頡錄有,崔海月,張登紅,蔣 軍,董晨鐘
(甘肅省原子分子物理與功能材料重點(diǎn)實(shí)驗(yàn)室,西北師范大學(xué)物理與電子工程學(xué)院,甘肅蘭州 730070)
?
Ti21+和TiTi20+離子雙電子復(fù)合過程的理論研究
頡錄有,崔海月,張登紅,蔣軍,董晨鐘
(甘肅省原子分子物理與功能材料重點(diǎn)實(shí)驗(yàn)室,西北師范大學(xué)物理與電子工程學(xué)院,甘肅蘭州 730070)
利用多組態(tài)Dirac-Fock(MCDF)方法和密度矩陣?yán)碚摚到y(tǒng)計(jì)算了類氫Ti21+(1s)和類氦Ti20+(1s2)離子KLL雙電子復(fù)合過程中所有共振雙激發(fā)態(tài)的能級、輻射和Auger躍遷的幾率,以及雙電子伴線的強(qiáng)度、角分布和極化度.研究了Breit相互作用對Auger幾率、雙電子伴線強(qiáng)度和輻射X射線極化度的影響.計(jì)算結(jié)果與已有文獻(xiàn)和EBIT實(shí)驗(yàn)測量結(jié)果符合較好.
MCDF理論;密度矩陣?yán)碚?雙電子復(fù)合;共振強(qiáng)度;極化度
雙電子復(fù)合(Dieletronicrecombination,DR)是一個(gè)兩步的電子-離子復(fù)合過程,即離子首先共振俘獲一個(gè)自由電子,同時(shí)激發(fā)內(nèi)部一個(gè)束縛電子形成共振雙激發(fā)態(tài),進(jìn)一步共振雙激發(fā)態(tài)輻射光子躍遷到低能態(tài)的過程[1].DR過程是各種高溫天體、實(shí)驗(yàn)室等離子體和熱核聚變等離子體中十分重要的動(dòng)力學(xué)過程,強(qiáng)烈影響著等離子體內(nèi)部的能量運(yùn)輸、電荷態(tài)平衡和輻射X射線分布[1-5].由于等離子體中熱電子速率分布的各項(xiàng)異性或電磁場的影響,等離子體輻射的X射線譜通常是極化的[6].研究等離子體中各種高電荷離子的DR過程及其輻射X射線譜為精確診斷等離子體的溫度、密度及各向異性的電子能量分布提供了重要手段[2-7].
類氫、類氦等少電子體系由于其簡單的結(jié)構(gòu)和強(qiáng)的DR伴線譜,以及在等離子體狀態(tài)診斷方面有重要的應(yīng)用,相關(guān)的研究一直被人們重視[8].例如,利用電子束離子阱(EBIT)和重離子儲存環(huán)裝置,實(shí)驗(yàn)上人們已經(jīng)開展了一些類氫離子,包括He+,O7+,Ti2l+,Kr35+和U91+等[8-12]以及許多類氦離子,包括Ti20+,Fe24+,Ni26+,Mo40+,Kr34+,Ba54+和Xe52+等[6,13-18]雙電子復(fù)合過程及其輻射X射線光譜的研究.在電子束離子阱實(shí)驗(yàn)中,由于入射電子是定向的,實(shí)驗(yàn)測得的X射線譜也是極化的,實(shí)驗(yàn)結(jié)果的解釋需要精確的X射線角分布和極化度的信息[6,19].對高電荷態(tài)離子,許多理論和實(shí)驗(yàn)研究表明,相對論效應(yīng)和Breit相互作用效應(yīng)非常重要,它們可以顯著改變DR過程輻射X射線的強(qiáng)度、角分布以及極化特性[6,8,19-22].
Ti是實(shí)驗(yàn)室和天體中重要的元素.在聚變等離子體中雜質(zhì)Ti離子的DR過程是等離子體能量損失的重要過程,將導(dǎo)致等離子體冷卻;同樣,在天體光譜的模擬、物理模型的建立中也需要大量高精度的Ti離子的雙電子復(fù)合截面、速率系數(shù)等數(shù)據(jù)[23-24].本文將利用相對論多組態(tài)Dirac-Fock理論方法[25]及密度矩陣?yán)碚揫26],系統(tǒng)開展Ti2l+和Ti20+離子KLL雙電子復(fù)合過程的研究.通過細(xì)致計(jì)算所有KLL共振態(tài)的DR伴線強(qiáng)度及其輻射X射線的極化度和角分布,獲得其微分強(qiáng)度并開展對O’Rourke等[13]和Watanabe等[11]EBIT實(shí)驗(yàn)測量的類氫和類氦Ti離子KLL能區(qū)的X射線譜的理論模擬;同時(shí),分析了Breit相互作用對Auger幾率、共振強(qiáng)度和DR過程輻射X射線線性極化度的影響.
1.1雙電子復(fù)合的伴線強(qiáng)度
類H和類He離子的KLL雙電子復(fù)合過程可以表示如下:
(1)
1s2+e-→1s2l2l′→1s22l″+hν′1,
(2)
其中,1s和1s2分別為類氫、類氦離子的DR過程初態(tài)(表示為i);2l2l′和1s2l2s′為DR過程的中間雙激發(fā)態(tài)(表示為d);1s2l″和1s22l″為DR過程的輻射末態(tài)(表示為f).
(3)
Auger躍遷幾率可以表示為
(5)
輻射躍遷幾率Ar可由下式計(jì)算[14]:
(6)
本文研究中,DR過程中涉及的雙激發(fā)態(tài)以及Auger、輻射末態(tài)能級和波函數(shù)的計(jì)算均采用了基于多組態(tài)Dirac-Fock理論方法的GRASP2K[28]程序.為了考慮重要的電子關(guān)聯(lián)效應(yīng),類氫Ti21+離子DR初態(tài)的能級和波函數(shù)計(jì)算中包括了nl(n=1~5,l=0,1,…,n-1)共15個(gè)電子態(tài),中間雙激發(fā)態(tài)和輻射末態(tài)包括了1snl(n=1~5,l=0,1,…,n-1),2s2,2s2p,2p2共18個(gè)組態(tài);對于Ti20+離子,DR初態(tài)的計(jì)算包括了15個(gè)組態(tài)1snl(n=1~5,l=0,1,…,n-1),中間雙激發(fā)態(tài)和輻射末態(tài)包括了17個(gè)組態(tài)1s2nl(n=2~5,l=0,1,…,n-1),1s2s2,1s2s2p和1s2p2.使用RATIP程序包的相對論組態(tài)相互作用計(jì)算(RELCI)模塊[29],進(jìn)一步考慮了Breit相互作用、QED(自能和真空極化)效應(yīng)以及原子核效應(yīng)對能級和波函數(shù)的修正.目前Auger幾率的計(jì)算采用修改了的RATIP程序的AUGER模塊[29].為了分析Breit相互作用效應(yīng)的影響,具體計(jì)算在2種模型下開展,其一是計(jì)算中僅考慮庫侖相互作用算符(1/rpq),結(jié)果標(biāo)記為C;另一種是考慮了庫侖+Breit相互作用算符(1/rpq+VBreit),結(jié)果記為C+B.
1.2輻射光子的角分布和極化度
根據(jù)密度矩陣?yán)碚揫26],在電偶極(E1)近似下,DR過程輻射X射線的角分布W(θ)可以表示為
(7)
其中,W0為總的輻射躍遷幾率;θ為輻射的X射線與入射粒子束流方向(定義為Z軸)的夾角;P2cosθ為二階勒讓德多項(xiàng)式;β為各項(xiàng)異性參數(shù),可以表示為[30]
(8)
(9)
雙電子復(fù)合過程輻射X射線的線性極化度可以表示為[13]
(10)
其中I∥和I⊥分別為電矢量平行和垂直Z軸的X射線的光強(qiáng).當(dāng)θ=90°時(shí),極化度與各項(xiàng)異性參數(shù)間滿足關(guān)系[26]
(11)
θ=90°時(shí),DR過程輻射X射線的微分強(qiáng)度可以表示為[13]
(12)
其中,Sidf為雙電子伴線的強(qiáng)度;P為θ=90°時(shí)雙電子伴線的極化度.
表2和表3分別給出了Ti21+和Ti20+離子KLL過程輻射X射線的能量、輻射躍遷幾率以及雙電子伴線的強(qiáng)度和極化度(為了便于分析,對每條伴線用字母進(jìn)行了標(biāo)記).從表中可以看到,目前計(jì)算的Ti21+和Ti20+離子的輻射躍遷能與NIST數(shù)據(jù)[31]符合較好,最大偏差分別不超過0.08%和0.02%.文獻(xiàn)[24]給出的Ti21+離子的躍遷能,與NIST數(shù)據(jù)[31]比較,最大偏差約為0.19%.表中同時(shí)也給出了考慮Breit相互作用后本文計(jì)算的雙電子伴線的強(qiáng)度和極化度,Δs和Δp(Δs=SC+B-SC,Δp=PC+B-PC)分別描述了Breit相互作用對伴線強(qiáng)度和極化度的影響.結(jié)果表明,對于類氫Ti21+離子,Breit相互作用對DR伴線的強(qiáng)度有重要的影響,其中對g′,n′,f′,e′伴線的影響最大,分別為36.8%,33.3%,20.1%和19.3%;Breit相互作用僅對d′,e′,f′伴線的極化度有影響,分別為0.1%,0.7%和28.9%.對于類氫Ti21+離子,Breit相互作用對強(qiáng)線的影響相對較小,如對j,k,a,t伴線,分別為0.2%,0.9%,9.3%和1.5%;但其對弱線的影響相對較大,如對u,v,f,q,c伴線,分別為234.8%,100.0%,72.4%,48.0%,38.1%.值得注意的是,對于類氦Ti20+離子,Breit相互作用對其雙電子伴線的線性極化度沒有影響,這與Shah等[6]最近報(bào)道的有關(guān)Kr34+,Kr32+離子DR伴線極化度的EBIT實(shí)驗(yàn)測量結(jié)果一致.另外,作為比較,表中也分別給出O’Rourke等[24]和Chen等[32]理論計(jì)算的不考慮Breit相互作用的伴線強(qiáng)度和極化度,可以看出本文目前同樣不考慮Breit相互作用的結(jié)果與其符合的很好.
表1 Ti21+,Ti20+離子KLL過程形成的共振雙激發(fā)態(tài)、共振能Edi(eV)和Auger躍遷幾率Aa(1013 s-1)
表2 Ti21+離子KLL過程的輻射躍遷能Edf(eV)、輻射幾率雙電子伴線強(qiáng)度S(10-20cm2·eV)及極化度P
表3 Ti20+離子KLL共振能區(qū)躍遷能Edi(eV)、輻射幾率及伴線強(qiáng)度S(10-20cm2·eV)和極化度P
圖1 Ti21+離子KLL共振線的角分布Fig 1 Angular distribution function W′(θ)=1+βP2(cosθ) for the dielectronic satellite lines of Ti21+ ion as functions of θ
圖2 Ti20+離子KLL雙電子伴線的角分布Fig 2 Angular distribution function W′(θ) for the dielectronic satellite lines of Ti20+ ion as functions of θ
根據(jù)表2和表3計(jì)算所得Ti21+,Ti20+離子DR伴線強(qiáng)度和極化度并結(jié)合(12)式,可以很容易得到θ=90°時(shí)DR伴線的微分強(qiáng)度.圖3(a,b)給出了目前考慮Breit相互作用后計(jì)算所得Ti21+離子14條DR伴線和Ti20+離子22條DR伴線的微分強(qiáng)度,并考慮O’Rourke[13]等EBIT實(shí)驗(yàn)測量的精度(FWHN≈47 eV)對其進(jìn)行了Gauss卷積;圖3(c)給出了進(jìn)一步考慮實(shí)驗(yàn)中Ti21+離子的豐度約為65%,Ti21+離子的豐度約為34%后,本文理論模擬得到的3 200~3 570 eV能區(qū)Ti離子的KLL雙電子復(fù)合過程的X射線譜,并與O’ROURKE等[13]實(shí)驗(yàn)測量的結(jié)果進(jìn)行了比較.從圖3可以看出,目前的理論模擬與實(shí)驗(yàn)結(jié)果符合的比較好.在3 350~3 450 eV能區(qū)理論值比實(shí)驗(yàn)值稍小,主要原因是目前理論中沒考慮Ti20+,Ti21+離子KLL雙電子復(fù)合過程的輻射末態(tài)(1s2l″和1s22l″)進(jìn)一步輻射退激發(fā)放出X光子的影響[24].表4給出了考慮所有伴線的貢獻(xiàn)(求和)后,得到的Ti21+和Ti20+離子KLL雙電子復(fù)合過程總的共振強(qiáng)度和總的微分強(qiáng)度,并與已有的理論計(jì)算[6]和實(shí)驗(yàn)測量結(jié)果[2]進(jìn)行了比較.從表4可以看出,對于Ti21+離子,Breit相互作用盡管導(dǎo)致總強(qiáng)度和總微分強(qiáng)度略有增大,而對Ti20+離子則正好相反,但其影響均很小.與Watanabe等[11]和O’Rourke等[13]沒有考慮Breit相互作用的理論計(jì)算結(jié)果比較,目前結(jié)果與其符合的很好,這說明對于中Z鈦離子,總的雙電子伴線強(qiáng)度對Breit相互作用不是很敏感.同時(shí),與EBIT實(shí)驗(yàn)測量的結(jié)果[11,13]比較,理論結(jié)果均在實(shí)驗(yàn)誤差范圍之內(nèi).
表4 Ti21+和Ti20+離子總的KLL伴線強(qiáng)度(10-20cm2·eV)和微分強(qiáng)度(10-20cm2eV·sr-1)
圖3 Ti21+和Ti20+離子的微分共振強(qiáng)度和Gaussian (FWHM=47 eV)卷積及其與EBIT 實(shí)驗(yàn)結(jié)果[14]的比較Fig 3 The calculated differential resonance strengths of Ti21+ and Ti20+ ions convolved with a Gaussian of FWHM 47 eV and compared with EBIT experimental results[13] with considering the ratio of the relative proportion of Ti21+∶Ti20+=34%∶65%
利用基于相對論多組態(tài)Dirac-Fock理論方法的GRASP2K和RATIP程序[28-29],系統(tǒng)計(jì)算了Ti21+(1s)和Ti20+(1s2)離子共振俘獲自由電子形成的2l2l″,1s2l2l″(l,l″=s,p)共振雙激發(fā)態(tài)的精細(xì)結(jié)構(gòu)能級、電偶極(E1)輻射躍遷幾率以及Auger躍遷幾率,并在獨(dú)立過程和孤立共振近似下得到了KLL雙電子復(fù)合過程的強(qiáng)度;同時(shí),結(jié)合密度矩陣?yán)碚摚?jì)算了所有共振線的角分布和線性極化度以及微分強(qiáng)度.計(jì)算中系統(tǒng)考慮了電子關(guān)聯(lián)效應(yīng)、QED效應(yīng)及Breit相互作用的影響.結(jié)果表明,對于中Z的Ti離子,Breit相互作用對一些強(qiáng)的Auger躍遷的影響不大,但對一些弱的Auger躍遷影響較大,導(dǎo)致其共振強(qiáng)度不考慮和考慮Breit相互作用的結(jié)果間有較大的偏差;與類氫的Ti離子相比,Breit相互作用對類氦Ti離子的極化度無影響,對類氫離子主要是對c′,e′,f′三條線的極化度有影響.與NIST數(shù)據(jù)[31]及已有理論計(jì)算[11,13,24]及EBIT的實(shí)驗(yàn)測量結(jié)果[12,14]比較,目前的結(jié)果包括共振能、輻射躍遷能以及總的KLL共振強(qiáng)度、微分強(qiáng)度都與其符合的比較好.
[1]BURGESS A.Dielectronic recombination and the temperature of the solar Corona[J].AstrophysJ,1964,139:776.
[2]DUBAU J,VOLONTE S.Dielectronic recombination and its applications in astronomy[J].RepProgPhys,1980,43:199.
[3]BITTER M,HSUAN H,BUSH C,et al.Spectra of helium like krypton from tokamak fusion test reactor plasmas[J].PhysRevLett,1993,71:1007.
[4]WIDMANN K,BEIERSDORFER P,DECAUX V,et al.Studies of He-like krypton for use in determining electron and ion temperatures in very high-temperature plasmas[J].RevSciInstrum,1995,66:761.
[5]SEELY J F.Density-sensitive dielectronic satellite lines in microballon neon spectra[J].PhysRevLett,1979,42:1606.
[6]SHAH C,J?RG H,BERNITT S,et al.Polarization measurement of dielectronic recombination transitions in highly charged krypton ions[J].PhysRevA,2015,92:042702.
[7]INAL M K,DUBAU J.Polarisation of dielectronic recombination satellite lines[J].JPhysB,1989,22:3329.
[8]HU Z M,Li Y M,NAKAMURA N,et al.Resonance strength for KLL dielectronic recombination of hydrogenlike krypton[J].PhysRevA,2013,87:052706.
[9]DEWITT D R,SCHUCH R,QUINTEROS T,et al.Absolute dielectronic recombination cross sections of hydrogenlike helium[J].PhysRevA,1994,50:1257.
[10]KILGUS G,BERGER J,BLATT P,et al.Dielectronic recombination of hydrogenlike oxygen in a heavy-ion storage ring[J].PhysRevLett,1990,64:737.
[11]WATANABE H,KAVANAGH A P,KURAMOTO H,et al.Dielectronic recombination of hydrogen-like ions[J].NuclInstrumMethodsPhysResB,2005,235:261.
[12]BERNHARDT D,BRANDAU C,HARMAN Z,et al.Breit interaction in dielectronic recombination of hydrogenlike uranium[J].PhysRevA,2011,83:020701.
[13]O’ROURKE B E,KURAMOTO H,LI Y M,et al.Dielectronic recombination in He-like titanium ions[J].JPhysB,2004,37:2343.
[14]BEIERSDORFER P,PHILLIPS T W,WONG K L,et al.Measurement of level-specific dielectronic recombination cross sections of heliumlike Fe XXV[J].PhysRevA,1992,46:3812.
[15]KANPP D A,MARRS R E,LEVINE M A,et al.Dielectronic recombination of heliumlike nickel[J].PhysRevLett,1989,62:2104.
[16]KANPP D A,MARRS R E,SCHNEIDER M B,et al.Dielectronic recombination of helium like ions[J].PhysRevA,1993,47:2039.
[17]FUCHS T,BIEDERMANN C,RADTKE R,et al.Channel-specific dielectronic recombination of highly charged krypton[J].PhysRevA,1998,58:4518.
[18]YAO K,GENG Z,XIAO J,et al.KLL dielectronic recombination resonant strengths of He-like up to O-like xenon ions[J].PhysRevA,2010,81:022714.
[19]J?RG H,HU Z M,BEKKER H,et al.Linear polarization of X-ray transitions due to dielectronic recombination in highly charged ions[J].PhysRevA,2015,91:042705.
[20]SURZHYKOV A,SHARMA L,ST?HLKER T,et al.Polarization studies on the dielectronic recombination hypersatellite X-ray lines[J].JPhysConfSer,2010,212:012032.
[21]FRITZSCHE S,SURZHYKOV A,ST?HLKER T.Dominance of the Breit interaction in the X-ray emission of highly charged ions following dielectronic recombination[J].PhysRevLett,2009,103:113001.
[22]HU Z M,HAN X Y,LI Y M,et al.Experimental Demonstration of the Breit interaction which dominates the angular distribution of X-ray emission in dielectronic recombination[J].PhysRevLett,2012,108:073002(1-4).
[23]SHLYAPTSEVA A S,HANSEN S B,KANTSYREV V L,et al.X-ray spectropolarimetry of high-temperature plasmas[J].RevSciInstrum,2001,72:1241.
[24]O’ROURKE B E,CURRELL F J.Branching ratios of X-ray photons from dielectronic recombination processes in H-like titanium ions[J].PhysRevA,2008,77:062709.
[25]GRANT I P.RelativisticQuantumTheoryofAtomsandMolecules:TheoryandComputation[M].Berlin:Springer,2007.
[26]BALASHOV V V,GRUM-GRZHIMAILO A N,KABACHNIK N M.PolarizationandCorrelationPhenomenainAtomicCollisions:APracticalTheoryCourse[M].Berlin:Springer,2000.
[27]SHI Y L,DONG C Z,FRITZSCHE S,et al.Theory of X-ray anisotropy and polarization following the dielectronic recombination of initially hydrogen-like ions[J].ChinPhysLett,2013,30:023402.
[28]J?NSSON P,GAIGALAS G,BIERON J,et al.New version:grasp 2K relativistic atomic structure package[J].ComputPhysCommun,2013,184:2197.
[29]FRITZSCHE S.The Ratip program for relativistic calculations of atomic transition,ionization and recombination properties[J].ComputPhysCommun,2012,183:1525.
[30]BEIERSDORFER P,VOGEL D A,REED K J,et al.Measurement and interpretation of the polarization of the X-ray line emission of heliumlike Fe XXV excited by an electron beam[J].PhysRevA,1996,53:3974.
[31]KRAMIDA A,RALCHENKO Y,READER J,et al.NIST Atomic Spectra Database Ver.5.3[EB/OL].[2015-12-20].http://physics.nist.gov/asd.
[32]CHEN M H,SCOFIELD J H.Relativistic effects on angular distribution and polarization of dielectronic satellite lines of hydrogenlike ions[J].PhysRevA,1995,52:2057.
(責(zé)任編輯孫對兄)
Theoretical study on dielectronicrecombinationofhighlychargedTi21+andTi20+ions
XIELu-you,CUIHai-yue,ZHANGDeng-hong,JIANGJun,DONGChen-zhong
(KeyLaboratoryofAtomicandMolecularPhysics&FunctionalMaterialsofGansuProvince,CollegeofPhysicsandElectronicEngineering,NorthwestNormalUniversity,Lanzhou730070,Gansu,China)
Inthiswork,theKLLdielectronicrecombination(DR)processesandlinearpolarizationdegreeofemittedX-raysareinvestigatedforTi21+(1s)andTi20+(1s2)ionsintheframeworkofmulti-configurationDirac-Fock(MCDF)methodandthedensitymatrixtheory.Theresonanceenergis,radiativeandAaugertransitionprobabilities,theresonancestrengths,angulardistributionsandlinearpolarizationdegreesforallofKLLdielectronicsatellitelinesarepresented.Inthecalculations,theelectroncorrelationeffects,QEDeffectsandBreitinteractionshavebeenwellconsidered.ComparisonismadebetweenthepresentresultsandtheEBITexperimentalmeasurements,agoodagreementisobtained.
MCDFmethod;densitymatrixtheory;dielectronicrecombination;resonancestrength;polarizationdegree
10.16783/j.cnki.nwnuz.2016.03.007
2016-01-05;修改稿收到日期:2016-03-05
國家自然科學(xué)基金資助項(xiàng)目(U1331122,U1332206,11274254,11464042,11564036)
頡錄有(1975—),男,甘肅武山人,副教授,博士,碩士研究生導(dǎo)師.主要研究方向?yàn)樵咏Y(jié)構(gòu)與原子碰撞.E-mail:xiely@nwnu.edu.cn
O562.6
A
1001-988Ⅹ(2016)03-0030-07