亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Further research of the eigenvalues of the M/GB/1 operator

        2016-09-15 03:21:04EHMETAblet
        關(guān)鍵詞:新疆研究

        EHMET Ablet

        (College of Application Mathematics, Xinjiang University of Finance and Economics,Urumqi,Xinjiang 830012,China)

        ?

        Further research of the eigenvalues of theM/GB/1 operator

        EHMET Ablet

        (College of Application Mathematics, Xinjiang University of Finance and Economics,Urumqi,Xinjiang 830012,China)

        M/GB/1queueing model; eigenvalue; geometric multiplicity

        1 Introduction

        The following M/GB/1 model is commonly used in queueing theory which can be expressed as (see[1]):

        (1)

        η(x))p0,1(x,t),

        (2)

        η(x))pn,1(x,t)+λpn-1,1(x,t), n≥1,

        (3)

        (4)

        (5)

        p0,0(0)=1, pn,1(x,0)=0, n≥0,

        (6)

        where p0,0(t) represents the probability that at time t the system is empty, pn,1(x,t)dx(n≥1) represents the probability that at time t there are n customers in the system with elapsed service time of the customer undergoing service lying between x and x+dx, B represents the maximum capacity of the service station, and η(x) is the conditional service rate and satisfies

        We will use notations in [2] (see also [5]). For simplicity,we introduce

        Choose the state space X as follows:

        It is obvious that X is a Banach space. Let

        pn,1(x)(n≥0) are absolutely continuous function,

        For p∈D(A),we define

        For p∈X,we define Up=Λp and

        then the above system of equations (1)-(6) can be written as an abstract ordinary differential equation in the Banach space X:

        (7)

        p(0)=(1,0,0,0,…).

        (8)

        papers [2-6] obtained the following results:

        Theorem 1A-U+E generates a C0-semigroup T(t).

        Theorem 20 is an eigenvalue of A-U+E,

        belongs to resolvent set of A-U+E when η(x)=η.Particularly all points on the imaginary axis except for zero belongs to the resolvent set of A-U+E.

        2 Main Results

        (9)

        (10)

        λpn-1,1(x), n≥1

        (11)

        (12)

        (13)

        Solving equation (10) and (11), we can obtain

        p0,1(x)=a0e-(γ+λ+η)x,

        (14)

        pn-1,1(τ)dτ, n≥1.

        (15)

        From (15), we can obtain the following by Fubini theorem

        (16)

        Substituting (14) into (9) yields

        (17)

        Substituting (14), (15) and (16) into (12) and (13) yields

        (18)

        (19)

        From (17), (18) and (19), we can derive

        |a0|<∞,|a1|<∞,|a2|<∞,|a3|<∞.

        Upon making use of (15) and (16) in (13), we can also derive

        ?

        ?

        (20)

        (21)

        (21) can be rewritten as:

        ?

        ?

        (22)

        If we let

        (23)

        then

        (24)

        comparing (22) with (24), we can derive

        ?

        (25)

        ?

        ?

        ?

        (26)

        From (26) and(see Remark)

        we can obtain the following estimation

        (27)

        From (14), (15), (16), (27) and Fubini theorem by noting that

        we can estimate ‖p‖, i.e.,

        (28)

        ?

        Acknowledgments

        The author is grateful to professor Geni Gupur for his constructive criticisms, encouraging comments and helpful suggestions.

        References:

        [1] CHAUDHRY M L,TEMPLETON J G C.A First Course in Bulk Queues[M].New York:John Wiley Sons,1983.

        [2] GUPUR G,LI X Z,ZHU G T.Existence and Uniqueness of Nonnegative Solution of M/GB/1 Queueing Model[J].Computers and Mathematics with Applications,2000(39):199-209.

        [3] GENI G.Resolvent Set of the M/Mk,B/1 Operator[J].Acta Analysis Functionalis Applicata,2004(6):106-121.

        [4] ABDUKERIM H J,AGNES R.Asymptotic Stability of the Solution of the M/MB/1 Queueing Model[J].Computers and Mathematics with Applications,2007(53):1411-1420.

        [5] JIA H,SERIKBOL B.Another Eigenvalue of the M/M2/1 Operator[J].Journal of Xinjiang University(Natural Science Edition),2009(1):60-68.

        [6] ZHANG L,GENI G.Another Eigenvalue of the M/M/1 Operator[J].Acta Analysis Functionalis Applicata,2008(10):81-91.

        1004—5570(2016)04-0045-06

        M/GB/1 算子的特征值的進一步研究

        艾合買提·阿不來提

        (新疆財經(jīng)大學(xué) 應(yīng)用數(shù)學(xué)學(xué)院,新疆 烏魯木齊830012)

        M/GB/1 排隊模型;特征值;幾何重數(shù)

        O177.92

        A

        2016-04-20

        艾合買提·阿不來提(1981-),男,講師,在讀博士,研究方向: 泛函分析及應(yīng)用,E-mail:ehmetablet@163.com.

        date:2016-04-20

        Supported by the scientific research foundation of Xinjiang University Of Finance and Economics (No: 2015XYB009)

        Biography:Ehmet Ablet(1981-), male, lecture,PHD student, Research direction: Functional analysis and applications,E-mail: ehmetablet@163.com.

        猜你喜歡
        新疆研究
        FMS與YBT相關(guān)性的實證研究
        走進新疆
        國畫家(2022年2期)2022-04-13 09:07:46
        2020年國內(nèi)翻譯研究述評
        遼代千人邑研究述論
        在新疆(四首)
        視錯覺在平面設(shè)計中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        新版C-NCAP側(cè)面碰撞假人損傷研究
        新疆多怪
        絲綢之路(2014年9期)2015-01-22 04:24:46
        新疆對外開放山峰
        亚洲中文字幕在线精品2021| 百合av一区二区三区| 99久久久无码国产精品9| 2020无码专区人妻系列日韩| 少妇粉嫩小泬喷水视频www| 中国农村妇女hdxxxx| 亚洲va中文字幕无码| 亚洲碰碰人人av熟女天堂| 国产A√无码专区| 亚洲国产成人无码影院| 亚洲片在线视频| 国产高清一区在线观看| 少妇高潮太爽了免费网站| 黄色av亚洲在线观看| 妺妺窝人体色www婷婷| 中文字幕在线日亚洲9| 亚洲中文字幕无码爆乳| 特级毛片a级毛片在线播放www| 在线观看网址你懂的| 热re99久久精品国产66热6| 精品国产麻豆一区二区三区| 精品人妻一区二区三区不卡毛片| 丝袜美腿福利视频在线| 巨爆中文字幕巨爆区爆乳| 亚洲国产精品久久电影欧美| 边啃奶头边躁狠狠躁| 色婷婷日日躁夜夜躁| 免费国产黄片视频在线观看| 亚洲女同精品久久女同| 精品日韩在线观看视频| 一本色道久久综合亚洲| 风韵少妇性饥渴推油按摩视频| 欧美人与动人物姣配xxxx| 91av视频在线| 日韩Va亚洲va欧美Ⅴa久久| 亚洲国产精品嫩草影院久久av| 人成在线免费视频网站| 亚洲综合色区一区二区三区| 国产精品人妻一码二码尿失禁 | 综合五月激情二区视频| 特级无码毛片免费视频尤物|