亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        改進的IMU傳感器安裝誤差正交補償方法*

        2016-09-08 09:23:52馬亞平周慶東
        傳感器與微系統(tǒng) 2016年9期
        關鍵詞:測量

        馬亞平, 魏 國, 周慶東

        (哈爾濱工業(yè)大學 自動化測試與控制系,黑龍江 哈爾濱 150001)

        ?

        改進的IMU傳感器安裝誤差正交補償方法*

        馬亞平, 魏國, 周慶東

        (哈爾濱工業(yè)大學 自動化測試與控制系,黑龍江 哈爾濱 150001)

        針對傳統(tǒng)的正交補償方法難以保證慣性測量單元具有較高的正交補償精度的問題,提出了一種改進的適用于大角度和小角度安裝誤差角情形的正交補償方法,該方法分別建立三軸加速度計和三軸光纖陀螺傳感器的安裝誤差方程,對慣性測量單元進行速率標定和多位置靜態(tài)標定,并利用最小二乘法求解慣性測量單元的安裝誤差方程參數。仿真和實驗結果表明:該方法較傳統(tǒng)的正交補償方法具有較高的正交補償精度和傳感器標定精度,且回避了靜態(tài)標定時在較大安裝誤差角下利用轉位機構獲得零偏存在較大誤差的問題,大大地提高了標定效率。

        慣性測量單元; 大角度安裝誤差; 正交補償; 最小二乘法

        0 引 言

        捷聯(lián)慣性系統(tǒng)是將加速度計和陀螺儀組成的慣性測量單元(inertial measurement unit,IMU)直接固連在運載體上(如測斜儀、艦艇和飛機等),根據慣性傳感器IMU提供的測量值來解算出運載體的姿態(tài)信息[1,2]。由于IMU本身存在機械加工工藝和安裝結構的限制,不可避免地帶來IMU傳感器之間以及傳感器與安裝固件之間的非正交誤差,這些誤差統(tǒng)一稱為IMU安裝誤差。針對捷聯(lián)慣性導航系統(tǒng)要求精度較高的情況,需要具有較高的安裝誤差補償計算精度[3]。

        IMU的標定和安裝誤差補償是針對IMU傳感器建立相應的數學模型,并進行該數學模型參數計算的過程。在捷聯(lián)慣性導航系統(tǒng)的標定過程中,實際IMU傳感器坐標系與理想載體坐標系之間存在的安裝誤差不可忽略。在傳統(tǒng)的IMU傳感器正交補償中,所采用的補償方法僅僅適用于較小正交誤差(通常小于60″),并且使用的正交補償矩陣對角線元素往往近似為單位1[4,5]。但是,當IMU傳感器所在的實際坐標系(傳感器坐標系)和理想載體坐標系之間存在較大的安裝誤差角時,采用傳統(tǒng)的正交補償矩陣對對角線元素進行近似處理方法,不能很好地滿足系統(tǒng)的標定精度和正交補償精度的要求。當IMU傳感器存在較大的安裝誤差角時,利用轉位機構得到對稱位置來計算IMU傳感器零偏的誤差較大[5~9]。本文提出了一種改進的正交補償方法,具有較高的慣性傳感器標定精度和安裝誤差補償精度。

        1 慣性測量單元的正交安裝誤差數學模型

        1.1慣性測量單元的正交安裝誤差

        三軸光纖陀螺和三軸加速度計固連在測量短節(jié)的骨架上,由于實際系統(tǒng)中機械加工工藝和裝配工藝的限制、及慣性測量單元的安裝骨架結構的不同,將帶來不同大小的安裝誤差[7,8]。尤其當安裝骨架采用圓柱體結構替代通常的長方體結構時,可能會帶來徑向平面內的基準坐標軸與傳感器坐標軸之間存在較大的安裝誤差角。圖1給出了IMU安裝在骨架上的結構示意圖。

        圖1 IMU安裝在骨架上的結構示意圖

        如圖1所示,小長方體表示加速度計,小圓環(huán)表示光纖陀螺儀。圖2和圖3所示,分別給出了三軸光纖陀螺和三軸加速度計的安裝誤差示意圖。

        圖2 三軸光纖陀螺的安裝誤差示意圖

        說明,Oxgygzg表示三軸光纖陀螺傳感器坐標系,Oxayaza表示三軸加速度計傳感器坐標系。αij表示光纖陀螺傳感器坐標系i軸與載體坐標系Oxbybzb的j軸的夾角,即為光纖陀螺傳感器安裝誤差角。βij表示加速度計傳感器坐標系i軸與載體坐標系Oxbybzb的j軸的夾角,即為加速度計傳感器的安裝誤差角,αij∈[0°,180°],βij∈[0°,180°]。定義Egij對應αij的余弦值,表示三軸光纖陀螺的正交安裝系數,同樣也定義。Eaij對應βij的余弦值,表示三軸加速度計的正交安裝系數,則存在如下約束關系式(1)和式(2)

        圖3 三軸加速度計的安裝誤差示意圖

        (1)

        (2)

        由式(1)和式(2)可知,采用新的正交補償算法進行補償,大大地降低了系統(tǒng)的加工和安裝工藝要求[5~8]。

        1.2三軸光纖陀螺的數學模型

        慣性測量單元中的三軸光纖陀螺安裝在測量短節(jié)上,光纖陀螺所在的傳感器坐標系和載體坐標系不可避免地存在光纖陀螺組件的非完全正交誤差[5]。建立三軸光纖陀螺的安裝誤差數學模型為

        (3)

        式中fgx,fgy,fgz分別為三軸光纖陀螺的輸出;kgx,kgy,kgz分別為三軸光纖陀螺的標度因數;ωx,ωy,ωz分別為載體坐標系的三軸的速率敏感量;bgx0,bgy0,bgz0分別三軸光纖陀螺的零偏。傳統(tǒng)的近似正交補償方法中,Egxx≈1,Egyy≈1,Egzz≈1,當存在大角度的安裝誤差角時,不能進行以上的近似處理。

        1.3三軸加速度計的數學模型

        加速度計數學模型中的交叉耦合項和二階非線性系數為微小量[7,10]。在對其進行正交標定時,往往忽略交叉耦合項、二階及以上階數的非線性系數的影響,僅考慮加速度計的標度因數、零偏和正交安裝誤差系數,則加速度計的數學模型簡化為

        Aa=kaai+ba0

        (4)

        式中Aa為實際輸出,ka為標度因數,ba0為零偏,ai為輸入加速度。三軸加速度計安裝存在非完全正交誤差,可建立三軸加速度計的數學模型為

        (5)

        同樣地,在傳統(tǒng)的IMU正交補償模型中,Eaxx≈1,Eayy≈1,Eazz≈1。當存在大角度的安裝誤差角時,不能進行以上的近似處理。

        2 慣性測量單元的正交誤差數學模型計算

        光纖陀螺的標定需要在高精度三軸轉臺進行,并且要求狀態(tài)具有標準的轉動速率、姿態(tài)、位置信息。通過速率標定來計算光纖陀螺組件的標度因數和安裝誤差系數。速率標定的旋轉示意圖如圖4所示[8,10,11]。

        圖4 速率標定示意圖

        首先,進行圖4中的位置a的轉臺轉動。將實際的隨鉆井斜測量系統(tǒng)骨架固定在轉臺的內框架上。假設轉臺坐標系為標準的東北天坐標系,且初始位置和載體坐標系完全重合。將x軸指向天向,然后轉臺繞天向以角速率ω正向旋轉。

        光纖陀螺在一個圓周內旋轉時進行N次采樣,由于sinωt和cosω在一個圓周內積分為零,則

        (6)

        (7)

        式中fgx1+,fgy1+,fgz1+分別為位置a正方向轉動光纖陀螺的實際輸出。fgx1-,fgy1-,fgz1-分別為位置a負方向轉動光纖陀螺的實際輸出。

        將式(6)和式(7)作差,可得

        (8)

        同樣地,對圖4中的位置b和位置c分別進行速率標定,并得到

        (9)

        式中fgx2+,fgy2+,fgz2+分別為位置b正向轉動光纖陀螺的實際輸出;fgx2-,fgy2-,fgz2-分別為位置b負向轉動光纖陀螺的實際輸出

        (10)

        式中fgx3+,fgy3+,fgz3+分別為位置c正向轉動光纖陀螺的實際輸出;fgx3-,fgy3-,fgz3-分別為位置c負向轉動光纖陀螺的實際輸出。進而利用最小二乘法可得Egxxkgx,Egyxkgy,Egzxkgz,Egxykgx,Egyykgy,Egzykgz,Egxzkgx,Egyzkgy和Egzzkgz等9個乘積項。利用約束關系式(1),分別獲得三軸光纖陀螺的標度因數kgx,kgy和kgz,以及其正交安裝誤差系數Egxx,Egxy,Egxz,kgyx,Egyy,Egyz,Egzx,Egzy和Egzz。本文采用24位置靜態(tài)標定技術,如圖5所示。

        圖5 靜態(tài)24位置標定示意圖

        (11)

        式中Bg0為以[bgx0,bgy0,bgz0]T為列向量組成的維數為3×24的矩陣。式(11)表示的矩陣方程[9,11],利用最小二乘法得光纖陀螺的零偏分別為bgx0,bgy0和bgz0。

        (12)

        記式(12)右端前部分的3×4 矩陣為M,同時通過24位置轉動獲得的輸入加速度計矢量矩陣為W,其維數為 4×24,加速度計的輸出矩陣為Aa,其維數為4×24。將式(12)擴展為24個矩陣方程,可得含有正交誤差系數的矩陣方程為

        Aa=M×W

        (13)

        利用最小二乘法求解加速度計正交補償矩陣方程的參數,則

        M=Aa·WT·(W·WT)-1

        (14)

        利用式(2)的約束關系和式(14)可得零偏分別為bax0,bay0和baz0,標度因數分別為kax,kay和kaz,三軸加速度計的正交安裝誤差系數因數分別為 Eaxx,Eaxy,Eaxz,Eayx,Eayy,Eayz,Eazx,Eazy和Eazz。本研究通過任意給定的多位置進行靜態(tài)標定,回避了需要通過轉位機構方法獲得對稱位置來求解慣性傳感器的零偏問題[9]。

        3 改進的正交補償算法仿真與實驗

        3.1改進的正交補償算法仿真

        假定三軸光纖陀螺和三軸加速度計在同一傳感器坐標系,與載體坐標系之間的安裝誤差系數一致。取地球自轉角速率為7.291 6×10-5rad/s,當地的地理緯度為45°,當地重力加速度為9.84 m/s2。傾斜角從-85°~+85°以5°等間隔變化,方位角從10°~350°以10°等間隔變化,工具面角從-170°~+170°以10°等間隔變化。進行正交補償前后仿真對比分析。充分考慮了在圓柱體徑向平面內可能存在較大誤差角的情況,給出了IMU安裝誤差角,如表1所示。

        表1 IMU安裝誤差角/(°)

        通過仿真得到,正交補償前、近似正交補償后和改進正交補償后的姿態(tài)角誤差曲線,分別如圖6。由圖6可知,利用改進的正交補償方法獲得姿態(tài)角誤差理論上達到10-13量級水平,該方法具有良好的正交補償效果。

        仿真結果表明,近似正交補償后的姿態(tài)角誤差限制在很小的誤差范圍內,但是仍然存在很大的姿態(tài)誤差角,很難滿足高精度導航系統(tǒng)的要求。而本文改進的正交補償方法較傳統(tǒng)的近似正交補償可大大縮小姿態(tài)角誤差范圍,提高姿態(tài)角精度。

        3.2改進的正交補償算法實驗

        將裝配有IMU的圓柱體測量短節(jié)安裝在高精度三軸轉臺上,進行光纖陀螺的速率標定和IMU的24位置靜態(tài)標定,采用相應的姿態(tài)解算方法獲得近似正交補償和提出的正交補償后的姿態(tài)角,如表2和表3所示。其中,θ表示傾斜角,ψ表示方位角,φ表示工具面角,其單位均為角度(°)。

        由表2可知,通過近似正交補償獲得的姿態(tài)角誤差,傾斜角絕對誤差可能大于0.15°,方位角絕對誤差可能大于1.50°,工具面角絕對誤差可能大于0.20°。由表3可知通過改進的正交補償方法獲得姿態(tài)角誤差均在較小的誤差帶范圍內,大大地提高了姿態(tài)角解算精度。另外,改進的正交補償方法和近似正交補償計算方法的計算量基本相同。

        表2 近似正交補償后的姿態(tài)角結果/(°)

        圖6 正交補償前后姿態(tài)角誤差曲線

        序號給定位置姿態(tài)角θψ? 改進的正交補償后姿態(tài)角θψ?130.000.00180.0029.950.20179.73250.000.00180.0049.950.38179.56370.000.00180.0069.930.28179.76490.000.00180.0089.990.34180.01590.00180.00180.0090.01179.75179.98690.000.00270.0089.990.59269.99790.0090.0090.0089.9789.7989.97845.000.00240.0045.050.48239.91

        4 結 論

        本文針對在捷聯(lián)慣性導航系統(tǒng)中慣性測量單元可能存在較大安裝誤差角的問題,提出一種改進的慣性測量單元正交補償方法。主要針對大角度安裝誤差情形,給出慣性測量單元安裝誤差角的約束關系式,建立了三軸光纖陀螺和三軸加速度計的數學模型,并重點推導出相應的改進的正交補償方法。仿真和實物實驗均表明:改進的正交補償方法具有更高的正交補償精度,大大地提高了存在大角度安裝誤差角下的慣性測量單元的速率標定和靜態(tài)標定的精度,同樣也適用于具有小安裝誤差角的IMU傳感器正交補償的場合。新正交補償方法,可以通過給定任意多位置進行靜態(tài)標定,避免了傳統(tǒng)方法中使用對稱位置法求解慣性傳感器零偏的問題,大大提高了IMU靜態(tài)標定效率。

        [1]程世超,高爽,林鐵,等.隨鉆測量用微小型慣性測量單元設計[J].傳感器與微系統(tǒng),2015,34(4):95-98.

        [2]高爽,焦禹舜,林鐵,等.輕小型二位置光纖陀螺測斜儀慣性測量單元設計[J].傳感器與微系統(tǒng),2014,33(6):86-89.

        [3]Bekkeng J K.Calibration of a novel MEMS inertial referenceunit[J].IEEE Transactions on Instrumentation and Measurement,2009,58(6):1967-1974.

        [4]李杰,洪惠惠,張文棟.MEMS微慣性測量組合標定技術研究[J].傳感技術學報,2008,21(7):1169-1173.

        [5]彭孝東,陳瑜,李繼宇,等.MEMS三軸數字陀螺儀標定方法研究[J].傳感器與微系統(tǒng),2013,32(6):63-65.

        [6]顏苗,翁海娜,謝英.系統(tǒng)參數標定以及慣性元件安裝誤差測量與補償技術研究[J].中國慣性技術學報,2006,14(1):27-30.

        [7]楊長松,徐曉蘇.捷聯(lián)慣導系統(tǒng)加速度計標度因數和安裝誤差的試驗標定[J].測控技術,2005,24(12):57-59.

        [8]張華強,趙剡,陳雨.捷聯(lián)慣性導航系統(tǒng)整體標定新方法[J].北京航空航天大學學報,2012,5(4):459-463.

        [9]高鐘毓.慣性導航系統(tǒng)初始對準與標定最優(yōu)化方法[J].中國慣性技術學報,2009,17(1):1-7.

        [10] 郭振芹,段尚樞.石英電容伺服加速度計[J].哈爾濱工業(yè)大學學報,1985,1(6):58-64.

        [11] Syed Z F,Aggarwal P,Goodall C.A new multi-position calibration method for MEMS inertial navigation systems[J].Measurement Science and Technology,2007,18(7):1897-1907.

        魏國,通訊作者,E—mail:wg_weiguo@yahoo.com.cn。

        An improved method of orthogonal compensation for IMU installation error*

        MA Ya-ping, WEI Guo, ZHOU Qing-dong

        (Department of Automatic Testing and Control,Harbin Institute of Technology,Harbin 150001,China)

        An improved approach for orthogonal compensation is proposed to solve the problem of traditional method that has difficulty in satisfying relatively higher orthogonal compensation precision of inertial measurement unit(IMU).The installation error equations of both three axis accelerometers and three axis fiber-optic gyro sensors are formulated,respectively.Then rate calibration and multi-position static calibration of IMU are conducted,compute installation error equation parameters of IMU by means of least square algorithm.Both simulated and experimental results show that the proposed orthogonal compensation approach has higher precision in terms of both orthogonal compensation and sensor calibration,as compared with the conventional orthogonal compensation one.Furthermore,the proposed method also solves the problem of calculating the IMU zero bias by using indexing mechanism during static calibration,and thus the calibration efficiency of IMU can be greatly improved.

        inertial measurement unit(IMU); large angle installation error; orthogonal compensation; least square method

        10.13873/J.1000—9787(2016)09—0009—05

        2016—06—30

        中國航天集團哈爾濱工業(yè)大學聯(lián)合技術創(chuàng)新中心項目(CASC—HIT09—2B02)

        TE 927

        A

        1000—9787(2016)09—0009—05

        馬亞平(1986-),男,河南虞城人,博士研究生,從事組合慣性導航研究。

        猜你喜歡
        測量
        測量重量,測量長度……
        把握四個“三” 測量變簡單
        滑動摩擦力的測量和計算
        滑動摩擦力的測量與計算
        測量的樂趣
        二十四節(jié)氣簡易測量
        日出日落的觀察與測量
        滑動摩擦力的測量與計算
        測量
        測量水的多少……
        在线观看一区二区女同| 玩弄放荡人妇系列av在线网站| 国产乱码精品一区二区三区四川人| 中文字幕无线码中文字幕| 亚洲VR永久无码一区| 在线观看一区二区三区国产| 少妇无码av无码专线区大牛影院| 在线不卡av片免费观看| 久久99国产伦精品免费| 一本久道视频无线视频试看| 中文字幕一区二区三区久久网| 亚洲码国产精品高潮在线| 另类一区二区三区| 久草视频在线视频手机在线观看| 国产高颜值女主播在线| 亚洲老妈激情一区二区三区| 国产免费av片在线观看播放| 国产一区二区三区特黄| 日本a级片免费网站观看| 亚洲aⅴ在线无码播放毛片一线天| 亚洲区日韩精品中文字幕| 国产av午夜精品一区二区入口 | 激情文学人妻中文字幕| 亚洲丰满熟女乱一区二区三区| 久久久久久久久毛片精品| 国产精品一区二区 尿失禁| 日本一区二区三区在线播放| 亚洲国产熟女精品传媒| 欧美精品v国产精品v日韩精品| 免费一区啪啪视频| 综合中文字幕亚洲一区二区三区| 中文字幕av中文字无码亚 | 亚洲天堂免费视频| 亚洲一区二区三区最新视频 | 国产亚洲一本大道中文在线| 日韩人妻免费一区二区三区| 狠狠色欧美亚洲狠狠色www| 亚洲成a人片在线观看无码| 久久精品国产精品亚洲艾| 精品在线视频在线视频在线视频 | 国产亚洲欧美日韩国产片|