陳江濤,鄧 棋,李晨健,張 姣,江學良
武漢工程大學材料科學與工程學院,湖北 武漢 430074
單分散銪摻雜氧化釔空心微球的熒光性能研究
陳江濤,鄧棋,李晨健,張姣,江學良*
武漢工程大學材料科學與工程學院,湖北 武漢 430074
以單分散三聚氰胺-甲醛微球為模板,通過煅燒除去模板,制備出粒徑均一的銪摻雜氧化釔空心微球熒光材料.利用掃描電子顯微鏡、透射電子顯微鏡、傅立葉變換紅外光譜儀、X射線衍射儀、熒光分度計對氧化物空心微球熒光材料進行表征.結(jié)果表明:成功地制備了銪摻雜氧化釔單分散空心微球,銪元素摻雜進入氧化釔晶體后對氧化釔晶型沒有影響,隨著銪元素含量的增加,晶格常數(shù)逐漸增大.銪摻雜氧化釔空心球在613 nm處均表現(xiàn)出強烈的發(fā)射峰,當銪元素摻雜量為原分子數(shù)x=5%時,熒光強度最強;隨著銪元素含量的增多,電荷遷移帶紅移,表明銪-氧鍵共價性逐漸減弱、離子性逐漸增強.
三聚氰胺-甲醛微球;銪摻雜氧化釔;熒光;空心球;單分散
稀土元素具有獨特的4f層電子結(jié)構(gòu)和空5d軌道,稀土離子摻雜無機材料后可發(fā)出紅、藍、綠等不同波段的光,銪離子(Eu3+)摻雜無機材料無疑是一類非常重要的發(fā)光材料[1].氧化釔(Y2O3)作為一種重要的稀土氧化物,具有優(yōu)異的化學穩(wěn)定性和熱穩(wěn)定性[2-3],廣泛應(yīng)用于光學玻璃、高質(zhì)量耐火材料、陶瓷材料等方面.其中,銪摻雜氧化釔作為一種優(yōu)良的發(fā)光材料,在熒光燈以及平面顯示器件方面有著重要的應(yīng)用.
無機空心球因其較低的密度、獨特的中空結(jié)構(gòu),在藥物釋放控制系統(tǒng)、催化、光子晶體、生物科技和填料等諸多領(lǐng)域中有著重要的應(yīng)用前景[4].為制備出完好的無機空心球,眾多學者提出了不同的方案.利用硬模板[包括二氧化硅(SiO2)微球、聚苯乙烯(PS)微球、聚甲基丙烯酸甲酯(PMMA)、三聚氰胺-甲醛(MF)微球等]或軟模板[包括微囊、乳液滴、微細胞、氣泡等]法合成無機空心球是一種非常有效的方法[5-7].自E.Donath等[8]報道用MF微球制備聚電解質(zhì)微膠囊以來,利用MF微球制備空心結(jié)構(gòu)材料受到越來越多研究人員的關(guān)注.
MF微球是由甲醛和三聚氰胺經(jīng)縮聚反應(yīng)得到的一種氨基樹脂,相較于PS微球或PMMA微球,它具有眾多優(yōu)異的性能:高度交聯(lián)特性使它具有極好的熱穩(wěn)定性和溶劑穩(wěn)定性,以及高密度和高折光率[9].MF微球能夠緩慢地溶于氨水,這種特性為制備對高溫、強酸、強堿、滲透壓敏感的空心結(jié)構(gòu)或核-殼結(jié)構(gòu)材料提供了可能[8,10].MF微球表面有大量均勻分布的親水基團(-NH2、-NH、-OH),在水溶液中可電離,使其表面帶上正電荷,有利于帶電粒子的附著.
過去制備微米級的熒光材料時,通常先用高溫固相反應(yīng)法制備出塊體材料,隨后通過球磨制得1~3 μm的顆粒.然而,球磨在熒光材料表面帶來大量的晶體缺陷,從而降低熒光材料的發(fā)光效率,并使得發(fā)射峰變寬[11-12].本文以單分散MF微球(約2 μm)為模板通過均相沉淀法制備出粒徑均一的銪摻雜氧化釔(Y2O∶3Eu3+)空心微球熒光材料,完全消除了由球磨給熒光材料帶來的表面缺陷,并系統(tǒng)地研究了銪元素摻雜量對Y2O3空心微球結(jié)構(gòu)及熒光性能的影響.此外,單分散Y2O3∶Eu3+空心球可自發(fā)的形成光子晶體,有望提高顯示面板的發(fā)光效率[13].
2.1實驗原料
三聚氰胺[C3H6N6],CP,國藥集團化學試劑有限公司;多聚甲醛[(CH2O)n],AR,國藥集團化學試劑有限公司;六水硝酸銪[Eu(NO3)3·6H2O],AR,阿拉丁化學有限公司;六水硝酸釔[Y(NO3)3· 6H2O],AR,阿拉丁化學有限公司;硝酸(65.0%~68.0%),西隴化工股份有限公司;尿素,AR,西隴化工股份有限公司;乙醇[C2H5OH],AR,西隴化工股份有限公司;去離子水,實驗室自制. 2.2三聚氰胺-甲醛(MF)微球合成
將2.6 g三聚氰胺、3.7 g多聚甲醛和50 mL去離子水加入三口燒瓶,緩慢加熱至50℃,攪拌40 min.待懸濁液至澄清,過濾得到預(yù)聚物.量取適量的預(yù)聚物與稀硝酸(pH=3.5)按1∶3體積混合,加入三口燒瓶,加熱至100℃,攪拌反應(yīng)30 min,得到乳狀懸濁液.將所得懸濁液用離心機沉淀,用去離子水離心洗滌4次,放在60℃的烘箱中烘干得到MF微球備用[9].
2.3Y2O3∶xEu3+空心球制備
2.4測試表征
采用JEOL JSM-5510LV型掃描電子顯微鏡(Scanning electron microscope,SEM)觀察樣品形貌和粒徑.采用JEOL JSM-2100型透射電子顯微鏡(Transmission electron microscopy,TEM)表征樣品空心結(jié)構(gòu),工作電壓200 kV.采用Magana-IR750型傅里葉紅外分析測試儀(Fourier transform infrared spectroscopy,F(xiàn)TIR),溴化鉀壓片法測試樣品吸收光譜.采用Bruker AXSd8 Advance型X射線衍射儀(X-raydiffractometer,XRD)進行物相分析,使用θ-θ聯(lián)動掃描方式,掃描速度為10(°)/min、步寬0.02°、Cu靶、管電壓40 kV、管電流40 mA,掃描角度10°~85°.在室溫下采用Hitachi F-4600型熒光分度計(Photoluminescence spectrophotometer,PL)測試樣品激發(fā)光譜、發(fā)射光譜,光譜儀使用150 W氙燈作激發(fā)光源,掃描速度60 nm/min.
3.1形貌分析
圖1是MF微球、Y(OH)CO3∶Eu3+@MF前驅(qū)體、Y2O3∶Eu3+空心微球掃描電鏡(SEM)圖.如圖1(a)、(b)所示,通過溶膠-凝膠法制備的MF微球表面光滑、粒徑分散均一,可作為制備Y2O3∶Eu3+空心微球的優(yōu)良模版.圖1(c)、(d)所示Y(OH)CO3∶Eu3+@MF前驅(qū)體,其表面明顯比MF微球表面粗糙,這是由于稀土堿式碳酸鹽[14]包覆在MF微球表面所致,同時前驅(qū)體繼承了MF微球模板球形外貌和單一的分散性.圖1(e)、(f)所示經(jīng)過煅燒后的產(chǎn)物Y2O3∶Eu3+空心微球SEM圖,與圖1(c)、(d)相比,其表面致密光滑,粒徑(約2.3 μm)比前驅(qū)體粒徑(約2.1 μm)略小,這是由于空心球在煅燒過程中收縮而導(dǎo)致的.
圖1 不同微球的SEM圖(a,b)MF微球;(c,d)Y(OH)CO3∶Eu3+@MF前驅(qū)體;(e,f)Y2O3∶Eu3+空心球Fig.1 SEM images of thedifferent microspheres(a,b)MF microspheres;(c,d)Y(OH)CO3∶Eu3+@MF precursors;(e,f)Y2O3∶Eu3+hollow microspheres
圖2是Y2O3∶Eu3+空心微球透射電鏡(TEM)和選取電子衍射(SAED)圖.如圖2(a)所示,各微球表面光滑、殼層厚度均一,其淺灰色中心與深黑色邊緣的強烈對比,證實了微球空心結(jié)構(gòu).圖2(b)所示該區(qū)域的SAED圖,各衍射環(huán)清晰明亮,表明空心球結(jié)晶性良好[16].
圖2 Y2O3∶Eu3+空心微球TEM(a)和SAED(b)圖Fig.2 TEM(a)and SAED(b)images of the Y2O3∶Eu3+hollow microspheres
3.2FTIR光譜
圖3分別為MF微球、Y(OH)CO3∶Eu3+@MF前驅(qū)體和Y2O∶3Eu3+空心微球紅外吸收光譜.圖3(a)中3 361cm-1處為亞胺基(-NH-)/羥基(-OH)振動伸縮振動峰,2 961cm-1處為羥基(-OH)伸縮振動峰,1558(1 494,1 353)、1 164、1 007和813cm-1處分別對應(yīng)于-NH2、C-N、C-O-C和C-N-C基團的振動吸收[9,15,17].與圖3(a)相比,圖3(b)中位于1 007、813cm-1附近吸收峰幾乎消失,表明稀土成功地包覆在MF微球表面,與SEM測試結(jié)果一致[圖1(c)、(d)].圖3(c)中,僅存在541cm-1處的Y(Eu)-O振動吸收峰,表明煅燒過程完全除去MF微球,得到Y(jié)2O∶3Eu3+空心球[15,18].
圖3 不同微球的FTIR圖(a)MF微球;(b)Y(OH)CO3∶Eu3+@MF前驅(qū)體;(c)Y2O3∶Eu3+空心微球Fig.3 FTIR spectra of thedifferent microspheres(a)MF spheres;(b)Y(OH)CO3∶Eu3+@MF precursors;(c)Y2O3∶Eu3+hollow microspheres
3.3結(jié)構(gòu)分析
圖4為不同含量銪元素(x=0.5%,1%,3%,5%,7%,9%,11%)摻雜Y2O3空心微球900℃煅燒后的XRD圖.圖中各樣品均表現(xiàn)出很強的衍射峰,不同含量銪元素摻雜的Y2O3空心微球各衍射峰位均能很好的與Y2O3標準衍射卡JCPDS 43-1036相匹配且無雜峰存在,表明制備的各樣品均為純立方相(Ia-3206)結(jié)構(gòu),與SAED結(jié)果一致[圖2(b)].隨著Y2O3空心球中銪元素含量的增加,(622)衍射峰逐漸向低角方向移動,由立方晶系晶格常數(shù)公式(1)[19]:
此處,d(hkl)為(hkl)晶面間距,h、k、l為(hkl)晶面衍射指標,a為晶格常數(shù),可求得Y2O3∶xEu3+(x= 0.5%,1%,3%,5%,7%,9%,11%)晶格常數(shù)分別為1.061 1 nm、1.061 9 nm、1.062 0 nm、1.0625 nm、1.062 8 nm、1.063 1 nm、1.0635 nm,晶胞尺寸逐漸增大,表明銪元素成功地摻雜進入Y2O3晶格.
圖4 Y2O3∶xEu3+(x=0.5%,1%,3%,5%,7%,9%,11%)空心微球的XRD譜圖Fig.4 XRD patterns of the Y2O3∶xEu3+(x=0.5%,1%,3%,5%,7%,9%,11%)hollow microspheres
3.4熒光分析
圖5為不同含量銪元素摻雜Y2O3空心微球光致熒光激發(fā)(左側(cè))和發(fā)射譜圖(右側(cè)).圖5(a)是監(jiān)視波長為613 nm(對應(yīng)Eu3+離子5D0→7F2躍遷)時,摻雜不同量銪元素氧化釔空心微球的光致熒光激發(fā)譜.圖中,隨著銪元素含量的增加,位于200~275 nm的電荷遷移帶[20](Charge Transfer Band,CTB)中心由232.2 nm逐漸紅移至245.0 nm,表明隨著銪元素含量的增加,Eu-O鍵共價性減弱、離子性增強[21-22].
采用電荷遷移帶中心處波長激發(fā)各樣品,得到發(fā)射光譜[圖5(b),右側(cè)].各樣品發(fā)射光譜峰型、峰位一致,主要由幾個銳線峰組成,分別對應(yīng)Eu3+的5D1→7F(1537 nm),5D1→7F(2555 nm),5D0→7F(0581 nm),5D0→7F(1588,593,599 nm),5D0→7F2(613 nm,627 nm),5D0→7F(3653 nm)躍遷[12-15],[22-26],其中,由位于613 nm處的5D0→7F2發(fā)射峰主導(dǎo).圖中,Y2O∶3Eu3+空心微球熒光材料熒光強度受銪元素濃度嚴重影響,為量化銪元素濃度對熒光材料熒光強度的影響,給出了從510 nm到690 nm范圍內(nèi)相對積分熒光強度(以Y2O∶30.5%Eu3+積分熒光強度為標準計算)隨銪元素含量變化圖,見圖6.由圖6,當銪元素含量低時,熒光材料的積分熒光強度隨銪元素含量的增加逐漸增強,當銪元素含量原子分數(shù)為5%時,發(fā)光強度最強;當銪元素含量原子分數(shù)超過5%時,出現(xiàn)熒光淬滅,熒光材料發(fā)光強度逐漸減弱.N.Dhananjaya等[22]、G.Goglio等[24]、Q.Chen等[25]認為,當Eu3+含量較低時,隨著Eu3+含量的增多,基體中發(fā)光中心逐漸增多,熒光強度逐漸增強;當Eu3+含量繼續(xù)增加并超過閥值(本實驗為5%)時,由于激活劑間有效的共振能量傳遞,將吸收的能量傳遞到晶體表面的淬滅中心導(dǎo)致熒光淬滅.O.Meza等[26]則認為,隨著銪元素含量的增多,O2-→Eu3+間聲子輔助能量遷移、Eu3+→Eu3+間交叉弛豫能量遷移增強,導(dǎo)致熒光淬滅.
圖5 Y2O3∶xEu3+(x=0.5%,1%,3%,5%,7%,9%,11%)空心微球光致熒光激發(fā)(a)和發(fā)射譜(b)Fig.5 Photoluminescence excitation(a)and emission(b)spectra of the Y2O3∶xEu3+(x=0.5%,1%,3%,5%,7%,9%,11%)hollow microspheres
圖6 Y2O3∶xEu3+空心微球相對積分熒光強度隨Eu3+含量x(x=0.5%~11%)變化關(guān)系Fig.6 Relationship between the relative integral fluorescence intensity of Y2O3∶xEu3+(x=0.5%~11%)hollow microspheres and Eu3+concentration
1)利用單分散MF微球為模板,通過煅燒去除模板成功制備出表面光滑、粒徑均一的Y2O3∶Eu3+空心微球.XRD結(jié)果表明制得的Y2O∶3Eu3+空心球為立方相結(jié)構(gòu),且隨著Eu3+含量的增多,晶格常數(shù)逐漸增大.
2)制備的Y2O3∶xEu3+(x=0.5%~11%)空心微球熒光材料在613 nm處均表現(xiàn)出強烈的發(fā)射峰,熒光強度隨Eu3+濃度的增加先增后降,當Eu3+摻雜量為5%時,熒光強度最強;CTB中心逐漸紅移,表明Eu-O鍵共價性減弱、離子性增強.
[1]BOUKERIKA A,GUERBOUS L.Annealing effects on structuralandluminescencepropertiesofred Eu3+-doped Y2O3nanophosphors prepared by sol-gel method[J].Journal of luminescence,2014,145(1):148-153.
[2]ROBINDRO S L,NINGTHOUJAM R S,SUDARSAN V,et al.Luminescence study on Eu3+doped Y2O3nanoparticles:particle size,concentration andcoreshell formation effects[J].Nanotechnology,2008,14(5):055201.
[3]RAY S,LEóN-LUIS S F,MANJóN F J,et al.Broadband,site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+phosphors synthesized by acomplex based precursor solution method[J].Current applied physics,2014,14(1):72-81.
[4]GAO Y,ZHAO Q,F(xiàn)ANG Q H,et al.Facile fabrication and photoluminescence properties of rare-earth-doped Gd2O3hollow spheres via a sacrificial template method [J].Dalton transactions,2013,42(31):11082-11091.
[5]吉鈺純,江學良,張玉婷,等.SiO2空心球的制備與表征[J].武漢工程大學學報,2010,32(3):82-88.
JI Yc,JIANG X L,ZHANG Y T,et al.Preparation andcharacterization of SiO2hollow spheres[J].Journal Wuhan institute of technology,2010,32(3):82-88.
[6]HU J,CHEN M,F(xiàn)ANG X S,et al.Fabrication and application of inorganic hollow spheres[J].Chemical society reviews,2011,40(11):5472-5491.
[7]LIU Yd,GOEBL J,YIN Yd.Templated synthesis of nanostructured materials[J].Chemical society reviews,2013,42(7):2610-2653.
[8]CHOI W S,KOO H Y,KIMd Y.Facile fabrication ofcore-in-shell particles by the slow removal of thecore and its use in the encapsulation of metal nanoparticles[J].Langmuir,2008,24(9):4633-4636.
[9]WU Y S,LI Y,QIN L,et al.Monodispersed or narrow-dispersed melamine-formaldehyde resin polymercolloidal spheres:preparation,size-control,modification,bioconjugation and particle formation mechanism [J].Journal of materialschemistry B,2013,1(2):204-212.
[10]CHOI W S,KOO H Y,KIMd Y.Scalable synthesis ofchestnut-bur-like magneticcapsules loaded with size-controlled mono-or bimetalliccores[J].Advanced materials,2007,19(3):451-455.
[11]WAKEFIELD G,HOLLAND E,DOBSON P J,et al. Luminescence properties of nanocrystalline Y2O3∶Eu [J].Advanced materials,2001,13(20):1557-1560. [12]LI J G,ZHU Q,LI Xd,et al.Colloidal processing of Gd2O3:Eu3+red phosphor monospheres of tunable sizes:solvent effects on precipitation kinetics and photoluminescence properties of the oxides[J].Acta materialia,2011,59(9):3688-3696.
[13]LEE Y K,OH J R,DOY R.Enhanced extraction efficiency of Y2O3:Eu3+thin-film phosphorscoated with hexagonallyclose-packedpolystyrenenanosphere monolayers[J].Applied physics letters,2007,91(4):041907.
[14]LI J G,LI Xd,SUN Xd,et al.Monodispersedcolloidal spheres for uniform Y2O3:Eu3+red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+doping[J].Journal of physicalchemistryc,2008,112(31):11707-11716.
[15]GUANG J,YOU H P,LIU K,et al.Highly uniform Gd2O3hollow microspheres:template-directed synthesisandluminescenceproperties[J].Langmuir,2009,26(7):5122-5128.
[16]楊南如.無機非金屬材料[M].武漢:武漢理工大學出版社,2011:129-137.
[17]FRIEDEL B,GREULICH-WEBER S.Preparation of monodisperse,submicrometercarbon spheres by pyrolysisofmelamine-formaldehyderesin[J].Small, 2006,2(7):859-863.
[18]SOM S,SHARMA S K.Eu3+/Tb3+-codoped Y2O3nanophosphors:Rietveld refinement,bandgap and photoluminescence optimization[J].Journal of physicsd:applied physics,2012,45(41):415102.
[19]梁敬魁.粉末衍射法測定晶體結(jié)構(gòu)[M].2版.北京:科學出版社,2011:78-80.
[20]YE X Y,ZHUANG Wd,HU Y S,et al.Preparation,characterization,and optical properties of nano-and submicron-sized Y2O3∶Eu3+phosphors[J].Journal of applied physics,2009,105(6):064302.
[21]KUMAR R G A,HATA S,IKEDA K,et al.Luminescencedynamicsandconcentrationquenchingin Gd2-xEuxO3nanophosphor[J].Ceramics international,2015,41(4):6037-6050.
[22]DHANANJAYAN,NAGABHUSHANAH,CHAKRADHAR R P S,et al.Synthesis,characterization and photoluminescence properties of Gd2O3∶Eu3+nanophosphors prepared by solutioncombustion method[J].Physica B:condensed matter,2010,405(17):3795-3799.
[23]ZYCH E,KARBOWIAK M,DOMAGALA K,et al. Analysis of Eu3+emission fromdifferent sites in Lu2O3[J].Journal of alloys andcompounds,2002,341(1-2):381-384.
[24]GOGLIO G,KAUR G,PINHO S Lc,et al.Glycinenitrate process for the elaboration of Eu3+-doped Gd2O3bimodal nanoparticles for biomedical applications[J]. European journal of inorganicchemistry,2015(7):1243-1253.
[25]CHEN Q W,SHI Y,CHEN J Y,et al.Photoluminescence of Lu2O3:Eu3+phosphors obtained by glycine-nitratecombustion synthesis[J].Journal of materials research,2005,20(6):1409-1414.
[26]MEZA O,VILLABONA-LEAL E G,DIAZ-TORRES L A,et al.Luminescenceconcentration quenching mechanism in Gd2O3:Eu3+[J].The journal of physicalchemistry A,2014,118(8):1390-1396.
本文編輯:龔曉寧
Photoluminescence of Monodispersed Europium-Doped Yttria Hollow Microspheres
CHEN Jiangtao,DENG Qi,LIchenjian,ZHANG Jiao,JIANG Xueliang*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430074,China
The hollow microspheres of uniform Europium-doped Yttria(Y2O3∶Eu3+)withdifferent Eu3+contents were prepared by a subsequentcalcination process using monodispersed melamine-formaldehyde microspheres as templates.The scanning electron microscope,transmission electron microscopy,F(xiàn)ourier transform infrared spectroscopy,X-raydiffractometer and photoluminescence spectrophotometer were employed tocharacterize the hollow microspheres.The results indicate that the monodispersed Y2O3∶Eu3+hollow microspheres were prepared successfully,in which the europiumdoping in the lattice of yttrium oxide has no effect on thecrystal phase,and thecell parameter increases with the Eu3+contents increasing.Y2O3∶Eu3+hollow microspheres show a strong emission peak at 613 nm,and the fluorescence intensity of it is the strongest when Eu3+concentration is5 at%. Thecharge Transfer Band position shows a red shift with the Eu3+contents increasing,suggesting an increase incovalency or adecreases in iconicity.
melamine-formaldehyde microspheres;europium-doped Y2O3(Y2O3∶Eu3+);photoluminescence;hollow microspheres;monodispersed
O616
A
10.3969/j.issn.1674-2869.2016.02.007
1674-2869(2016)02-0139-06
2016-01-04
國家自然科學基金資助項目(51273154)
陳江濤,碩士研究生.E-mail:jtchen90@gmail.com
江學良,博士,教授.E-mail:sjtujxl@163.com