亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于一級(jí)動(dòng)力學(xué)模型的水培蔬菜濾床氮磷去除模擬

        2016-09-21 03:38:03殷志平吳義鋒呂錫武
        關(guān)鍵詞:模型

        殷志平  吳義鋒  呂錫武

        (東南大學(xué)能源與環(huán)境學(xué)院, 南京 210096)

        ?

        基于一級(jí)動(dòng)力學(xué)模型的水培蔬菜濾床氮磷去除模擬

        殷志平 吳義鋒 呂錫武

        (東南大學(xué)能源與環(huán)境學(xué)院, 南京 210096)

        采用水培蔬菜濾床(HVFB)凈化及經(jīng)生化處理后的生活污水尾水,并選用一級(jí)動(dòng)力學(xué)模型開展HVFB氮磷去除動(dòng)力學(xué)試驗(yàn)研究.基于Arrhenius公式采用試驗(yàn)數(shù)據(jù)分析水溫與一級(jí)反應(yīng)面積速率常數(shù)K間關(guān)系,采用乘冪和指數(shù)回歸方程擬合20 ℃時(shí)面積速率常數(shù)K20與水力負(fù)荷間關(guān)系,并構(gòu)建濾床模型拓展式.Arrhenius擬合結(jié)果表明,番茄濾床的氨氮、總氮(TN)和總磷(TP)的溫度系數(shù)θ值分別為1.08,1.06和1.01,空心菜濾床θ值分別為1.07,1.04和1.00,氨氮、TN的K值與水溫呈顯著正相關(guān),氨氮的K值受水溫影響更為敏感,TP的K值與水溫?zé)o明顯關(guān)系.在擬合K20與水力負(fù)荷關(guān)系上,乘冪回歸整體上較指數(shù)回歸具有更高的準(zhǔn)確性.考慮了水溫和水力負(fù)荷因素的一級(jí)動(dòng)力學(xué)模型拓展式的預(yù)測具有較高的準(zhǔn)確性和可靠性.增強(qiáng)TN去除效率(水溫小于19.5 ℃)和TP去除效率(水溫大于19.5 ℃),可有效提高HVFB整體進(jìn)水水力負(fù)荷.

        水培蔬菜濾床;氮;磷;一級(jí)動(dòng)力學(xué)模型;一級(jí)動(dòng)力學(xué)模型拓展式

        水生植物濾床(aquatic plant filter bed, APFB)作為控制點(diǎn)源與非點(diǎn)源污染的一種新型生態(tài)技術(shù)[1-2],正受到人們的廣泛關(guān)注.目前,APFB已用于城市暴雨徑流[3]、河水[4]、冶煉廠廢水[5]、水產(chǎn)養(yǎng)殖尾水[6]、農(nóng)業(yè)廢水[7]等的處理研究.APFB是由水生植物、水生動(dòng)物及微生物構(gòu)成的生態(tài)凈化系統(tǒng),凈化機(jī)理包括根系過濾、沉淀、植物吸收、微生物作用等[8-9].水培蔬菜濾床(hydroponic vegetable filter bed, HVFB)在具備APFB良好氮磷削減功能的同時(shí),可產(chǎn)生一定的經(jīng)濟(jì)效益.

        各國學(xué)者對(duì)APFB去除氮磷進(jìn)行了相關(guān)研究[10-12],但對(duì)其預(yù)測方法與模型研究關(guān)注較少.與此同時(shí),隨著APFB關(guān)注度的提升和應(yīng)用的普及,對(duì)其預(yù)測方法與模型研究提出了迫切需求.一級(jí)動(dòng)力學(xué)模型作為應(yīng)用最廣泛的污染物去除預(yù)測模型[13],普遍用于濕地系統(tǒng)氮磷去除的模擬[14-16].然而,Kadlec[17]指出由于參數(shù)的不確定性,一級(jí)動(dòng)力學(xué)模型難以獲得理想預(yù)測效果.一級(jí)動(dòng)力學(xué)模型中速率常數(shù)常假定為定值,而研究表明其受環(huán)境和操作條件因素的影響[17-20].Rousseau等[21]指出需特別關(guān)注模型中參數(shù)的不確定性.參數(shù)不確定性的研究對(duì)完善模型參數(shù)、提高HVFB模型的準(zhǔn)確性和可靠性具有重要意義.

        本文旨在建立簡便、可靠的HVFB氮磷去除模型,以期用于HVFB的設(shè)計(jì)、性能預(yù)測與評(píng)價(jià).選用一級(jí)動(dòng)力學(xué)模型模擬HVFB氮磷去除效果,驗(yàn)證其適用性.研究水溫、水力負(fù)荷與模型速率常數(shù)間的關(guān)系,并構(gòu)建一級(jí)動(dòng)力學(xué)模型拓展式.

        1 試驗(yàn)材料及方法

        1.1水培蔬菜濾床概況

        水培蔬菜濾床系統(tǒng)(見圖1)建于東南大學(xué)無錫分校,系統(tǒng)為磚砌混凝土結(jié)構(gòu),表面做防滲處理.濾床共有2組,每組長寬尺寸均為2 m×0.3 m,水深控制為10 cm,池底坡度為0.5%.2組濾床分別植入番茄和空心菜,番茄幼苗株高10 cm,栽種密度為35株/m2,以穿孔泡沫板固定番茄幼苗,空心菜栽種密度為30株/m2,試驗(yàn)期間植物長勢(shì)隨溫度(季節(jié))因素而變化,溫度降低導(dǎo)致植物長勢(shì)受到影響.

        圖1 濾床結(jié)構(gòu)與原理示意圖

        蔬菜植入濾床40 d后開展試驗(yàn),濾床系統(tǒng)進(jìn)水為經(jīng)水解池、好氧接觸氧化池處理后的宿舍區(qū)生活污水.關(guān)于植物生長變化對(duì)去除效果的影響,在8月~12月間的溫度變化較大程度反映了植物生長的變化,以溫度作為生長變化的量化指標(biāo),將植物生長變化的影響并入溫度因素中考慮.

        1.2水樣采集及分析

        2014年8月~12月期間,取樣時(shí)間間隔為3~4 d,水樣于4 ℃保存待分析.檢測指標(biāo)為氨氮、硝態(tài)氮、總氮(TN)、總磷(TP)、DO、pH和溫度(見表1).檢測項(xiàng)目氨氮、硝態(tài)氮、TN和TP均采用國標(biāo)方法[22]分析.

        1.3一級(jí)動(dòng)力學(xué)模型

        一級(jí)動(dòng)力學(xué)模型K-C模型為

        Cout=Cine-K/q

        (1)

        面積速率常數(shù)為

        (2)

        式中,Cout為出水濃度;Cin為進(jìn)水濃度;K為一級(jí)反應(yīng)面積速率常數(shù);q為水力負(fù)荷.K值求解滿足誤差平方和最小,其中誤差為出水實(shí)測值與出水預(yù)測值之差.

        Arrhenius方程[23]表示溫度對(duì)反應(yīng)速率的影響,公式為

        KT=K20θ(T-20)

        (3)

        式(3)的等價(jià)線性方程為

        lnKT=lnK20+(T-20)lnθ

        (4)

        式中,KT為溫度T時(shí)的面積速率常數(shù);K20為20 ℃時(shí)的面積速率常數(shù);θ為無量綱溫度系數(shù).采用式(4)的斜率與截距來計(jì)算式(3)中的參數(shù).

        采用相對(duì)均方根誤差(RRMSE)來評(píng)價(jià)模擬準(zhǔn)確性,數(shù)值范圍為0~∞.?dāng)?shù)值越接近0,表明預(yù)測值與實(shí)測值越接近,即

        (5)

        2 結(jié)果與分析

        2.1一級(jí)動(dòng)力學(xué)模型適用性

        表2中,8月~12月間,番茄濾床一級(jí)動(dòng)力學(xué)模型氨氮、TN、TP的RRMSE分別為0.013~0.041,0.012~0.059和0.027~0.096;空心菜濾床氨氮、TN、TP的RRMSE分別為0.018~0.051,0.011~0.037和0.012~0.054.上述RRMSE值

        均接近零.因此,一級(jí)動(dòng)力學(xué)模型作為本試驗(yàn)濾床的預(yù)測模型是適宜的.Wang等[24]利用一級(jí)動(dòng)力學(xué)模型進(jìn)行浮床系統(tǒng)營養(yǎng)鹽去除的研究,獲得了理想效果.

        2.2K隨水溫變化特征

        圖2為水溫T與KT之間的相關(guān)關(guān)系.圖2(a)~(d)表明,濾床氨氮、TN的KT值隨水溫的上升而增大.氮去除效率與水溫呈正相關(guān)性,其原因是濕地系統(tǒng)脫氮效率易受溫度影響[25-27].圖2(e)~(f)表明,TP的KT值隨水溫?zé)o明顯變化趨勢(shì).

        表2 K值和RRMSE

        (d) 空心菜濾床,TN (e) 番茄濾床,TP (f) 空心菜濾床,TP

        由表3可得,空心菜濾床的氨氮、TN和TP的K20均高于番茄濾床,空心菜濾床擁有更佳的氮磷去除功能.氨氮、TN和TP的K20對(duì)比表明,濾床對(duì)氨氮和TP的去除效率優(yōu)于對(duì)TN的去除率.TN去除效率不佳原因?yàn)?① 進(jìn)水碳氮比較低(m(C)/m(N)=2);② 濾床內(nèi)為單一好氧環(huán)境.

        表3中Arrhenius公式[23]擬合結(jié)果顯示,氨氮、TN面積速率常數(shù)受水溫影響明顯.濾床的氨氮溫度系數(shù)θ值均較TN的θ值大,即氨氮去除受溫度影響更為敏感.Kadlec等[28-29]指出濕地系統(tǒng)

        表3 Arrhenius擬合結(jié)果

        TN的θ值為1.05.Nakasone等[30]指出濕地反硝化θ值為1.048.濾床內(nèi)TP去除不受水溫影響,根系截流和植物吸收是濾床除磷的主要途徑[31].番茄濾床TP的θ值為1.01,原因是低溫下番茄生長活性降低,磷吸收效果有所下降.Kadlec等[28-29]指出濕地系統(tǒng)去除TP的θ值為1.0.

        2.3水力負(fù)荷對(duì)K20的影響

        圖3為水力負(fù)荷與K20(由式(3)計(jì)算)間的相關(guān)關(guān)系.由圖可見,氨氮、TN、TP的K20均隨水力負(fù)荷的提高而增大,這與Kadlec[17]和Rousseau等[21]的研究結(jié)果一致.通過乘冪[17]和指數(shù)[18]回歸方程擬合K20與水力負(fù)荷間關(guān)系,即

        K20=K′qm

        (6)

        K20=K″e(cuò)nq

        (7)

        式中,K′,K″,m和n為無量綱負(fù)荷系數(shù),見表4.

        (d) 空心菜濾床,TN (e) 番茄濾床,TP (f) 空心菜濾床,TP

        參數(shù)番茄濾床空心菜濾床氨氮TNTP氨氮TNTP乘冪K'0.1070.0760.0850.1670.1180.147m0.2220.2570.1580.2890.3390.199R20.6470.5380.3750.7100.7690.381指數(shù)K″0.0620.0390.0560.0810.0500.088n0.8551.0110.6801.1151.3320.818R20.6110.5340.4430.6760.7560.410

        由表4可見,空心菜濾床的m和n值高于番茄濾床,表明同等水力負(fù)荷增量下,空心菜濾床K20增速較快,即其具有較高的負(fù)荷緩沖能力.

        由表4中R值表明,乘冪回歸比指數(shù)回歸整體具有更高的擬合度.

        2.4一級(jí)動(dòng)力學(xué)模型拓展式

        2.4.1模型拓展式評(píng)價(jià)

        在濾床一級(jí)動(dòng)力學(xué)模型中考慮水溫和水力負(fù)荷因素,結(jié)合式(1)、(3)和(6),則可構(gòu)建如下方程:

        Cout=Cinexp(-K′qmθT-20/q)=

        Cinexp(-K′qm-1θT-20)

        (8)

        空心菜濾床模型拓展式為

        Cout,NH3-N=Cin,NH3-Nexp(-0.167q-0.7111.07T-20)

        Cout,TN=Cin,TNexp(-0.118q-0.6611.04T-20)

        Cout,TP=Cin,TPexp(-0.147q-0.8011.00T-20)

        式中,Cout,NH3-N,Cout,TN,Cout,TP分別為氨氮、TN和TP出水濃度;Cin,NH3-N,Cin,TN,Cin,TP分別為氨氮、TN和TP進(jìn)水濃度.

        利用線性回歸方程y=αx評(píng)價(jià)出水實(shí)測值與預(yù)測值間偏差.最佳情況為所有數(shù)據(jù)點(diǎn)全部位于斜線y=x上(見圖4),即α值越接近1,實(shí)測值與預(yù)測值之間偏差越小,模型準(zhǔn)確性越高.圖4(a)~(c)中氨氮、TN和TP的α值分別為1.033,0.975和0.965,均接近1.其中,出水氨氮預(yù)測值略高于實(shí)測值,TN,TP的預(yù)測值略低于實(shí)測值.α值和R2(0.476,0.623,0.877)表明,式(8)對(duì)試驗(yàn)濾床氮磷去除的預(yù)測具備準(zhǔn)確性.

        2.4.2模型拓展式應(yīng)用

        圖5為本試驗(yàn)進(jìn)水水質(zhì)和濾床結(jié)構(gòu)條件下,出水氮磷指標(biāo)分別達(dá)到《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB18918—2002)一級(jí)A排放標(biāo)準(zhǔn)的最大允許水力負(fù)荷線,3條負(fù)荷線下方為達(dá)標(biāo)區(qū).為確保氮磷出水均達(dá)到一級(jí)A排放標(biāo)準(zhǔn),水力負(fù)荷應(yīng)取氨氮、TN和TP中的最小值.圖5表明,當(dāng)水溫低于19.5 ℃時(shí),TN為水力負(fù)荷最小值,水溫高于19.5 ℃時(shí),TP為水力負(fù)荷最小值.為有效增加濾床整體進(jìn)水水力負(fù)荷,應(yīng)在水溫低于19.5 ℃時(shí)提高TN去除效率,在水溫高于19.5 ℃時(shí)提高TP去除效率.

        (a) 空心菜濾床,氨氮

        (b) 空心菜濾床,TN

        (c) 空心菜濾床,TP

        圖5 達(dá)標(biāo)水力負(fù)荷線

        3 結(jié)論

        1) 與番茄濾床相比,空心菜濾床的氮磷去除能力更優(yōu),且具備較高的負(fù)荷緩沖能力.HVFB去除氮磷效率大小順序?yàn)榘钡?、TP、TN.

        2) HVFB氨氮、TN的K值與水溫呈正相關(guān)性.Arrhenius擬合結(jié)果表明,番茄濾床氨氮和TN的θ值分別為1.08和1.06,空心菜濾床氨氮和TN的θ值分別為1.07和1.04,氨氮去除率受水溫影響更為敏感.TP的K值基本不受水溫影響.

        3) 氨氮、TN和TP的K20隨水力負(fù)荷的提高而增大.氨氮和TN的乘冪回歸R2值較指數(shù)回歸R2值更接近于1,而TP結(jié)果則相反.乘冪回歸方程整體具有更高擬合度.

        4) 氨氮、TN和TP的α值(1.033,0.975和0.965)和R2(0.476,0.623,0.877)結(jié)果表明,考慮了水溫和水力負(fù)荷因素的模型拓展式對(duì)濾床氮磷去除的預(yù)測具有準(zhǔn)確性和可靠性.

        5) 提升TN去除效率(水溫小于19.5 ℃)和TP去除效率(水溫大于19.5 ℃),有利于提高濾床整體進(jìn)水水力負(fù)荷.

        References)

        [1]Headley T R, Tanner C C. Constructed wetlands with floating emergent macrophytes: An innovative stormwater treatment technology [J]CriticalReviewsinEnvironmentalScienceandTechnology, 2012, 42(21): 2261-2310. DOI:10.1080/10643389.2011.574108.

        [2]Sample D J, Rangarajan S, Lee J, et al. Urban wet-weather flows [J].WaterEnvironmentResearch, 2014, 86(10): 910-991. DOI:10.2175/106143014x14031280667372.

        [3]Zhao F L, Yang W D, Zeng Z, et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water [J].Biomass&Bioenergy, 2012, 42(7):212-218. DOI:10.1016/j.biombioe.2012.04.003.

        [4]Zhou X H, Wang G X, Yang F. Nitrogen removal from eutrophic river waters by using Rumex acetosa cultivated in ecological floating beds [J].FreseniusEnvironmentalBulletin, 2012, 21(7A): 1920-1928.

        [5]Li H, Hao H, Yang X, et al. Purification of refinery wastewater by different perennial grasses growing in a floating bed [J].JournalofPlantNutrition, 2012, 35(1): 93-110. DOI:10.1080/01904167.2012.631670.

        [6]Nduwimana A, Yang X L, Wang L R. Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter [J].JEnvironSci, 2007, 19(9): 1079-1085.

        [7]Wen L, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: Preliminary results from growth chamber experiment [J].Agriculture,Ecosystems&Environment, 2002, 90(1): 9-15. DOI:10.1016/s0167-8809(01)00292-4.

        [8]宋海亮, 呂錫武, 李先寧, 等. 水生植物濾床處理太湖入湖河水的工藝性能[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004, 34(6): 810-813. DOI:10.3321/j.issn:1001-0505.2004.06.021.Song Hailiang, Lü Xiwu, Li Xianning, et al. Performance of aquatic plant filter bed for the treatment of Taihu Lake inflow water [J].JournalofSoutheastUniversity(NaturalScienceEdition), 2004, 34(6): 810-813. DOI:10.3321/j.issn:1001-0505.2004.06.021. (in Chinese)

        [9]Borne K E, Fassman E A, Tanner C C. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc [J].EcologicalEngineering, 2013, 54(5): 173-182. DOI:10.1016/j.ecoleng.2013.01.031.

        [10]Chang N B, Xuan Z M, Marimon Z, et al. Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond [J].EcologicalEngineering, 2013, 54: 66-76. DOI:10.1016/j.ecoleng.2013.01.019.

        [11]Xin Z J, Li X Z, Nielsen S N, et al. Effect of stubble heights and treatment duration time on the performance of water dropwort floating treatment wetlands (FTWs) [J].EcologicalChemistryandEngineeringS, 2012, 19(3): 315330. DOI:10.2478/v10216-011-0023-x.[12]Weragoda S K, Jinadasa K B S N, Zhang D Q, et al. Tropical application of floating treatment wetlands [J].Wetlands, 2012, 32(5): 955-961. DOI:10.1007/s13157-012-0333-5.

        [13]Stein O R, Biederman J A, Hook P B, et al. Plant species and temperature effects on the k-C*first-order model for COD removal in batch-loaded SSF wetlands[J].EcologicalEngineering, 2006, 26(2): 100-112. DOI:10.1016/j.ecoleng.2005.07.001.

        [14]Saeed T, Sun G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands [J].WaterResearch, 2011, 45(10): 3137-3152. DOI:10.1016/j.watres.2011.03.031.

        [15]Shih S S, Kuo P H, Fang W T, et al. A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling [J].EcologicalEngineering, 2013, 61(PA): 200-206. DOI:10.1016/j.ecoleng.2013.09.054.

        [16]Karpuzcu M E, Stringfellow W T. Kinetics of nitrate removal in wetlands receiving agricultural drainage [J].EcologicalEngineering, 2012, 42: 295-303. DOI:10.1016/j.ecoleng.2012.02.015.

        [17]Kadlec R H. The inadequacy of first-order treatment wetland models [J].EcologicalEngineering, 2000, 15(1): 105-119. DOI:10.1016/s0925-8574(99)00039-7.

        [18]Liolios K A, Moutsopoulos K N, Tsihrintzis V A. Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands [J].ChemicalEngineeringJournal, 2012, 200-202(16): 681-693. DOI:10.1016/j.cej.2012.06.101.

        [19]Andersen J H, Murray C, Kaartokallio H, et al. A simple method for confidence rating of eutrophication status classifications [J].MarinePollutionBulletin, 2010, 60(6): 919-924. DOI:10.1016/j.marpolbul.2010.03.020.

        [20]Liu Z R, Chen X S, Zhou L M, et al. Development of a first-order kinetics-based model for the adsorption ofnickel onto peat [J].MiningScienceandTechnology(China), 2009, 19(2): 230-234. DOI:10.1016/s1674-5264(09)60044-2.

        [21]Rousseau D P L, Vanrolleghem P A, de Pauw N. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review [J].WaterResearch, 2004, 38(6): 1484-1493. DOI:10.1016/j.watres.2003.12.013.

        [22]國家環(huán)境保護(hù)總局. 水和廢水監(jiān)測分析方法[M]. 4版. 北京: 中國環(huán)境科學(xué)出版社 2002: 243-284.

        [23]Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—Ⅰ. Removal of oxygen demand, suspended solids and faecal coliforms [J].WaterResearch, 1995, 29(1): 17-26.

        [24]Wang C Y, Sample D J. Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference [J].EcologicalEngineering, 2013, 61: 292-302. DOI:10.1016/j.ecoleng.2013.09.019.

        [25]Cookson W R, Cornforth I S, Rowarth J S. Winter soil temperature (2-15 ℃) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study [J].SoilBiologyandandBiochemistry, 2002, 34(10): 1401-1415. DOI:10.1016/s0038-0717(02)00083-4.

        [26]Werker A G, Dougherty J M, McHenry J L, et al. Treatment variability for wetland wastewater treatment design in cold climates [J].EcologicalEngineering, 2002, 19(1): 1-11. DOI:10.1016/s0925-8574(02)00016-2.

        [27]Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands [J].EcologicalEngineering, 2007, 29(2): 173-191. DOI:10.1016/j.ecoleng.2006.06.013.

        [28]Kadlec R H, Knight R L.Treatmentwetlands[M]. Boca Raton, FL,USA: CRC Press, 1996: 893.

        [29]Kadlec R H, Reddy K R. Temperature effects in treatment wetlands [J].WaterEnvironmentResearch, 2001, 73(5): 543-557.

        [30]Nakasone H, Kuroda H, Kato T, et al. Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland) [J].WatSciTech, 2003, 48(10): 209-216.

        [31]宋海亮. 水生植物濾床技術(shù)改善富營養(yǎng)化水體水質(zhì)的研究[D]. 南京:東南大學(xué)土木工程學(xué)院, 2005.

        Simulation of nitrogen and phosphorus removal in hydroponic vegetable filter bed based on first-order kinetics model

        Yin Zhiping Wu Yifeng Lü Xiwu

        (School of Energy and Environment, Southeast University, Nanjing 210096, China)

        The kinetics studies on nitrogen and phosphorus removal in hydroponic vegetable filter beds (HVFB) were conducted by using first-order kinetics model. The raw water was domestic sewage which were treated by biochemical treatment processes. The dependence of first-order area rate constantKof the water temperature was estimated by the Arrhenius equation, and the relationship betweenK20and hydraulic loading rateqwas analyzed by power and exponential regression equations. Meanwhile, the extended kinetics model of the filter bed was constructed. The results show that, for the tomato filter bed, the temperature coefficientθvalues of ammonia nitrogen, total nitrogen (TN), and total phosphorus (TP) were 1.08, 1.06, and 1.01, respectively, and theθvalues in water spinach filter bed were 1.07, 1.04, and 1.00, respectively. TheKvalues of ammonia nitrogen and TN have significant positive correlation with the water temperature, and theKvalues of ammonia nitrogen are more sensitive to water temperature change, but there are no significant differences between theKvalues at different water temperatures for TP. Compared with exponential regression equation, power regression equation is more suitable for describing the relationship betweenK20andq. The extended first-order models, considering the influences of the water temperature andqonK, have a certain accuracy and higher reliability in predicting removal results of filter beds. Enhanced TN removal efficiency (water temperature is lower than 19.5 ℃) and TP removal efficiency (water temperature is higher than 19.5 ℃) will cause an overall increase on hydraulic loading rate of HVFB.

        hydroponic vegetable filter bed; nitrogen; phosphorus; first-order kinetics model; extended first-order kinetics model

        10.3969/j.issn.1001-0505.2016.04.023

        2015-11-04.作者簡介: 殷志平(1991—),男,碩士生;吳義鋒(聯(lián)系人),男,博士,副教授,shinfun@seu.edu.cn.

        “十二五”國家科技支撐計(jì)劃資助項(xiàng)目(2013BAJ10B13).

        10.3969/j.issn.1001-0505.2016.04.023.

        X171

        A

        1001-0505(2016)04-0812-06

        引用本文: 殷志平,吳義鋒,呂錫武.基于一級(jí)動(dòng)力學(xué)模型的水培蔬菜濾床氮磷去除模擬[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,46(4):812-817.

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包
        99re6在线视频精品免费| 国产精品女丝袜白丝袜| 精品国产一区二区三广区| 久久黄色国产精品一区视频| 亚洲色成人网站www永久| 久久综合给合久久狠狠狠97色69 | 国产对白刺激在线观看| 日韩有码中文字幕在线视频| 国产一区二区精品久久岳| 欧美激情a∨在线视频播放| 国产一区二区三区精品久久呦| 亚洲国产天堂av成人在线播放| 精品亚洲一区二区三区四| 国产亚洲午夜高清国产拍精品| 亚州精品无码人妻久久| 一区二区三区精品婷婷| 国产小视频在线看不卡| 男女车车的车车网站w98免费| 美女扒开屁股让男人桶| 少妇人妻偷人精品视频| 骚片av蜜桃精品一区| 亚洲一区二区懂色av| 国产精品无码dvd在线观看| 久久精品人妻一区二区三区| 狠狠色丁香婷婷久久综合2021| 亚洲综合在不卡在线国产另类| 大学生高潮无套内谢视频| 精品乱码久久久久久中文字幕| 男人的天堂av一二三区| 亚洲中文字幕国产剧情| 亚洲国产精品日本无码网站 | 亚洲精品综合色区二区| 蜜桃高清视频在线看免费1 | 在线亚洲欧美日韩精品专区| 中文字幕精品一二三区| 亚洲高清一区二区精品| 国产av无码专区亚洲avjulia| 狠狠色狠狠色综合久久第一次| 亚洲国产精品色婷婷久久| 青青手机在线观看视频| 不卡高清av手机在线观看|