張炳火,李漢全,羅娟艷,楊建遠(yuǎn),石紅璆,孫鳳珍
(九江學(xué)院藥學(xué)與生命科學(xué)學(xué)院,江西九江 332000)
放線菌JXJ-0136對(duì)白菜和豇豆生長(zhǎng)的影響及其解磷作用
張炳火,李漢全,羅娟艷,楊建遠(yuǎn),石紅璆,孫鳳珍
(九江學(xué)院藥學(xué)與生命科學(xué)學(xué)院,江西九江 332000)
【目的】確定放線菌JXJ-0136的分類地位,分析其溶解不溶性磷的能力,在作物根際土壤定殖的情況及對(duì)蔬菜種子萌發(fā)、幼苗生長(zhǎng)和蔬菜產(chǎn)量的影響,評(píng)價(jià)該菌在研制微生物肥料方面的潛在應(yīng)用價(jià)值。【方法】利用培養(yǎng)特征、形態(tài)學(xué)特征和16S rRNA基因序列系統(tǒng)發(fā)育分析,初步確定菌株JXJ-0136的分類學(xué)地位;以白菜和豇豆為指示植物,采用瓊脂平板法,研究該菌對(duì)蔬菜種子萌發(fā)和幼苗生長(zhǎng)的影響;采用田間栽培試驗(yàn),研究菌株對(duì)作物生長(zhǎng)和產(chǎn)量的影響,測(cè)定栽培前后土壤總磷的含量,分析該菌對(duì)作物利用土壤磷效率的影響,并對(duì)作物根際土壤微生物進(jìn)行分離純化,分析該菌在根際土壤中的定殖情況;采用液體純培養(yǎng)方式,研究菌株對(duì)不溶性無機(jī)磷和有機(jī)磷的溶解效率,分析其解磷機(jī)理?!窘Y(jié)果】放線菌JXJ-0136在6—45℃、pH 4.0—13.0和0—4%(w/v)的鹽濃度下均能生長(zhǎng),其中最適生長(zhǎng)溫度、pH和鹽濃度分別約為28℃、pH 8.0和1%(w/v),在ISP2培養(yǎng)基上該菌氣絲較發(fā)達(dá),灰白色,孢子絲簇生,孢子長(zhǎng)卵圓形;該菌16S rRNA基因序列與鏈霉菌Streptomyces violascens、S. somaliensis、S. hydrogenans、S. albidoflavus和S. daghestanicus的親緣關(guān)系最近,相似性依次為 97.98%、97.71%、97.30%、97.23%和 97.03%,但在系統(tǒng)進(jìn)化樹上與這些菌聚在不同分支上;該菌培養(yǎng)液能夠顯著提高作物種子萌發(fā)率,促進(jìn)幼苗生長(zhǎng),在0.2%—0.8%的劑量下,白菜種子萌發(fā)率、幼苗株高和根長(zhǎng)分別比對(duì)照組增加3.55%—12.61%、13.91%—53.03%和7.37%—51.92%,豇豆種子萌發(fā)率、幼苗株高和根長(zhǎng)分別比對(duì)照組增加4.71%—21.18%、3.60%—22.33%和2.37%—20.08%;田間栽培試驗(yàn)顯示,該菌能夠定殖于根際土壤,促進(jìn)作物對(duì)土壤磷的利用,提高作物產(chǎn)量,當(dāng)每穴施加5 mL該菌培養(yǎng)液,試驗(yàn)結(jié)束時(shí),白菜和豇豆試驗(yàn)組的土壤總磷含量分別下降(23.56±2.65)%和(37.10±1.98)%,分別為對(duì)照組的(1.77±0.29)和(2.70±0.15)倍(P<0.01),而白菜和豇豆的產(chǎn)量卻分別比對(duì)照組增加(27.59±6.15)%和(70.29±5.15)%(P<0.01);液體純培養(yǎng)條件下接種培養(yǎng)5 d后,無機(jī)磷和有機(jī)磷培養(yǎng)基pH值由起始的7.0分別降至5.0和6.0,有效磷元素含量比對(duì)照組分別增加(73.94±0.94)和(7.12±0.28)mg(P<0.01)。【結(jié)論】放線菌JXJ-0136是鏈霉菌屬的成員,能夠顯著提高作物種子的萌發(fā)率,增加幼苗株高和根長(zhǎng),并定殖于根際土壤中,增加土壤可溶性磷的含量,提高作物對(duì)土壤磷的利用效率,促進(jìn)它們的生長(zhǎng),增加其產(chǎn)量,在微生物肥料研制中具有較大的潛在應(yīng)用價(jià)值。
微生物肥料;放線菌JXJ-0136;鏈霉菌;白菜;豇豆;解磷
【研究意義】農(nóng)業(yè)可持續(xù)發(fā)展已成為全球特別是中國(guó)的一個(gè)重要議題[1]。然而,長(zhǎng)期大量使用化學(xué)肥料導(dǎo)致土壤有機(jī)物質(zhì)減少、質(zhì)量惡化[2-3]、微生物區(qū)系發(fā)生變化[1,4]、土壤生態(tài)遭受嚴(yán)重破壞,肥力降低[5-6]。因此,減少化學(xué)肥料的用量已得到廣泛提倡[7]。許多微生物具有促進(jìn)植物生長(zhǎng)、提高營(yíng)養(yǎng)成分的可用性及其攝取率、維持植物健康等多種功能,因此,微生物肥料成為可替代或部分替代化學(xué)肥料的理想候選者[8-11]。放線菌通常能夠產(chǎn)生抗逆性較強(qiáng)的孢子,并能夠定殖于植物根部土壤,產(chǎn)生各種抗生素,抑制多種植物病原體[12-14],分泌生長(zhǎng)調(diào)節(jié)物質(zhì)[15],同時(shí)這類微生物還具有解磷、解鉀等各種功能[12,16-18],是研制微生物肥料的理想材料,因此,開展放線菌菌肥的研制對(duì)農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義。【前人研究進(jìn)展】放線菌菌肥的研究受到國(guó)內(nèi)外廣泛關(guān)注,在實(shí)驗(yàn)室[17]和野外[12-16,18]開展了許多工作,特別是尹莘耘等[13-16]對(duì)“5406”放線菌菌肥開展了一系列系統(tǒng)研究,在20世紀(jì)50—70年代,全國(guó)各地曾進(jìn)行了大面積推廣應(yīng)用“5406”菌肥,取得了良好的增產(chǎn)效果,該菌肥的有效微生物為涇陽(yáng)鏈霉菌(Streptomyces jingyangensis)[19]。近年來,國(guó)內(nèi)放線菌菌肥的研究主要集中在生物防治方面,同時(shí)放線菌對(duì)作物種子萌發(fā)、幼苗生長(zhǎng)、作物產(chǎn)量和品質(zhì)的影響也日益受到關(guān)注。趙娟等[20]篩選到3株廣譜拮抗放線菌Act1、Act11和Act12,它們對(duì)甜瓜和西瓜枯萎病菌具有拮抗活性,并對(duì)甜瓜幼苗具有促生作用,且Act12對(duì)土傳植物病原真菌鐮刀菌,如木賊鐮孢、接骨木鐮孢、尖鐮孢西瓜?;汀⒓忡犳呙藁▽;秃图忡犳唿S瓜?;偷龋哂休^好的抑制作用[21],該菌與腐植酸鉀配施,能夠提高丹參出苗率,減少植株死亡率,改善丹參生長(zhǎng)微環(huán)境,促進(jìn)其生長(zhǎng)[22]。吳艷輝等[23]篩選到一株對(duì)多種植物病原真菌具有抑制作用的放線菌 W04,該菌株對(duì)西瓜枯萎病的抑制作用較強(qiáng),在80%左右;王蘭英等[24]研究發(fā)現(xiàn)金黃垂直鏈霉菌 HN6對(duì)香蕉枯萎病的防治效果達(dá)72.02%,極顯著高于95%惡霉靈1 200倍液,并能提高香蕉生物量;張艷杰等[25]田間試驗(yàn)表明玫瑰黃鏈霉菌Men-myco-93-63固體發(fā)酵物在對(duì)番茄連作障礙防效達(dá)46%;沈婷等[26]研究表明吸水鏈霉菌B04固體發(fā)酵物能有效降低草莓發(fā)病率,促進(jìn)草莓生長(zhǎng),改善草莓品質(zhì);王蘭英等[27]研究表明放線菌HN20對(duì)生菜具有顯著促生作用,提高其各項(xiàng)生長(zhǎng)指標(biāo);王世強(qiáng)等[28]發(fā)現(xiàn)鏈霉菌JD211能夠顯著提高土壤速效N、P含量,顯著促進(jìn)水稻幼苗生長(zhǎng),改善其生長(zhǎng)微環(huán)境。然而,目前多數(shù)研究是在實(shí)驗(yàn)室條件下進(jìn)行,而野外田間試驗(yàn)研究則較少開展。因此,亟需加強(qiáng)野外試驗(yàn)研究,以便真實(shí)評(píng)價(jià)放線菌菌肥在實(shí)際應(yīng)用中的效果?!颈狙芯壳腥朦c(diǎn)】放線菌菌肥的作用機(jī)制多種多樣,包括防治植物病害、增加土壤有效磷和鉀等礦物質(zhì)元素的含量、提高種子發(fā)芽率和促進(jìn)作物生長(zhǎng)等[14-15,18,20-31]。菌株 JXJ-0136是筆者實(shí)驗(yàn)室篩選的一株具有肥料效應(yīng)的放線菌,本文將以2種常見蔬菜為指示植物,結(jié)合實(shí)驗(yàn)室和野外田間栽培試驗(yàn),研究菌株JXJ-0136對(duì)作物生長(zhǎng)的影響及其機(jī)制?!緮M解決的關(guān)鍵問題】明確 JXJ-0136菌株的分類學(xué)地位及促進(jìn)作物生長(zhǎng)的機(jī)制,分析其潛在應(yīng)用價(jià)值,為放線菌菌肥的研制提供新材料。
試驗(yàn)于2013—2014年在九江學(xué)院完成。
1.1 菌株及培養(yǎng)基
菌株 JXJ-0136由筆者實(shí)驗(yàn)室分離自廬山土樣的一株放線菌。供試植物白菜,特純矮抗青(江西洪城種業(yè)有限公司);豇豆,美國(guó)無架豆(徐州市新天地種業(yè)有限公司)。
放線菌培養(yǎng)基:葡萄糖4 g,酵母浸粉4 g,麥芽浸粉5 g,微量鹽1 mL(微量鹽組成:FeSO4·7H2O 0.2 g,MnCl2·4H2O 0.1 g,ZnSO4·7H2O 0.1g,蒸餾水100 mL),H2O 1 L,pH 7.2,121℃滅菌30 min。解磷培養(yǎng)基:采用中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 1847 —2010的配方[32]。葡萄糖10 g,(NH4)2SO40.5 g,NaCl 0.3 g,MgSO4·7H2O 0.3 g,KCl 0.3 g,F(xiàn)eSO4·4H2O 0.036 g,MnSO4·4H2O 0.03 g;有機(jī)磷(卵磷脂,2.0 g)或無機(jī)磷(Ca3(PO4)210 g);去離子水1 L;pH 7.0,121℃滅菌30 min。種子萌發(fā)培養(yǎng)基:參考文獻(xiàn)[33],Ca(NO3)20.8207 g,KNO30.5056 g,MgSO4·7H2O 0.6162 g,KH2PO40.2722 g,Na2-EDTA 0.0745 g,F(xiàn)eSO4·7H2O 0.0557 g,H3BO30.02860 g,MnSO40.01105 g,CuSO4·5H2O 0.00092 g,ZnSO4·7H2O 0.0022 g,H2MoO40.0009 g,蒸餾水1 L,瓊脂15—18 g,pH 7.0,121℃滅菌30 min。
1.2 放線菌JXJ-0136的鑒定
[34]對(duì)JXJ-0136進(jìn)行初步鑒定。采用插片法[35]獲得菌絲,用光學(xué)顯微鏡和掃描電鏡觀察菌絲形態(tài)特征。以ISP 2培養(yǎng)基[36]為基礎(chǔ)培養(yǎng)基,采用不同的pH(2.0—14.0)、NaCl含量(m/v,0—10%)和培養(yǎng)溫度(4—50℃)培養(yǎng)該菌,其中pH和NaCl耐受性試驗(yàn)培養(yǎng)溫度為28℃,生長(zhǎng)溫度試驗(yàn)的培養(yǎng)基pH為7.4,NaCl含量為0。采用溶菌酶法提取基因組DNA,用細(xì)菌通用引物 primer A(5′-AGAGTTTG ATCCTGGCTCAG-3′)和primer B(5′-TACGGCTAC CTTGTTACGACTT-3′)進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物送上海生工測(cè)序部測(cè)序,并與數(shù)據(jù)庫(kù) EzTaxon Server version 2.1(http://www.ezbiocloud.net/ eztaxon)的16S rRNA基因序列進(jìn)行比較,調(diào)出相似性高的菌株序列,利用軟件CLUSTAL_X1.83進(jìn)行多重序列比對(duì),采用MEGA軟件,以鄰接法構(gòu)建16S rRNA基因序列系統(tǒng)進(jìn)化樹。
1.3 放線菌JXJ-0136對(duì)種子萌發(fā)及幼苗生長(zhǎng)的影響
將菌株 JXJ-0136接種于放線菌培養(yǎng)基中,置于180 r/min、28℃的條件下培養(yǎng)3 d,再在種子萌發(fā)培養(yǎng)基中分別加入0.2%、0.4%、0.6%和0.8%(v/v)的放線菌培養(yǎng)液,搖勻后倒入無菌組培瓶中,冷卻凝固后將經(jīng)表面消毒的蔬菜種子置于培養(yǎng)基中,用組培膜封瓶口,于28℃、光照強(qiáng)度為3 000 lx,光暗比為12 h∶12 h的條件下培養(yǎng),3—5 d后觀察種子萌發(fā)及幼苗生長(zhǎng)情況,并計(jì)算種子萌發(fā)率,測(cè)量幼苗株高和根長(zhǎng)。另外,將未接種放線菌的培養(yǎng)基按照0.2%、0.4%、0.6% 和 0.8%(v/v)的量,加入種子萌發(fā)培養(yǎng)基中,作為培養(yǎng)基對(duì)照組;空白對(duì)照組加無菌水。
1.4 田間試驗(yàn)
利用實(shí)驗(yàn)地土壤直接做營(yíng)養(yǎng)缽,并培育豇豆和白菜幼苗,將生長(zhǎng)一致的幼苗進(jìn)行移栽,移栽處每穴施加5 mL放線菌培養(yǎng)液,移栽后整個(gè)生長(zhǎng)過程中不施加任何其他肥料,統(tǒng)一管理,定時(shí)觀察作物生長(zhǎng)狀況,及時(shí)收獲豆莢,測(cè)量并記錄其長(zhǎng)度和質(zhì)量,取平均值;白菜45 d后收獲,測(cè)量其株高和質(zhì)量,取平均值。對(duì)照組施加 5 mL未接菌的放線菌培養(yǎng)基。田間試驗(yàn)于2013年4—10月在九江學(xué)院潯東校區(qū)實(shí)驗(yàn)地進(jìn)行。
1.5 放線菌JXJ-0136對(duì)土壤總磷的影響
田間試驗(yàn)結(jié)束后,取植物根部土壤烘干并粉碎,用100目篩子過篩,稱取0.5000 g置于錐形瓶中,參考汪小蘭等[37]的方法提取土壤總磷。以少許蒸餾水潤(rùn)濕,加10 mL濃硫酸和1 mL高氯酸,于電爐上加熱消煮,至瓶?jī)?nèi)溶液變?yōu)榘咨罄^續(xù)消煮30 min,消煮液冷卻后洗入200 mL容量瓶,并定容,采用鉬銻抗比色法[32]測(cè)定溶液中可溶性磷的含量。
1.6 放線菌JXJ-0136在植物根部土壤的定殖
田間試驗(yàn)結(jié)束后,取試驗(yàn)組和對(duì)照組的植物根部,將根部土樣用無菌水進(jìn)行梯度稀釋,取稀釋液在ISP 2瓊脂平板上涂布,置于28℃條件下培養(yǎng)3—7 d,觀察平板上生長(zhǎng)的放線菌形態(tài)特征,將JXJ-0136的疑似放線菌菌落進(jìn)一步純化,并與 JXJ-0136的菌落形態(tài)特征、色素產(chǎn)生情況、菌絲形態(tài)特征等進(jìn)行比較,判斷所分離在放線菌是否可能為放線菌JXJ-0136。
1.7 放線菌JXJ-0136純培養(yǎng)解磷效果
取放線菌JXJ-0136培養(yǎng)液按照5%(v/v)的接種量,接入不溶性有機(jī)或無機(jī)磷液體培養(yǎng)基中,于 180 r/min、28℃的條件下培養(yǎng),每24 h取樣1次,共取樣5次,樣品溶液于4 500 r/min離心20 min,取上清,采用鉬銻抗比色法[32]測(cè)定上清液中有效磷含量。第 5次取樣后用pH計(jì)檢測(cè)各樣品的pH。
1.8 統(tǒng)計(jì)學(xué)處理
采用SPSS19.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理。確定3次重復(fù)實(shí)驗(yàn)的平均值(mean value)和標(biāo)準(zhǔn)偏差(standard deviation,SD),繪圖數(shù)據(jù)取3次試驗(yàn)的平均值,試驗(yàn)組與對(duì)照組比較,采用單因素方差分析,P≤0.05為差異顯著,P≤0.01為差異極顯著。
2.1 放線菌JXJ-0136初步鑒定
菌株JXJ-0136在6—45℃、pH 4.0—13.0和0—4%的鹽濃度下均能生長(zhǎng),其中最適生長(zhǎng)溫度、pH和鹽濃度分別為28℃、pH 8.0和1%。該菌氣絲較發(fā)達(dá),灰白色,孢子絲簇生,孢子長(zhǎng)卵圓形(圖1),16S rRNA基因序列(1 463 bp)分析表明,菌株JXJ-0136是鏈霉菌屬的成員,與Streptomyces violascens ISP 5183T( AY999737) 、 S. somaliensis NBRC 12916T(AB184243)、S. hydrogenans NBRC 13475T(AB184868)、S. albidoflavus DSM 40455T(Z76676)和S. daghestanicus NRRL B-5418T(DQ442497)的相似性依次為 97.98%、97.71%、97.30%、97.23%和97.03%,但在系統(tǒng)進(jìn)化樹上后5株菌聚在單獨(dú)一支,而菌株JXJ-0136形成單獨(dú)一支(圖2);該菌與其他有效發(fā)表種的16S rRNA基因序列相似性均低于97%。
圖1 放線菌JXJ-0136孢子絲Fig. 1 Spore chains of actinomycete strain JXJ-0136
2.2 對(duì)種子萌發(fā)、幼苗株高和根長(zhǎng)的影響
添加 0.2%—0.8%的無菌培養(yǎng)基對(duì)白菜和豇豆種子萌發(fā)率、幼苗株高和根長(zhǎng)均無明顯影響;而添加0.2%—0.6%的放線菌JXJ-0136培養(yǎng)液時(shí),白菜種子萌發(fā)率、幼苗株高和根長(zhǎng)均隨培養(yǎng)液劑量的增加而增加,在劑量為 0.6%時(shí)試驗(yàn)組比對(duì)照組分別高(12.61± 2.93)%、(53.03±5.72)%和(51.92±10.13)%(P<0.01),但繼續(xù)增加放線菌培養(yǎng)液劑量時(shí),白菜種子萌發(fā)率、幼苗株高和根長(zhǎng)均略有減少;在試驗(yàn)濃度下(0.2%—0.8%),豇豆種子萌發(fā)率、幼苗株高和根長(zhǎng)均隨放線菌培養(yǎng)液劑量的增加而增加,在劑量為0.8%時(shí),試驗(yàn)組分別比對(duì)照組高(21.18±2.04)%、(22.33± 5.56)%和(20.08±4.32)%(P<0.01)(圖3)。
圖2 菌株JXJ-0136及其相關(guān)種屬的系統(tǒng)進(jìn)化樹Fig. 2 Phylogenetic tree based on 16 s rRNA gene sequences analysis of strain JXJ-0136 and related taxa
圖3 放線菌JXJ-0136培養(yǎng)液對(duì)白菜和豇豆種子萌發(fā)率、幼苗株高和根長(zhǎng)的影響Fig. 3 Influences of actinomycete strain JXJ-0136 culture on the germination rates, heights and root lengths of seedlings of B. chinensis and V. unguiculata
2.3菌株對(duì)栽培作物生長(zhǎng)及產(chǎn)量的影響
放線菌 JXJ-0136對(duì)試驗(yàn)蔬菜的生長(zhǎng)和產(chǎn)量均有較大影響。試驗(yàn)組豆莢平均長(zhǎng)度為(34.28±1.10)cm,比對(duì)照組(31.51±0.96)cm增加(8.79±3.48)%(P <0.05);單株豇豆的平均產(chǎn)量為(195.98±5.92)g,比對(duì)照組(115.08±6.17)g增產(chǎn)(70.29±5.15)%(P <0.01);白菜平均高度為(13.65±0.26)cm,比對(duì)照組(10.45±0.38)cm增加(30.86±2.49)%(P<0.01);白菜每株平均質(zhì)量為(205.63±9.92)g,比對(duì)照組(161.17±2.07)g增加(27.59 ± 6.15)%(P<0.01)。
2.4 放線菌JXJ-0136對(duì)土壤總磷的影響
無論是否施加放線菌JXJ-0136,栽培作物后土壤總磷含量均會(huì)顯著降低(P<0.05,P<0.01),但對(duì)照組白菜土壤總磷含量比栽培前(1.44±0.06)mg·g-1降低了(13.32±2.75)%,而放線菌試驗(yàn)組白菜土壤總磷含量卻比栽培前降低了(23.56±2.65)%,是對(duì)照組的(1.77±0.29)倍(P<0.01);對(duì)照組(未施加放線菌)豇豆土壤總磷含量只比栽培前(1.43±0.07)mg·g-1降低了(12.76±3.34)%,而放線菌試驗(yàn)組豇豆土壤總磷含量卻比栽培前降低了(37.10±1.98)%,是對(duì)照組的(2.70±0.15)倍(P<0.01),這說明放線菌促進(jìn)了作物對(duì)土壤磷的利用(圖4)。
2.5 放線菌JXJ-0136在植物根部的定殖
從施加放線菌 JXJ-0136培養(yǎng)液的白菜和豇豆根部土樣中,都分離到了與JXJ-0136菌落形態(tài)特征、產(chǎn)生的色素顏色、菌絲形態(tài)特征等均一致的放線菌,其中白菜根際土樣中為(10.33±2.52)×103CFU/g干土,豇豆根際土樣中為(8.33±2.08)×103CFU/g干土;而在未施加放線菌 JXJ-0136培養(yǎng)液的對(duì)照組植物根部土樣中,未分離到類似放線菌,說明放線菌JXJ-0136能夠在白菜和豇豆根部土壤定殖。
圖4 放線菌JXJ-0136對(duì)土壤總磷含量的影響Fig. 4 Influences of actinomycete strain JXJ-0136 on the soil total phosphorus contents
2.6 放線菌JXJ-0136液體解磷效果
在純培養(yǎng)條件下,放線菌JXJ-0136對(duì)不溶性有機(jī)磷和無機(jī)磷均具有較好的降解作用,培養(yǎng)液中有效磷的含量隨培養(yǎng)時(shí)間的延長(zhǎng)而顯著增加(P<0.01)(圖5),接種之前,培養(yǎng)基中有效磷的含量分別只有(0.86 ±0.05)和(1.26±0.18)mg,接種后5 d,分別增加到(73.94±0.94)和(7.12 ± 0.28)mg;而未接菌的無機(jī)磷培養(yǎng)基中有效磷濃度基本未發(fā)生變化,有機(jī)磷培養(yǎng)基中有效磷濃度稍有上升,但其濃度增加速率遠(yuǎn)低于試驗(yàn)組(P<0.01)(圖5)。試驗(yàn)結(jié)束時(shí),無機(jī)磷和有機(jī)磷培養(yǎng)基pH由起始pH 7.0分別降至5.0和6.0。
放線菌JXJ-0136與Streptomyces violascens ISP 5183T親緣關(guān)系最近。然而,S. violascens的孢子絲為2—8圈螺旋形[38],而菌株JXJ-0136孢子絲簇狀生長(zhǎng),長(zhǎng)曲狀,不形成螺旋。一般認(rèn)為,16S rRNA基因序列相似性在95%以下可定為新屬,98%以下可定為新種[34]。放線菌JXJ-0136與S. violascens ISP 5183T相似性為97.98%,略小于98%,因此,初步確定JXJ-0136是鏈霉菌屬的一個(gè)潛在新種,但需要DNA-DNA分子雜交等試驗(yàn)結(jié)果的進(jìn)一步確認(rèn)。
圖5 放線菌JXJ-0136對(duì)不溶性磷的降解活性Fig. 5 Degradation activities of actinomycete strain JXJ-0136 on insoluble phosphorus
放線菌菌肥“5406”對(duì)不同農(nóng)作物生長(zhǎng)的影響不同,其增產(chǎn)率在 5%—45%[15]。王蘭英等[27]研究表明灰色鏈霉菌HN20對(duì)黃瓜促生作用不明顯,但在低劑量條件下卻顯著促進(jìn)生菜種子胚芽和胚根生長(zhǎng),增加其生物量,而在高濃度下則有抑制作用。李堆淑[29]研究發(fā)現(xiàn)細(xì)黃鏈霉菌培養(yǎng)液低濃度促進(jìn)黃芩種子萌發(fā)和幼苗生長(zhǎng),高濃度則表現(xiàn)抑制作用。本研究也發(fā)現(xiàn)類似現(xiàn)象,在試驗(yàn)條件下,豇豆種子的萌發(fā)率、幼苗株高和根長(zhǎng),均隨放線菌JXJ-0136使用劑量的增加而增加;但白菜種子的萌發(fā)率、幼苗株高和根長(zhǎng)在劑量<0.6%時(shí),隨使用劑量增加而增加,>0.6%時(shí)則隨著劑量增加而降低;同時(shí)該菌對(duì)白菜和豇豆的增產(chǎn)效果也具有顯著差異,這說明放線菌JXJ-0136對(duì)不同農(nóng)作物的影響不同。
生長(zhǎng)調(diào)節(jié)物質(zhì)能夠刺激植物種子萌發(fā),提高發(fā)芽率[39]。放線菌菌肥“5406”能夠產(chǎn)生多種植物生長(zhǎng)調(diào)節(jié)物質(zhì),提高作物種子萌發(fā)率,促進(jìn)根的生長(zhǎng)[15]。放線菌 JXJ-0136制劑能夠顯著增加白菜和豇豆種子萌發(fā)率、幼苗株高及根長(zhǎng),這說明該菌能夠產(chǎn)生植物生長(zhǎng)調(diào)節(jié)物質(zhì),但這些生長(zhǎng)調(diào)節(jié)物質(zhì)的理化性質(zhì)及類型等尚需要進(jìn)一步研究。
溶解土壤中不溶性元素,為植物提供可吸收的礦物質(zhì)營(yíng)養(yǎng),是微生物肥料促使農(nóng)作物增產(chǎn)的主要機(jī)制之一。許多放線菌能夠有效提高土壤中有效磷的含量,如放線菌菌肥“5406”[16]、Micromonospora aurantiaca MAMPM和灰色鏈霉菌SGMPM[12]、玫瑰黃鏈霉菌Menmyco-93-63[25]和鏈霉菌JD21[28]等。本研究表明,放線菌JXJ-0136在純培養(yǎng)條件下,接種于不溶性無機(jī)磷和有機(jī)磷培養(yǎng)基并培養(yǎng),其有效磷含量均隨著培養(yǎng)時(shí)間的延長(zhǎng)而迅速增加;在土壤中使用放線菌JXJ-0136制劑后,土壤中總磷含量顯著降低,這說明該菌能夠增加土壤中有效磷含量,促進(jìn)植物對(duì)磷的吸收。因此,溶解不溶性磷,為植物提供可吸收的有效磷,是放線菌JXJ-0136促進(jìn)植物生長(zhǎng)的重要機(jī)制之一。
分泌小分子有機(jī)酸是解磷微生物溶解不溶性無機(jī)磷的重要方式,這些小分子有機(jī)酸主要包括草酸、乙酸、乳酸、酒石酸、琥珀酸、檸檬酸、丁二酸、丙酸和蘋果酸等,由于有機(jī)酸的產(chǎn)生,往往導(dǎo)致pH降低[40-42]。放線菌JXJ-0136接種于不溶性無機(jī)磷培養(yǎng)基,培養(yǎng)5 d后,培養(yǎng)液的pH比空白對(duì)照組降低了2.0,這說明產(chǎn)生有機(jī)酸是該菌溶解不溶性無機(jī)磷的機(jī)制之一,然而該菌分泌何種有機(jī)酸尚需要進(jìn)一步研究。
JXJ-0136菌株對(duì)不溶性有機(jī)磷也具有一定的降解作用。許多微生物在環(huán)境中缺少正磷酸鹽時(shí),可誘導(dǎo)其細(xì)胞產(chǎn)生磷酸酶,將有機(jī)磷等降解為可溶性正磷酸鹽,滿足其生長(zhǎng)需要。但由于不溶性有機(jī)磷培養(yǎng)基接種該菌培養(yǎng)5 d后,培養(yǎng)液的pH比空白對(duì)照組降低了0.98,pH降低可促進(jìn)卵磷脂水解。因此,該菌對(duì)有機(jī)磷的降解作用是由于其分泌了有機(jī)酸,有機(jī)酸再促使卵磷脂的水解作用,還是由于該菌能夠產(chǎn)生水解卵磷脂的磷酸酶,尚需要進(jìn)一步研究。
有效微生物能否在施用的植物根際土壤中長(zhǎng)期存活,并與植物形成特定的互利關(guān)系,是微生物肥料肥效能否持久的關(guān)鍵。放線菌菌肥“5406”肥效持久與其有效菌在很多作物根際土壤中能夠長(zhǎng)期、大量定殖有關(guān)[14]。張艷杰等[25-28]研究也發(fā)現(xiàn),具有肥料效應(yīng)的鏈霉菌能在作物根部土壤定殖良好。本研究在整個(gè)栽培試驗(yàn)中,只在栽培時(shí)施加一次放線菌 JXJ-0136制劑,但其肥效卻持續(xù)至白菜和豇豆整個(gè)生長(zhǎng)周期,這與該菌能夠在作物根際土壤中定殖有一定聯(lián)系。
放線菌JXJ-0136是鏈霉菌屬的一個(gè)潛在新種,該菌能夠產(chǎn)生未知生長(zhǎng)調(diào)節(jié)物質(zhì),提高白菜和豇豆種子萌發(fā)率,增加幼苗株高和根長(zhǎng),并定殖于作物根際土壤,溶解土壤中不溶性磷,為植物提供可吸收的有效磷,促進(jìn)作物生長(zhǎng),提高作物產(chǎn)量,在微生物肥料研制方面具有一定的潛在應(yīng)用價(jià)值。
References
[1] LIU M, KLEMENS E, ZHANG B, STEPHANIE I J H, LI Z P,ZHANG T L, SABINE R. Effect of intensive inorganic fertilizer application on microbial properties in a paddy soil of subtropical China. Agricultural Sciences in China, 2011, 10(11): 1758-1764.
[2] 徐明崗. 中國(guó)土壤肥力演變. 北京: 中國(guó)農(nóng)業(yè)科學(xué)與技術(shù)出版社,2006. XU M G. The Evolution of China’s Soil Fertility. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[3] KIBBLEWHITE M G, RITZ K, SWIFT M J. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 685-701.
[4] GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology & Biochemistry, 2014,75: 54-63.
[5] AYALA S, RAO E V. Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Current Science, 2002,82(7): 797-807.
[6] HU J L, LIN X G, WANG J H, DAI J, CUI X C, CHEN R R,ZHANG J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
[7] WILLIAMS A, B?RJESSON G, HEDLUND K. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biology and Biochemistry,2013, 67: 41-46.
[8] KAUR G, REDDY M S. Effects of phosphate-solubilizing bacteria,rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere, 2015, 25(3): 428-437.
[9] WELLER D M. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 2007, 97(2):250-256.
[10] SINGH H, REDDY M S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 2011, 47: 30-34.
[11] ADESEMOYE A O, TORBERT H A, KLOEPPER J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology,2008, 54: 876-886.
[12] HAMDALI H, HAFIDI M, VIROLLE M J, OUHDOUCH Y. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Applied Soil Ecology, 2008, 40(3): 510-517.
[13] 尹莘耘, 荀培琪, 林聲遠(yuǎn), 邱桂英, 張均康. 5406抗生菌肥料作用機(jī)制的研究Ⅱ. 產(chǎn)生抗菌物質(zhì)的分析研究. 微生物學(xué)報(bào), 1965,11(2): 270-274. YIN S Y, XUN P Q, LIN S Y, QIU G Y, ZHANG J K. Studies on the mechanisms of antagonistic fertilizer “5406” II. Analysis of the antibiotic substances. Acta Microbiologica Sinica, 1965, 11(2):270-274. (in Chinese)
[14] 尹莘耘, 張均康, 荀培琪. 5406抗生菌肥料作用機(jī)制的研究IV. 抗生菌在土壤中和作物根周圍活動(dòng)情況的研究. 微生物學(xué)報(bào), 1965,11(2): 281-287. YIN S Y, ZHANG J K, XUN P Q. Studies on the mechanisms of antagonistic fertilizer “5406” IV. The status of the antagonist in the soil and around the crop root. Acta Microbiologica Sinica, 1965, 11(2):281-287. (in Chinese)
[15] 尹莘耘, 荀培琪, 邱桂英, 林聲遠(yuǎn), 張均康. 5406抗生菌肥料作用機(jī)制的研究I. 5406號(hào)抗生菌產(chǎn)生刺激物質(zhì)的分析研究. 微生物學(xué)報(bào), 1965, 11(2): 259-269. YIN S Y, XUN P Q, QIU G Y, LIN S Y, ZHANG J K. Studies on the mechanisms of antagonistic fertilizer “5406” I. Isolation of the stimulating substances. Acta Microbiologica Sinica, 1965, 11(2):259-269. (in Chinese)
[16] 尹莘耘, 張均康, 荀培琪. 5406抗生菌肥料作用機(jī)制的研究Ⅲ. 抗生菌在不同土類中的適應(yīng)性及其轉(zhuǎn)化氮、磷元素的分析. 微生物學(xué)報(bào), 1965, 11(2): 275-280. YIN S Y, ZHANG J K, XUN P Q. Studies on the mechanisms of antagonistic fertilizer “5406” III. Analysis of the adaptability of antagonist “5406” in different types of soils and the conversion ofnitrogen and phosphorus. Acta Microbiologica Sinica, 1965, 11(2):275-280. (in Chinese)
[17] HAMDALI H, BOUIZGARNE B, HAFIDI M, LEBRIHI A,VIROLLE M J, OUHDOUCH Y. Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 2008, 38: 12-19.
[18] HAMDALI H, HAFIDI M, VIROLLE M J, OUHDOUCH Y. Rock phosphate solubilizing Actinomycetes: screening for plant growth promoting activities. World Journal of Microbiology & Biotechnology,2008, 24(11): 2565-2575.
[19] 陶天申, 岳瑩玉, 梁紹芬, 桑金隆, 尹莘耘. 5406抗生菌——涇陽(yáng)鏈霉菌新種. 微生物學(xué)報(bào), 1979, 19(3): 249-254. TAO T S, YUE Y Y, LIANG S F, SANG J L, YIN S Y. The antibiotic strain 5406-Streptomyces jiangyangensis n. sp. Acta Microbiologica Sinica, 1979, 19(3): 249-254. (in Chinese)
[20] 趙娟, 杜軍志, 薛泉宏, 段春梅, 王玲娜, 申光輝, 陳秦, 薛磊. 3株放線菌對(duì)甜瓜幼苗的促生與抗性誘導(dǎo)作用. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2010, 38(2): 109-116. ZHAO J, DU J Z, XUE Q H, DUAN C M, WANG L N, SHEN G H,CHEN Q, XUE L. The growth-promoting effect and resistance induction of 3 antagonistic actinomyces on Cucumis melo L.. Journal of Northwest A &F University (Natural Science Edition), 2010, 38(2):109-116. (in Chinese)
[21] 趙娟, 薛泉宏, 王玲娜, 段春梅, 薛磊, 毛寧. 多功能放線菌Act12對(duì)土傳病原真菌的拮抗性及其鑒定. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2011,19(2): 394-398. ZHAO J, XUE Q H, WANG L N, DUAN C M, XUE L, MAO N. Antagonistic effect of multifunctional actinomycete strain Act12 on soil-borne pathogenic fungi and its identification. Chinese Journal of Eco-Agriculture, 2011, 19(2): 394-398. (in Chinese)
[22] 段佳麗, 薛泉宏, 舒志明, 王東勝, 何斐. 放線菌 Act12與腐植酸鉀配施對(duì)丹參生長(zhǎng)及其根域微生態(tài)的影響. 生態(tài)學(xué)報(bào), 2015, 35(6):1807-1819. DUAN J L, XUE Q H, SHU Z M, WANG D S, HE F. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecologica Sinica, 2015, 35(6):1807-1819. (in Chinese)
[23] 吳艷輝, 趙春田, 裘娟萍. 植物病原菌拮抗放線菌的分離篩選與鑒定. 農(nóng)藥, 2010, 49(2): 146-149. WU Y H, ZHAO C T, QIU J P. Isolation, screening and identification of antagonistic actinomycetes inhibiting plant pathogens. Agrochemicals,2010, 49(2): 146-149. (in Chinese)
[24] 王蘭英, 王琴, 駱焱平. 金黃垂直鏈霉菌 HN6對(duì)香蕉的防病促生作用. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2015, 43(5): 163-167. WANG L Y, WANG Q, LUO Y P. Disease preventing and growth promoting effects of Streptomyces aureoverticillatus strain HN6 on banana. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(5): 163-167. (in Chinese)
[25] 張艷杰, 楊淑, 陳英化, 沈鳳英, 喬丹娜, 李亞寧, 劉大群. 玫瑰黃鏈霉菌防治番茄連作障礙及對(duì)土壤微生物區(qū)系的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2014, 23(8): 122-127. ZHANG Y J, YANG S, CHEN Y H, SHEN F Y, QIAO D N, LI Y N,LIU D Q. Efficiency of Streptomyces roseoflavus against tomato continuous cropping obstacle and effects to soil microflora. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(8): 122-127. (in Chinese)
[26] 沈婷, 楊華, 戴樂天, 鄧照亮, 王世梅. 吸水鏈霉菌(Streptomyces hygroscopicus) B04固體菌劑對(duì)草莓生長(zhǎng)及果實(shí)品質(zhì)影響的研究.農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2016, 33(1): 49-54. SHEN T, YANG H, DAI L T, DENG Z L, WANG S M. Effects of solid fermentation agent of Streptomyces hygroscopicus B04 on strawberry growth and fruit quality. Journal of Agricultural Resources and Environment, 2016, 33(1): 49-54. (in Chinese)
[27] 王蘭英, 姚明燕, 駱焱平. 放線菌HN20對(duì)黃瓜和生菜的促生作用.貴州農(nóng)業(yè)科學(xué), 2016, 44(1): 98-100. WANG L Y, YAO M Y, LUO Y P. Growth-promoting effect of actinomycete HN20 strain on cucumber and lettuce. Guizhou Agricultural Science, 2016, 44(1): 98-100. (in Chinese)
[28] 王世強(qiáng), 魏賽金, 楊陶陶, 李慶蒙, 涂國(guó)全, 倪國(guó)榮, 潘曉華. 鏈霉菌 JD211對(duì)水稻幼苗促生作用及土壤細(xì)菌多樣性的影響. 土壤學(xué)報(bào), 2015, 52(3): 673-681. WANG S Q, WEI S J, YANG T T, LI Q M, TU G Q, NI G R, PAN X H. Effect of Streptomyces JD211 promoting growth of rice seedlings and diversity of soil bacteria. Acta Pedologica Sinica, 2015, 52(3):673-681. (in Chinese)
[29] 李堆淑. 細(xì)黃鏈霉菌對(duì)黃芩種子萌發(fā)特性的影響. 種子, 2015,34(9): 24-27. LI D S. Effects of Streptomyces microflavus on seed germination characteristics of Scutellaria baicalensis. Seed, 2015, 34(9): 24-27. (in Chinese)
[30] 張忠良, 何斐, 馬軍妮, 薛泉宏, 楚金強(qiáng). 放線菌劑及其與有機(jī)肥配施對(duì)魔芋的促生作用. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版),2016, 44(3): 173-180. ZHANG Z L, HE F, MA J N, XUE Q H, CHU J Q. Growthpromoting effect of actinomycetes agents and organic fertilizer onAmorphophallus konjac. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(3): 173-180. (in Chinese)
[31] 朱金英, 王友平, 郭建軍, 張書良, 高春華. 細(xì)黃鏈霉菌 (AMCC 400001) 與有機(jī)肥配合施用對(duì)設(shè)施番茄生長(zhǎng)和產(chǎn)量的影響. 北方園藝, 2015(22): 177-181. ZHU J Y, WANG Y P, GUO J J, ZHANG S L, GAO C H. Effect of Streptomyces microflavus (AMCC 400001) and organic fertilizer combined application on the growth and yield of tomato in greenhouse. North Horticulture, 2015(22): 177-181. (in Chinese)
[32] 中華人民共和國(guó)農(nóng)業(yè)部種植業(yè)管理司. 微生物肥料生產(chǎn)菌株質(zhì)量評(píng)價(jià)通用技術(shù)要求: NY/T 1847—2010. 2011: 4-5. [2011-10-13]. Planting Management, Ministry of Agriculture of the People’s Republic of China. General technical requirements for production strain quality of microbial fertilizer: NY/T 1847-2010, 2011: 4-5. [2011-10-13]. (in Chinese)
[33] 申建波, 毛達(dá)如. 植物營(yíng)養(yǎng)研究方法. 3版. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2011. SHEN J B, MAO D R. Research Methods of Plant Nutrition. 3rd ed. Beijing: China Agricultural University Press, 2011. (in Chinese)
[34] 徐麗華, 李文均, 劉志恒, 蔣成林. 放線菌系統(tǒng)學(xué)——原理、方法及實(shí)踐. 北京: 科學(xué)出版社, 2007. XU L H, LI W J, LIU Z H, JIANG C L. Actinomycete Systematic -Principle, Methods and Practice. Beijing: Science Press, 2007. (in Chinese)
[35] 黃秀梨, 辛明秀. 微生物學(xué)實(shí)驗(yàn)指導(dǎo). 2版. 北京: 高等教育出版社,2008. HUANG X L, XIN M X. Microbiology Experiment Guidance. 2nd ed. Beijing: Higher Education Press, 2008. (in Chinese)
[36] SHIRLING E B, GOTTLIEB D. Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology,1966, 16(3): 313-340.
[37] 汪小蘭, 田荷珍, 耿承延. 基礎(chǔ)化學(xué). 北京: 高等教育出版社, 1995. WANG X L, TIAN H Z, GENG C Y. Basic Chemistry. Beijing:Higher Education Press, 1995. (in Chinese)
[38] TRESNER H D, HAYES J A, BACKUS E J. Streptomyces wistariopsis sp. nov. a new violet-spored species. International Journal of Systematic Bacteriology, 1969, 19(2): 141-152.
[39] 宋文堅(jiān), 曹棟棟, 金宗來, 周偉軍. 影響根寄生植物列當(dāng)種子萌發(fā)因素的研究. 種子, 2005, 24(2): 44-47. SONG W J, CAO D D, JIN Z L, ZHOU W J. The factors of influencing seed germination of root parasitic plants broomrape. Seed,2005, 24(2): 44-47. (in Chinese)
[40] CHEN Y P, PEKHA P D, ARUN A B, SHEN F T, LAI W A,YOUNG C C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34: 33-41.
[41] HAMEEDA B, REDDY Y H, RUPELA O P, KUMAR G N, REDDY G. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current Microbiology, 2006,53(4): 298-302.
[42] 張英, 蘆光新, 謝永麗, 姚拓, 榮良燕, 朱穎. 溶磷菌分泌有機(jī)酸與溶磷能力相關(guān)性研究. 草地學(xué)報(bào), 2015, 23(5): 1033-1038. ZHANG Y, LU G X, XIE Y L, YAO T, RONG L Y, ZHU Y. The relationship between organic acid secreted from phosphorus-solubilizing bacteria and the phosphate-solubizing ability. Acta Agrestia Sinica,2015, 23(5): 1033-1038. (in Chinese)
(責(zé)任編輯 岳梅)
Influences of Actinomycete Strain JXJ-0136 on the Growth of Brassica chinensis and Vigna unguiculata and Its Phosphate Solubilization
ZHANG Bing-huo, LI Han-quan, LUO Juan-yan, YANG Jian-yuan, SHI Hong-qiu, SUN Feng-zhen
(College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi)
【Objective】The objective of this study is to determine the taxonomic status of an actinomycete strain JXJ-0136,investigate its ability of dissolving insoluble phosphorus, the colonization in the rhizospheric soil of crops, and its influences on the seed germination, seedling growth and yield of vegetables, and to evaluate the application value of strain JXJ-0136 in developingmicrobial fertilizer.【Method】Taxonomic status of strain JXJ-0136 was determined on the basis of the cultural and morphological characteristics, and the phylogenetic analysis of 16S rRNA gene sequence. Influences of strain JXJ-0136 on the seed germination and seedling growth were studied using agar plate. The field cultivation tests were carried out to investigate the influences of strain JXJ-0136 on the growth and yield of vegetables. The total contents of phosphorus in the soil before and after the field trial were measured to investigate the influence of strain JXJ-0136 on the utilization of phosphorus in the soil by crops. The colonization of strain JXJ-0136 in the rhizospheric soil of the plants was investigated by isolation of the microorganisms in rhizosphere soil. The efficiencies of strain JXJ-0136 to dissolve insoluble inorganic and organic phosphorus were investigated using liquid pure culture. The model vegetables of the study were Brassica chinensis and Vigna unguiculata. 【Result】 Growth of actinomycete strain JXJ-0136 was observed at 6-45℃, pH 4.0-13.0 and 0-4% (w/v) NaCl, with optimal growth at 28℃, pH 8.0 and 1% (w/v) NaCl. Strain JXJ-0136 developed well-branched aerial mycelia on ISP 2 medium. The aerial mycelia was off-white in color. Its spore chains were fascicular with elliptical spores. The 16S rRNA gene sequence was closest to Streptomyces violascens, S. somaliensis, S. hydrogenans, S. albidoflavus and S. daghestanicus with the similarities of 97.98%, 97.71%, 97.30%, 97.23% and 97.03%,respectively. However, strain JXJ-0136 formed different clades on phylogenetic tree. The culture broth of strain JXJ-0136 enhanced the seed germination and the seedling growth significantly. After addition of 0.2%-0.8% broth culture of strain JXJ-0136, the seed germination rate, plant height and root length of B. chinensis were 3.55%-12.61%, 13.91%-53.03% and 7.37%-51.92% higher than those of the controls, respectively. The seed germination rate, plant height and root length of V. unguiculata were 4.71%-21.18%,3.60%-22.33% and 2.37%-20.08% higher than these of the controls, respectively. The field cultivation tests indicated that strain JXJ-0136 could colonize in the rhizospheric soil of the plants, and promoted crops to utilize phosphorus in the soil, and enhanced the yields of the crops. After inoculating with 5 mL broth culture of strain JXJ-0136 to each plant, the soil total phosphorus contents of B. chinensis and V. unguiculata decreased by (23.56±2.65)% and (37.10±1.98)%, respectively, at the end of the tests, which were (1.77±0.29) and (2.70±0.15) times of the controls (P<0.01). The yields of B. chinensis and V. unguiculata increased by (27.59±6.15)% and (70.29±5.15)% (P<0.01) than the controls, respectively. After inoculating strain JXJ-0136 and culturing for 5 days under liquid pure culture condition, the pH values of inorganic and organic phosphorus cultures decreased to 5.0 and 6.0 initially from pH 7.0, respectively, and available phosphorus in the cultures of inorganic and organic phosphorus increased by (73.94±0.94) and (7.12±0.28) mg (P<0.01), respectively. 【Conclusion】Actinomycete JXJ-0136 is a member of the genus Streptomyces. With good properties including increasing the seed germination, plant height and root length of seedling, colonizing in rhizospheric soil, increasing the content of the available phosphorus in the soil, enhancing the crops to utilize the phosphorus in the soil and promoting the growth and yields of crops, strain JXJ-0136 has a potential application value in developing microbial fertilizer.
microbial fertilizer; actinomycete JXJ-0136; Streptomyces; Brassica chinensis; Vigna unguiculata; phosphoric solubilization
2016-03-23;接受日期:2016-05-05
國(guó)家自然科學(xué)基金(31060010)、江西省科技支撐計(jì)劃(20121BBF60048)
聯(lián)系方式:張炳火,E-mail:binghuozh@126.com。通信作者李漢全,Tel:0792-8565939;E-mail:lihanquan62@126.com