體(5% O2,2% H2O,0.01% NO)的氣體混合物以50 mL/min通入到裝有0.200 g(40~60目)催化劑的反應器中(相當于空速為20 000 h-1)進行催化反應.進入反應管的原料氣體和流出反應管的產物氣體通過氣相色譜進行監(jiān)測.氣相組分用Porapak Q柱(長度為4 m,內徑為2.1 mm)分離,用TCD為檢測器檢測.N2O轉化率按照下式計算:
其中c(N2O)in和c(N2O)out分別表示反應器入口和出口的N2O濃度.
BaCo6Al0.5催化劑的催化穩(wěn)定性評價在450 ℃、20 000 h-1下進行.尾氣模擬氣體為含有0.2% N2O、5% O2、2% H2O和0.01% NO氣體混合物,催化劑的使用量為0.400 g.
圖1 活性測試裝置
2.1BaxCo6和BaxNi6的活性比較
BaxNi6和BaxCo6(x=0~2) 系列催化劑的催化結果如圖2所示.所有BaxNi6催化劑均比純NiO表現(xiàn)出更高的活性,這表明通過共沉淀法添加Ba到催化劑中可有效地改善催化劑的活性.在BaxNi6(x=0~2) 系列催化劑中,BaNi6的活性最高,在350 ℃,在該催化劑上實現(xiàn)了N2O的完全分解.與鎳基BaxNi6(x=0~2) 系列催化劑相比,鈷基BaxCo6(x=0~2) 系列催化劑在各反應溫度的催化活性則高得多.例如,在BaCo6催化劑上N2O的轉化率在300 ℃即達到100%.通過比較這兩個系列催化劑的活性可以發(fā)現(xiàn),過渡金屬的種類(Ni或Co)對于催化劑的活性起著關鍵的作用.
(a) BaxNi6
(b) BaxCo6
圖2催化劑BaxNi6、BaxCo6在0.2% N2O/Ar氣氛中催化分解N2O的轉化率
Fig.2N2OconversionoverBaxNi6,BaxCo6catalystsforfeedgas0.2%N2O/Ar
2.2BaNi6和BaCo6催化劑的結構
圖3給出了NiO、BaNi6、Co3O4和BaCo6的XRD譜圖.在NiO催化劑樣品上,除NiO(JCPDS 47-1049)衍射峰外,沒有其他衍射峰出現(xiàn),表明鎳在該催化劑中只以相應氧化物形式存在.在鋇摻雜的催化劑樣品BaNi6上,有BaCO3衍射峰(JCPDS 45-1471)出現(xiàn).同時,其NiO的衍射峰變寬且強度變低.這表明,BaCO3在催化劑中的引入,使得NiO微晶的平均晶粒變?。愃频默F(xiàn)象也表現(xiàn)在Co3O4和BaCo6催化劑樣品上.前者僅為Co3O4尖晶石晶相(JCPDS 43-1003),而后者由BaCO3和較小的Co3O4尖晶石微晶組成.根據上述XRD測定結果,對各催化劑樣品中過渡金屬氧化物的平均晶粒大小按照Scherrer公式進行估算(表1).由于鋇的引入,NiO微晶的平均尺寸從21 nm(在NiO催化劑樣品中)降低到16 nm(在BaNi6樣品中),Co3O4微晶的平均尺寸從18 nm (在Co3O4催化劑樣品中)降低到11 nm(在BaCo6樣品中).
圖3 不同催化劑的XRD譜圖
表1 由XRD估算的金屬氧化物催化劑晶粒的平均粒徑
根據上述結果,可以認為,用BaCO3修飾催化劑可顯著提高催化劑的活性,其主要的原因應在于減小催化劑中過渡金屬氧化物的晶粒大小,從而提高催化劑的表面活性.
2.3Co6Al1.7和 BaCo6Al2.3催化劑
Co6Al1.7和BaCo6Al2.3催化劑,分別由向Co3O4和BaCo6中加入15∶85質量比的勃姆石制得.在這兩個催化劑上,均未出現(xiàn)屬于鋁化合物的衍射峰.比較BaCo6Al2.3和BaCo6的XRD衍射圖譜可知,勃姆石的加入未改變BaCO3和Co3O4晶相.圖4給出了Co6Al1.7、BaCo6Al2.3與Co3O4、BaCo6催化劑樣品在N2O催化分解活性上的比較.由于勃姆石作為黏結劑的引入,Co6Al1.7與Co3O4相比,其活性大幅度地被降低了.例如,在300 ℃,N2O的轉化率在Co3O4催化劑上為65%,而在Co6Al1.7催化劑上降為44%.然而,值得注意的是,在200~300 ℃的溫度范圍內,BaCo6Al2.3與BaCo6相比,其催化活性基本沒有變化.
圖4不同催化劑在0.2% N2O/Ar氣氛下催化分解N2O的轉化率
Fig.4N2Oconversionforfeedgas0.2%N2O/Aroverdifferentcatalysts
圖5給出了150~350 ℃內,BaCo6Al2.3上N2O轉化率隨0.2% N2O/Ar反應氣通入空速的變化情況.結果表明,在該較低的溫度范圍內,即便是在該優(yōu)化的BaCo6Al2.3催化劑上,N2O轉化率也顯著受空速的影響.
圖6展示了BaCo6Al2.3催化劑上N2O轉化率受反應氣中雜質氣體5% O2、0.01% NO、2% H2O的影響.與5% O2+0.01% NO相比,2% H2O對催化劑的活性產生了更大的沖擊.后者使N2O的100% 轉化溫度由300 ℃上升到450 ℃.當2% H2O與0.01% NO+5% O2共存于反應氣中時,催化劑活性降低的情況更顯嚴重.例如,在450 ℃,在這3種雜質氣體共存情況下,N2O 的轉化率由100% 降低到93%.另一方面,0.01% NO+5% O2對催化劑的活性沖擊較小,即使在400 ℃,也可得到100% 的N2O轉化率.
圖5不同空速下BaCo6Al2.3催化劑在0.2% N2O/Ar氣氛下催化分解N2O的轉化率
Fig.5N2OconversionoverBaCo6Al2.3catalystforthefeedgas0.2%N2O/AratdifferentGHSV
圖6BaCo6Al2.3催化劑在不同氣氛下催化分解N2O的轉化率
Fig.6N2OconversionoverBaCo6Al2.3catalystfordifferentfeedgas
2.4BaCo6Al2.3催化劑的催化穩(wěn)定性
圖7給出了BaCo6Al2.3催化劑在450 ℃,其催化活性在模擬廢氣0.2% N2O/Ar+0.01% NO+5% O2+2% H2O(10 000 h-1)中隨反應時間的改變情況.反應15 h后,N2O的轉化率由反應起始時的100% 逐漸降為60%.然而,值得注意的是,N2O的轉化率在此后進行的25 h中穩(wěn)定在這一水平.當催化劑在500 ℃原位處理30 min,再將反應溫度回復到450 ℃時,發(fā)現(xiàn)N2O的轉化率顯著增加然后快速恢復到原來的穩(wěn)定水平.該結果表明,催化劑之所以能夠表現(xiàn)確定的穩(wěn)定活性,是因為在該反應條件下,催化劑表面上非活性反應物種的累積量只能達到一定的程度.
圖7BaCo6Al2.3催化劑在450 ℃時0.2% N2O/Ar+0.01% NO+5% O2+2% H2O氣氛空速為10 000 h-1下催化分解N2O的轉化率
Fig.7N2OconversionoverBaCo6Al2.3catalystat450 ℃forfeedgas0.2%N2O/Ar+0.01%NO+5%O2+2%H2Oat10 000h-1
圖8在0.2% N2O/Ar氣氛中引入移除O2或H2O對N2O轉化率的影響
Fig.8N2OconversionchangecausedbyaddingandremovingofO2orH2Ofromfeedgas0.2%N2O/Ar
圖9 BaCo6Al2.3催化劑反應前后的XRD譜圖
圖10 BaCo6Al2.3催化劑反應前后的FTIR吸收譜圖
本文制備的BaCo6Al2.3催化劑具有較好的力學強度,在450 ℃有雜質氣體NO、O2、H2O存在下對N2O的分解具有較高的和穩(wěn)定的催化活性,這使得它具有了消除硝酸生產尾氣中N2O的應用前景.該催化劑對于含有雜質氣體5% O2、2% H2O、0.01% NO的0.2% N2O模擬煙道氣,在10 000 h-1空速、450 ℃的條件下,可使N2O的分解轉化率達到60%.
作為雜質氣體抑制催化劑活性的機制,可描述如下:O2和H2O對反應的不利影響僅來自反應動力學,而NO+O2則通過形成硝酸鹽物種覆蓋催化劑表面而降低催化劑的活性.盡管如此,該BaCo6Al2.3催化劑在450 ℃、上述多種雜質氣體存在下,仍具有相當好的催化穩(wěn)定性.該實驗結果表明,硝酸鹽物種在該反應條件下對催化劑表面的覆蓋只能達到一定程度.
[1]Pérez-Ramírez J, Kapteijn F, Sch?ffel K,etal. Formation and control of N2O in nitric acid production:Where do we stand today? [J]. Applied Catalysis B:Environmental, 2003, 44(2):117-151.
[2]Konsolakis M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts:catalytic performance, mechanistic considerations, and surface chemistry aspects [J]. ACS Catalysis, 2015, 5(11):6397-6421.
[3]Dickinson R E, Cicerone R J. Future global warming from atmospheric trace gases [J]. Nature, 1986, 319:109-115.
[4]LIU Ning, ZHANG Run-duo, CHEN Biao-hua,etal. Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)-BEA zeolites [J]. Journal of Catalysis, 2012, 294:99-112.
[5]Abu-Zied B M, Soliman S A, Abdellah S E. Pure and Ni-substituted Co3O4spinel catalysts for direct N2O decomposition [J]. Chinese Journal of Catalysis, 2014, 35(7):1105-1112.
[6]Armor J N, Braymer T A, Farris T S,etal. Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams [J]. Applied Catalysis B:Environmental, 1996, 7(3-4):397-406.
[7]Komvokis V G, Marnellos G E, Vasalos I A,etal. Effect of pretreatment and regeneration conditions of Ru/γ-Al2O3catalysts for N2O decomposition and/or reduction in O2-rich atmospheres and in the presence of NOx, SO2and H2O [J]. Applied Catalysis B:Environmental, 2009, 89(3-4):627-634.
[8]Pérez-Ramírez J. Prospects of N2O emission regulations in the European fertilizer industry [J]. Applied Catalysis B:Environmental, 2007, 70(1-4):31-35.
[9]Reimer R A, Slaten C S, Seapan M,etal. Abatement of N2O emissions produced in the adipic acid industry [J]. Environmental Progress, 1994, 13(2):134-137.
[10]Pérez-Ramírez J, Kapteijn F, Mul G,etal. Ex-framework FeZSM-5 for control of N2O in tail-gases [J]. Catalysis Today, 2002, 76(1):55-74.
[11]Centi G, Perathoner S, Vazzana F. Catalytic control of non-CO2greenhouse gases [J]. Chemtech, 1999, 29(12):48-55.
[12]Centi G, Perathoner S, Vazzana F,etal. Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2[J]. Advances in Environmental Research, 2000, 4(4):325-338.
[13]Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Heterogeneous catalytic decomposition of nitrous oxide [J]. Applied Catalysis B:Environmental, 1996, 9(1-4):25-64.
[14]Lietti L, Ramis G, Berti F,etal. Chemical, structural and mechanistic aspects on NOxSCR over commercial and model oxide catalysts [J]. Catalysis Today, 1998, 42(1):101-116.
[15]Madia G, Elsener M, Koebel M,etal. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process [J]. Applied Catalysis B:Environmental, 2002, 39(2):181-190.
[16]Martín J A, Yates M,vila P,etal. Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2catalysts [J]. Applied Catalysis B:Environmental, 2007, 70(1-4):330-334.
[17]Yates M, Martín J A, Martín-Luengo M,etal. N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3catalysts [J]. Catalysis Today, 2005, 107-108:120-125.
[18]Suarez S, Martín J A, Yates M,etal. N2O formation in the selective catalytic reduction of NOxwith NH3at low temperature on CuO-supported monolithic catalysts [J]. Journal of Catalysis, 2005, 229(1):227-236.
[19]Lietti L, Nova I, Forzatti P. Selective catalytic reduction (SCR) of NO by NH3over TiO2-supported V2O5-WO3and V2O5-MoO3catalysts [J]. Topics in Catalysis, 2000, 11-12(1):111-122.
[20]Sj?vall H, Olsson L, Fridell E,etal. Selective catalytic reduction of NOxwith NH3over Cu-ZSM-5 — the effect of changing the gas composition [J]. Applied Catalysis B:Environmental, 2006, 64(3-4):180-188.
[21]Ohnishi C, Asano K, Iwamoto S,etal. Alkali-doped Co3O4catalysts for direct decomposition of N2O in the presence of oxygen [J]. Catalysis Today, 2007, 120(2):145-150.
[22]Tursun M, WANG Xin-ping, ZHANG Feng-feng,etal. Bi-Co3O4catalyzing N2O decomposition with strong resistance to CO2[J]. Catalysis Communications, 2015, 65:1-5.
[23]Pasha N, Lingaiah N, Reddy P S S,etal. Direct decomposition of N2O over cesium-doped CuO catalysts [J]. Catalysis Letters, 2009, 127(1-2):101-106.
[24]Pasha N, Lingaiah N, Babu N S,etal. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam [J]. Catalysis Communications, 2008, 10(2):132-136.
[25]XUE Li, ZHANG Chang-bin, HE Hong,etal. Catalytic decomposition of N2O over CeO2promoted Co3O4spinel catalyst [J]. Applied Catalysis B:Environmental, 2007, 75(3-4):167-174.
[26]Hadjiivanov K I. Identification of neutral and charged NxOysurface species by IR spectroscopy [J]. Catalysis Reviews:Science and Engineering, 2000, 42(1-2):71-144.
[27]Pozdnyakov D V, Fillimonov V N. Infrared spectroscopic study of the chemisorption of nitric oxide and nitrogen dioxide on metal oxides [J]. Kinetics and Catalysis, 1973, 14:760-766.
An investigation on highly active BaCo6Al2.3catalyst for N2O decomposition
WUXing-xing1,MamutjanTursun2,SUNXing-tao1,WANGXin-ping*1
( 1.State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China;2.School of Chemistry and Environmental Science, Kashgar University, Kashgar 844006, China )
NiO, Co3O4doped by BaCO3are prepared by coprecipitation to be used as catalysts for N2O decomposition. It is found that the BaCo6catalyst with the optimum composition is much more active than the series of BaxNi6(x=0-2) catalysts. For the BaCo6catalyst, to increase its mechanical strength, boehmite as binder is added in appropriate amount, which leads to the BaCo6Al2.3catalyst with both better mechanical strength and desired activity for application. At 450 ℃, the BaCo6Al2.3catalyst exhibits a stable catalytic activity with time on stream for the feed gas 0.2% N2O, 5% O2, 2% H2O, 0.01% NO in Ar.
N2O decomposition; catalytic stability; mechanical strength; impurity gas
1000-8608(2016)05-0447-07
2015-12-21;
2016-05-12.
“八六三”國家高技術研究發(fā)展計劃資助項目(2013AA030705);國家自然科學基金資助項目(21177016,21277019).
吳星星(1991-),女,碩士生,E-mail:wuxing91@163.com;王新平*(1958-),男,教授,博士生導師,E-mail:dllgwxp@dlut.edu.cn.
TQ032.41
A
10.7511/dllgxb201605002